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Abstract

Traditional text-text caption evaluation uses heuristics to perform token matching
between a generated caption and a limited set of reference captions; these metrics
(BLEU, METEOR, CIDer and SPICE) are restricted to textual modalities, requiring
“ground truth” captions, which may not contain diverse semantic representations
that cover the variance of possible image captions. These metrics might also favor
adversarial captions designed to have high token similarity. Thus, a caption evalua-
tion metric that leverages visual semantic information might be more robust. We
propose a metric that scores captions on the the ability to recreate the imageś visual
semantic information (in latent or pixel space). We evaluate different image-image
comparison metrics against standard text-text metrics for robustness and corre-
lation with human preference. Though our image reconstructions in pixel space
are promising and latent reconstructions are sensitive to adversarial captions, we
find our method has shortcomings due to current text-to-image models’ invariance
to prompt syntactic structure and poor learning signals from certain adversarially
designed captions.

1 Introduction

Automatic image captioning methods attempt to generate a textual description of an image that is
both semantically valid and contains sufficient visual descriptions. Such methods have numerous
possible applications in human computer interaction, video surveillance, and medical imaging. In
addition to these demands, image captioning models can also provide quality of life improvements to
visually impaired individuals. An ideal image caption evaluation metric reflects these use cases, but
for the case of the visually impaired, current ground truth captions often underspecify the level of
detail in the image. See the appendix for examples of such captions.

A single image can have multiple valid captions and vice versa, a single caption can describe multiple
different images. Caption evaluation is poorly defined because of the numerous factors such as
specificity, number of objects, length, and semantic correctness which must be accounted for. We
address this limitation by defining a good caption as a text description containing enough information
to reconstruct an image with semantic and visual information similar to the original image. We
predict that an image captioning captioning metric which incorporates visual information will be both
more robust and have a stronger correlation with human judgement than a purely text-text metric.

In order to achieve both high quality text to image reconstruction and image-image comparison,
we leverage the power of foundation models Stability Diffusion [Rombach et al., 2021] and CLIP
[Radford et al., 2021b]. We generate images from ground truth captions with Stability Diffusion and



compare them to images the original caption belongs to. In addition to explicitly reconstructing the
image, we also attempt to reconstruct the image embeddings projected to GPT-2 latent space, as a
latent reconstruction evaluation metric. We then perform several experiments comparing our two
proposed pipelines to current standard text-text metrics.

2 Related Work

Caption evaluation assess the quality of generated captions against a reference image and/or a set of
annotated reference captions. The evaluation of a natural language generation (NLG) system is a
fundamentally difficult task. In practice, there are three common approaches Bernardi et al. [2017]

2.1 Common Approaches for Caption Evaluation

1) Human evaluation relies on the subjective scoring of generated captions by human annotators e.g.
on Amazon Turk (MTurk), where captions are judged on grammar, syntax, relevance, correctness,
logical inconsistencies and specificity.Bernardi et al. [2017]

2) Text-text evaluation uses heuristics to automatically compare generated captions with a small
(1-5 samples) set of reference captions; each of these metrics output a score capturing a different
notion of “similarity” with reference captions. Most text-text metrics were originally developed for
evaluating machine translation or text summarization, except CIDer, which was explicitly designed
to evaluate image captions. This approach for caption evaluation has historically been subject to
extensive critique, with multiple findings of poor correlation with human preference, particualrly for
BLEU and METEOR. (Bernardi et al. [2017])

• BLEU measures the geometric mean of multiple clipped n-gram precisions between gener-
ated and reference captions, with “n” between 1 to 4. Higher BLEU score implies generated
captions directly match ground-truth captions at the token-level (Papineni et al. [2002]).

• METEOR constructs an alignment between unigrams in generated and reference captions
over multiple stages including: exact match, stemmed match and synonymous match; the
mean F1 score of the alignment is calculated, with a penalty for non-adjacent mappings
(Banerjee and Lavie [2005]). METEOR is more robust to inflexional forms than BLEU.

• SPICE constructs semantic propositions that capture the objects, attributes and relationships
in captions. Semantic propositions are combined by their syntatic dependency and pre-
defined semantic role labeling (SRL) rules into propositional scene graphs; the conjunction
of semantic propositions over all semantic propositions tuples present in both generated
and reference scene graphs is taken. SPICE prioritizes abstract entity relationships, and has
shown high pearson’s correlations (0.88) with human judgment (Anderson et al. [2016]).

• CIDEr computes TF-IDF scores for tokens in the reference and generated captions. The
average cosine similarity between TF-IDF vectors of generated and reference caption is
taken. CIDEr ensures that generated captions match the diversity of reference captions
(Ramakrishna Vedantam [2014]).

Whilst NLG caption systems are trained on next token prediction, these text-text metrics use sentence-
level comparisons; they are also non-differentiable and cannot be used to influence caption generation
during training. Hence, there is a mismatch between training objectives for captioning and traditional
caption evaluation metrics (Ghandi et al. [2022]).

3) Machine Learning methods such as (Cui et al. [2018]) and (tig) train a caption evaluator using
embedded representations of the image, reference captions and generated captions. Cui et al. [2018]
uses Compact Billinear Pooling on the Fourier transformations of the embedded image and captions
to predict binary classification differentiating machine v.s. human generated captions; tig compares
spatial similarity of the embeddings of reference and candidate captions that are cross-attended with a
latent image representation. Our learned approach differs in that we attempt to reconstruct the image
embedding in latent space and we do not utilize reference captions as inputs to the model.
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Figure 1: Explicit reconstruction of images to evaluate captions.

2.2 Visual-Language Models for Image Captioning

Visual-language models like CLIP (Radford et al. [2021a]) provide powerful joint embedding spaces
between natural language and visual features. This has transformed approaches to captioning and
caption evaluation. CLIPScore (Jack Hessel and Choi [2022]) directly uses CLIPś cosine similarity,
scaled by a constant factor, as a numerical caption “score”. ClipCap (Ron Mokady and Bermano
[2021]) trains a small mapping network (transformer or MLP) to project CLIP image embeddings to
GPT-2 space; the projected embedding acts like a “soft prompt” for a GPT-2 decoder head and is
trained on the language modelling objective.

3 Methodology

3.1 Explicit Reconstruction

Our first approach is that of explicit reconstruction of an image in order to evaluate a given caption
(Figure 1). We first take the caption in question (generated by some captioning model under
evaluation) and feed it through a text-to-image model, in this case, Stable Diffusion v2.1. We sample
three images from Stable Diffusion. For each sampled image, we can then perform image-to-image
comparisons to attempt to evaluate the validity of the reconstructions. Results reported in this paper
represent the mean over all generated images.

There are two types of metrics we use to compare two images: low-level denoising metrics from GAN
literature as well as higher-level comparisons of CLIP image embeddings. For low-level denoising
metrics, we experimented with SSIM [Wang et al., 2012], MS-SSIM [Md and Channappayya, 2016],
VIF [Sheikh and Bovik, 2004], GMSD [Xue et al., 2013], and FSIM [Zhang et al., 2011]. All of these
were implemented in the PyTorch Image Quality library [Kastryulin et al., 2022]. The two CLIP
comparisons we made were based on CLIP-RN50 and CLIP-ViT-L/14 embeddings, using OpenAI’s
CLIP interface. While the low-level metrics used were designed as loss functions for the task of
denoising an image, the hope was that they might capture information about similarity of lower-level
image features (for example, giving a better rating to images that both have grass textures versus an
image with a snow texture and a grass texture).

3.2 Latent Reconstruction

Due to the high resource and time requirements with explicit image reconstructions, we also explore
reconstructing the image embedding in latent space to evaluate a given caption (Figure 2). We pre-
train and then freeze the ClipCap (Ron Mokady and Bermano [2021]) mapping network (transformer)
using CLIP’s ViT-L/14 image encoder and remove the GPT-2 decoder head. As mentioned in
subsection 2.2, ClipCap’s mapping network allows us to project images to GPT-2 latent space whilst
preserving semantic information for captioning. On the caption side, GPT-2’s pretrained text encoder
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Figure 2: Latent reconstruction of images to evaluate captions.

feeds the embedded caption to a self-attention layer (with 8 heads and embedding size 768) followed
by a multi-layer perceptron (MLP with 3M parameters); only the self-attention layer and MLP are
trained to “reconstruct” the image embedding in GPT-2 latent space. To motivate the reconstruction,
we use a weighted combination of MSE and a Triplet Margin loss 1. The MSE loss ensures the
mapped caption embedding is pushed closer to the mapped image embedding; the Triplet loss tries
to bring the “original” caption embedding (positive anchor) closer to image embedding than and
a “noisy” caption embedding (negative anchor). The “noisy” caption is either a random caption
(selected from a different image to the one being compared) or a word permutation; one type of noise
is randomly chosen and applied for each batch. During test time, the distance between reconstructed
embeddings serve as the image-caption evaluation metric: we consider the average MSE distance
(Latent (Mean)) and the L2 distance (Latent (L2)) between image and reconstructed latent vectors.

L = αLMSE + βLtriplet
LMSE = (x− x̂)2

Ltriplet = max(d(ai, pi)− d(ai, ni) +m, 0)

(1)

where x̂ is the latent reconstruction; α and β are weighting coefficients to prioritize reconstruction
similarity and resistance to pathological captions, respectively. We use α = 1 and β = 10 to bring
both losses to the same order of magnitude, so they have similar influence on the summed loss.

4 Experiments

We perform a number of experiments to determine the robustness of both proposed captioning metrics.
The first two sections (Section 4.1 and 4.2) describe experimental designs where pathological captions
are evaluated using our metric; we apply pathological transformations to 0%, 20%, 50%, 75% and
90% of the Flickr8k test set, with the hope that our metrics will be sensitive to deleterious changes
that make caption quality worse. Since we present the normalized scores for fair comparison, we
expect performance degradation to be linearly proportional to the extent of pathological transforma-
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Performance Degradation with Random Captions

Figure 3: Results when we swap which captions are associated with which images. If a caption does
not belong to an image, scores should drop accordingly. For all of our metrics, explicit and latent
included, swapping of captions does little to degrade performance indicating a lack of sensitivity to
this pathological transformation. Only the CLIP-RN50 image-image metric seems to be sensitive to
swapped captions.

tions applied. The third section (Section 4.3) measures the correlation of each metric with human
preferences of “correctness” for different image-caption pairs, using expert evaluations from a subset
of Flickr8k.

4.1 Resistance to Random Captions

Figure 3 shows how the score assignment of our mertics change when we swap which captions are
associated with which images. If a caption does not belong to an image and the original image-
caption pairing is perturbed, an ideal captioning metric should be sensitive to semantic changes
and reduce score assignment proportional to the percentage of examples that are swapped. Most
optimal degradation is achieved by CIDer that nearly scale 1:1 with more transformation. Other
baseline text-text metrics are sensitive to random swaps, but the only metric of ours that drops
performance (to 0.67 with 90% random captions) is cosine similarity comparison using CLIP-RN50
image embeddings. This indicates that our proposed metrics are not sensitive to random swaps and
cannot distinguish semantic changes in the caption relative to visual semantics of the image.

4.2 Resistance to Word Permutations

Figure 4 shows how the score assignment of our mertics change when we preserve image-caption
pairings but shuffle the tokens within a caption and then evaluate for quality. An ideal captioning
metric should be sensitive to the loss of syntactic structure in the shuffled caption, and reduce score
assignment proportional to the percent of captions shuffled. Most optimal degradation is achieved by
BLEU-3 and BLEU-4 that nearly scale 1:1 with increase permutation. Our explicit reconstruction
metrics are not sensitive to word order; we find that the latent reconstructions do degrade performance
when more captions are shuffled, though “Latent (Mean)” metric disproportionately reduces average
score for the degree of transformation and “Latent (L2)” metric does not degrade fast enough.
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Performance Degradation with Shuffled Captions

Figure 4: The two top figures show drops in baseline scores (BLEU-{1,2,3,4}, METEOR, SPICE,
CLIPScore, and CIDer) as the percentage of captions with tokens shuffled increases. The bottom
shows that all image-image metrics (CLIP-RN50, GMSD, FSIM) lack sensitivity to caption word
ordering and syntax. However, performance does degrade when using latent reconstruction.

Surprisingly, image-text CLIPScore baseline is far less sensitive than our reconstruction metrics and
baselines that operate purely in text space.

Figure 5 also validates our observations. The left and right boxplots show distributions of scores
for unshuffled captions and shuffled captions, respectively. Most baseline metrics tend to have
substantially lower median score with lower IQR when captions are shuffled, with the exception of
CLIPScore. There are no significant differences in median or IQR of scores between our image-image
metrics. However our latent methods show significantly lower (better) score assignment with 3×
smaller IQR without shuffling; the score range and IQR are far wider with shuffling, though the
bottom 25% still overlaps in value.

4.3 Human Preferences

Finally, we use human evaluations from a subset of Flickr8k, which consists of 5822 image-caption
pairs rated on “how well the caption describes the image” by three expert annotators. The ratings are
ordinal in the range 1-4 with higher score implying a more descriptive caption; we compute the the
mean score across the annotators and find the correlation between these “human prefernce” scores
and the scores assigned by each of our metrics, including the baseline metrics.

We use Kendall’s Tau [Kendall, 1938], a nonparameteric method of measuring the strength of
association (monotonicity) of two variables, to assess correlation. An absolute value greater than
0.3 shows strong correlation; absolute values between 0.1-0.3 have notable but weaker correlation;
absolute values below this show no correlation. Table 1 shows these results. Certain “loss based”
metrics (marked with ↓) reduce score assignment for captions of higher quality, so a negative
correlation is desirable for them. For our explicit image reconstruction metrics, we perform an
ablation that correlates the scores assigned to human preference, when the original images are
replaced by random noise. This helps us assess whether these image-image metrics capture features
that are aligned with or important to human preference.
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Distribution of score assignment with and without shuffled captions

Figure 5: In each subfigure, the left and right boxplots show distribution of scores for unshuffled
and shuffled captions respectively. There are no significant differences in score distribution with and
without shuffling for image-image metrics, validating results from Figure 4. However, our latent
method is sensitive to caption shuffling, even more than baseline methods in the top row.

Method τ p-value Method τ p-value τ with noise p-value
BLEU-1 0.3759 0.0 SSIM ↓ -0.0196 0.0 -0.0597 0.0
BLEU-2 0.3923 0.0 MS-SSIM ↓ -0.0313 0.0 -0.0319 0.0
BLEU-3 0.3819 0.0 VIF ↓ -0.0011 0.9 -0.0242 0.0
BLEU-4 0.3759 0.0 GMSD ↓ -0.1024 0.0 -0.0729 0.0

METEOR 0.4115 0.0 FSIM ↓ -0.1106 0.0 -0.0517 0.0
CIDer 0.0055 0.6 CLIP-RN50 ↑ 0.4722 0.0 -0.0174 0.0
SPICE 0.5913 0.0 CLIP-ViTL ↑ 0.4201 0.0 -0.0374 0.0

CLIPScore 0.5947 0.0 Latent ↓ -0.1075 0.0 – –

Table 1: Correlations of assigned scores with human preference, for different metrics. The left table
shows correlations for baseline text-text and text-image metrics, which all have strong correlations,
except for CIDer. The right table shows correlations for our explicit and latent reconstruction metrics,
where most low-level image comparison metrics have no correlation.

We find that correlation is above chance (replacing images with random noise) for GMSD, FSIM,
CLIP-RN50 and CLIP-ViTL image-image metrics, shown in italics. The latent method, GMSD and
FSIM have weak correlations to and using CLIP-RN50 embeddings for image-image comparison
seems to offer the strongest correlation with human preference of our metrics, outperforming most
text-text baselines. However CLIP-RN50 does not outperform direct text-image comparison between
caption and image using CLIPScore, which has the highest overall correlation with human preference.

5 Discussion

Our proposed metrics for caption evaluation, which use image reconstruction as a basis for score
assignment, are not generally robust across all evaluated paradigms i.e. pathological captions (random
or shuffled captions) and human preference correlation. Nearly all image-image metrics do not
outperform CLIPScore or traditional text-text metrics in human preference; the image-image metrics
are also unable discern changes in syntax and semantics of captions relative to visual semantics, as
shown with experiments using pathological captions. However, the strong correlation (0.4722) and
performance degradation seen with random captions makes us believe that reconstruction is a viable
approach that might have better potential with carefully designed image-image comparison metrics
and text-image models that are more sensitive to syntax.
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The metrics adopted from GAN literature perform low-pixel-level comparisons between image-image,
so perhaps incorporating language concepts (e.g. using SegmentAnything ) when searching for high-
level matching visual features might help connect the visual-language domain and be a fruitful
direction for incorporating visual information in a captioning metric. The image-image metrics are
also limited by the fidelity and accuracy of text-image models. Diffusion models are notorious for
struggling with relations in text prompts and do not usually require syntactically accurate descriptions
to generate meaningful images, resulting in possibly inaccurate image reconstructions even if the
caption and/or image-image comparisons are adequate.

Our proposed latent reconstruction metric is also not generally robust, though it exhibits weak
correlation with human preference and strong sensitivity (performance degradation) to shuffled
pathological captions. The model achieves stable reduction in both MSE (reconstruction) and tripley
margin loss 7. The median score (for Latent (Mean)) reduces from 1.0 to 0.47 (implying higher
quality) without shuffling and the median with shuffling is far above the maximum (lowest quality)
score without shuffling. However there are shuffled caption examples that are assigned low score
(higher quality) in the first-quartile. Qualitative visualizations of reconstructions in Figure 8 show
that shuffled captions have generally low activations, suggesting the triplet loss might be pushing
shuffled captions embeddings towards the origin of the embedding space. There is also only a weak
visual correlation between image embedding and reconstruction in the GPT-2 latent space.

We believe there is limited sensitivity to random captions because sampling completely random
captions (from other images) provide a weak learning signal (weak negatives) to triplet margin loss
compared to strong negatives from random shuffling; as a result, the model might be more motivated
to be sensitive to shuffling transformations and the projections might actually lose linguistic semantic
information in the original GPT-2 embedding. Using human-feedback to train selectively on high-
preference captions or to choose more hard-negatives for random captions (e.g. “a boy riding a
bicycle” (positive) and “a man riding a motorbike” (negative)) might improve human correlation
and lead to stronger sensitivity to random captions. Additionally, projecting to a larger (or richer)
language space like GPT-2 XL or GPT-3 might better capture semantic variations.

6 Division of Labour

Shreyas: ideation of latent reconstruction method, coding latent reconstruction method, training/fine-
tuning latent method, coding scripts to run pathological caption experiments, running pathological
captions evaluation, generating boxplots, writing paper, making presentation

Sheridan: ideation of explicit reconstruction method, coding explicit reconstruction method using
Stable Diffusion, coding scripts to run human preference experiments, running evaluations for human
preference, writing paper, making presentation

Adrian: ideation of explicit reconstruction method, coding explicit reconstruction method using
Stable Diffusion, coding scripts to run human preference experiments, running evaluations for human
preference, writing paper, making presentation
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7 Appendix

7.1 Examples of explicit image reconstructions

In this section we provide examples of ground truth image caption pairs alongside the images
generated by the caption.
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7.2 Training loss for ClipCap (ViT-L/14) pretraining

Figure 6: Pre-training the ClipCap mapper (transformer) on COCO for a caption generation. There is
a sharp reduction in cross-entropy loss by batch 5000 after which the loss is volatile but bounded,
though the moving average reduces slowly
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7.3 Training loss curves for latent reconstruction

Figure 7: The latent image reconstruction model is capable of reducing total loss, with the MSE
reconstruction loss reducing more sharply (within 250 batches) than the triplet loss. The triplet loss
shows staggered reduction in three plateauing phases, eventually becoming volatile but bounded; we
notice that the volatility of the triplet loss is very sensitive to the β in loss function 1
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7.4 Comparing embedding visualizations of latent reconstructions

Figure 8: Visualizations of the latent embeddings for (from top to bottom): the reference (ground-
truth) captions, reconstructed embeddings, reconstructions for captions with word permutations,
reconstructions for captions from different images. Dimensionality reduction via PCA to d = 30 was
applied to a normalized embedding vector (size 10× 768) to make visualizations more interpretable

13



References
URL https://aclanthology.org/D19-1220.pdf.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional image
caption evaluation. arXiv preprint arXiv:1607.08822, 2016.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with improved correlation
with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan, June 2005. Association
for Computational Linguistics. URL https://aclanthology.org/W05-0909.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis, Frank
Keller, Adrian Muscat, and Barbara Plank. Automatic description generation from images: A survey of
models, datasets, and evaluation measures, 2017.

Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, and Serge Belongie. Learning to evaluate image captioning.
Conference on Computer Vision and Pattern Recognition, 2018.

Taraneh Ghandi, Hamidreza Pourreza, and Hamidreza Mahyar. Deep learning approaches on image captioning:
A review. arXiv preprint arXiv:2201.12944, 2022.

Maxwell Forbes Ronan Le Bras Jack Hessel, Ari Holtzman and Yejin Choi. CLIPScore: A Reference-free
Evaluation Metric for Image Captioning. 2022. URL https://aclanthology.org/2021.emnlp-main.
595v2.pdf.

Sergey Kastryulin, Jamil Zakirov, Denis Prokopenko, and Dmitry V. Dylov. Pytorch image quality: Metrics for
image quality assessment, 2022. URL https://arxiv.org/abs/2208.14818.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.

Sameeulla Khan Md and Sumohana S. Channappayya. Multiscale-ssim index based stereoscopic image quality
assessment. 2016 Twenty Second National Conference on Communication (NCC), pages 1–5, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational
Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision, 2021a.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In International Conference on Machine Learning, 2021b.

Devi Parikh Ramakrishna Vedantam, C. Lawrence Zitnick. Cider: Consensus-based image description evaluation.
arXiv preprint arXiv:1411.5726, 2014.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10674–10685, 2021.

Amir Hertz Ron Mokady and Amit H. Bermano. Clipcap: Clip prefix for image captioning. arXiv preprint
arXiv:2111.09734, 2021.

Hamid R. Sheikh and Alan Conrad Bovik. Image information and visual quality. 2004 IEEE International
Conference on Acoustics, Speech, and Signal Processing, 3:iii–709, 2004.

Shiqi Wang, Abdul Rehman, Zhou Wang, Siwei Ma, and Wen Gao. Ssim-motivated rate-distortion optimization
for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 22:516–529, 2012.

Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan Conrad Bovik. Gradient magnitude similarity deviation: A
highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 23:684–695, 2013.

Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. Fsim: A feature similarity index for image quality
assessment. IEEE Transactions on Image Processing, 20:2378–2386, 2011.

14

https://aclanthology.org/D19-1220.pdf
https://aclanthology.org/W05-0909
https://aclanthology.org/2021.emnlp-main.595v2.pdf
https://aclanthology.org/2021.emnlp-main.595v2.pdf
https://arxiv.org/abs/2208.14818
https://aclanthology.org/P02-1040

	Introduction
	Related Work
	Common Approaches for Caption Evaluation
	Visual-Language Models for Image Captioning

	Methodology
	Explicit Reconstruction
	Latent Reconstruction

	Experiments
	Resistance to Random Captions
	Resistance to Word Permutations
	Human Preferences

	Discussion
	Division of Labour
	Appendix
	Examples of explicit image reconstructions
	Training loss for ClipCap (ViT-L/14) pretraining
	Training loss curves for latent reconstruction
	Comparing embedding visualizations of latent reconstructions


