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Abstract— Membership Inference Attacks (MIAs) threaten
the privacy of data used in machine learning (ML) models
as they allow adversaries to infer whether a specific data
point was part of the model’s training set. MIAs pose a
particular risk in privacy-sensitive domains like healthcare or
finance. They extract sensitive information by exploiting the
generalization gap caused by overfitting in ML models and can
even exploit black-box models. This project investigates the
effectiveness of three defense methods against MIAs: dropout,
label smoothing, and confidence score masking. It tests these
defenses both individually and in combination against the
MIA pipeline provided by the ML-Leaks framework [1].

Building on the ML-Leaks framework, this project adapts
a CNN-based attack pipeline using the CIFAR-10 dataset,
and it evaluates various defense combinations by measuring
attack accuracy, target model utility, and balanced accuracy.
In this setup, dropout most effectively reduced attack accuracy
but significantly harmed model utility, while label smoothing
offered a more favorable privacy-utility tradeoff as it pre-
served target accuracy while reducing MIA effectiveness. Con-
fidence score masking, on the other hand, provided minimal
additional protection when it was combined with the above
regularization techniques. The study’s results suggest that
combining multiple defenses leads to diminishing returns and
that the careful selection of individual high-impact defenses
such as label smoothing can meaningfully improve models’
robustness against MIAs.

I. INTRODUCTION

Machine learning (ML) models are becoming ubiquitous
across industries and geographies, where they have come to
play integral roles in tasks ranging from speech recognition
to disease detection. Among their various applications, ML
models increasingly manage complex tasks in domains
that handle sensitive data, such as healthcare and finance
[2]. The rise of Machine Learning as a Service (MLaaS)
provides additional access to ML models, as companies
expose their models via APIs [3]. Naturally, it is imperative
that we maintain the privacy of such sensitive data and that
we ensure its proper protection.

However, ML models have an innate tendency to memo-
rize their training data and overgeneralize when faced with
unseen information (known as overfitting), which leaves
them vulnerable to a range of attacks aimed at compromis-
ing their data integrity. As industries increasingly integrate
ML models into their handling of sensitive data, these
exploitations pose a growing threat to data protection. Some
of these potential attacks include model extraction attacks,
attribute inference attacks (model inversion attacks), prop-

erty inference attacks, as well as membership inference
attacks [3].

This research project focuses in particular on member-
ship inference attacks (MIAs), which allow the attacker
to infer whether a specific data record was part of the
training data of a given model [4]. As mentioned above,
MIAs are especially problematic in MLaaS offerings, as the
exposure of companies’ ML models through APIs makes
these models vulnerable to MIAs and similar attacks [3].
These privacy violations are particularly dangerous in fields
like healthcare, where MIAs can lead to breaches in medical
confidentiality [2]. There are additionally important legal
concerns to consider, as MIAs can lead to violations of
privacy laws such as the European Union’s General Data
Protection Regulation (GDPR) which could consider the
inferences made through MIAs as ”unlawful disclosures of
personal data” [3].

Attackers use MIAs to infer membership by exploiting
differences in how models behave on training versus non-
training data, as models often exhibit lower loss values and
higher prediction confidence for training data. MIAs are
effective precisely because they exploit an inherent weak-
ness of ML models, which is their tendency to overfit on
training data and therefore exhibit significant performance
differences between training and test data [5]. The success
of MIAs is directly linked to the model’s generalization
error, which is the difference in a model’s performance
on a training versus a non-training sample that arises
as a result of overfitting [4]. Generalization error plays
a critical role in MIA success, as higher generalization
errors generally make the model more predictable and
the difference between training and non-training data will
therefore become more easily recognizable [4].

Since the core mechanism of MIAs functions by com-
paring model outputs (such as prediction probabilities or
confidence scores) on different data points, these attacks
pose a particularly widespread risk as they also function
on black-box ML models, which are models where the
attacker does not have access to their internal parameters
but rather can only observe the model outputs [4]. This,
in turn, means that even attackers with limited knowledge
or computational power can execute successful MIAs on
widely used and available models, which highlights the
vulnerability of ML models against these attacks and the
importance of implementing strong defenses to mitigate



them.

A. Organization

This report is organized as follows. Section II outlines
the conceptual process of MIAs and their defenses by syn-
thesizing existing work. Section III presents the empirical
research methodology of this project, while Section IV
presents the experimental results and Section V offers
a discussion of findings, limitations, and future research
directions.

II. EXISTING WORK

This section outlines the principal components of MIAs
and synthesizes existing work on MIA mechanisms (in-
cluding membership scores, attack techniques, and shadow
models) and on defense methods. The rationale behind
this section is that order to be able to successfully de-
fend against and mitigate MIAs, it is important to clearly
understand the core mechanisms involved in these attacks
themselves and how previous research has engaged with
them.

A. Attack Mechanism

The key assumption on which MIAs operate is that
models behave differently for training versus non-training
data (as described in Section I) [5]. In general, the model
that is exploited in the attack is referred to as the target
model, while the attacker’s classifier model that infers
memberships is known as the attack model.

Membership score calculation. The core mechanism
of MIAs (and the primary objective of the attacker) is the
calculation of membership scores for given inputs, which
are scores that indicate whether a sample was part of the
training set for a model. These scores are calculated based
on model output metrics such as prediction confidence, the
negative loss, and probability distributions [2], where higher
scores indicate that the sample is likely part of the training
data.

While the evaluation in this project operationalizes this
membership score calculation without a specific formula (as
we see in Section III), a mathematical abstraction of this
process can clarify this process; the simplest illustration
for membership score calculation can be found in the
loss-based attack technique. Thus, for a given input x
and a target model Mθ with parameters θ, the loss-based
membership score S(x, y) is given by:

S(x, y) = −L(Mθ(x), y) [2], [4], [5]

Here, a lower loss value (therefore a higher negative loss)
indicates that the model has ”memorized” the training data
and therefore exhibits significantly lower loss for training
data than for non-training data.

MIA techniques. While the loss-based membership
inference formula is the most accessible example, there are
several different types of MIA techniques, each focusing
on a different metric to compute membership scores while
resting on the same underlying principle of membership
score calculation. In addition to loss-based attacks (which
we have just seen), important techniques include attacks
based on confidence [2], [3], [5], metric [3], decision
boundary [3], entropy [3], [4], prediction correctness [3],
and binary classifier [3].

This project focuses in particular on confidence-based at-
tacks, in which the attacker observes the model’s prediction
confidence for a given input based on the assumption that
models tend to be more confident when they predict labels
for their training data [3]; here, higher confidence typically
indicates that the input was part of the training set for the
model [2].

Shadow models. A common way to mount MIAs is
through shadow model training. Shadow models are trained
with the specific goal of replicating the target model’s
behavior, in order to simulate MIAs to allow the attacker
to train the attack model effectively [3]. A shadow model
Dshadow is trained using a shadow dataset that is split into
known member and non-member samples:

Dshadow = (x1, y1), (x2, y2), ..., (xn, yn) [3]

Once the shadow model is trained, the attacker then uses its
outputs to train a classifier (the attack model) for predicting
membership on the target model. Therefore, shadow models
significantly enhance the attack’s accuracy as they allow
attackers to estimate how the target model would treat train-
ing versus non-training data [4]. Shadow model training is
also a key facilitator of MIA’s success against black-box
MIAs, as shadow models provide an opportunity to train
the attack model on a model that mimics the target model’s
behavior but whose training data and parameters are known,
therefore allowing for finetuning before applying the attack
model to the black-box target model [3], [4]. To synthesize
the process, the formula for membership prediction using
a classifier trained using a shadow model is as follows:

M(x) = Classifier(Shadow Model Output(x))

where M(x) represents the predicted membership (based
on the membership score) of input value x.

B. Defenses

As we have established, MIAs exploit model overfitting
and predictable behavior to infer whether a data point
was part of the training set. Numerous defense methods
have been proposed and implemented to work towards
building more robust protections against these attacks; these
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defense methods can be broadly categorized into model-
level defenses and output-level defenses, many of which
focus on mitigating the core weakness that is overfitting.
This project explores 3 complementary defenses ranging
across both categories: dropout, confidence score masking,
and label smoothing, and it evaluates their effectiveness
alone and in combination with each other. For the sake
of concision and relevance, this section focuses only on
the defense methods we use in our empirical methods, but
further defense methods are provided in this footnote.1

First, it is important to distinguish between model-level
and output-level defenses as they apply to this project:

• Model-level defenses are regularization-based and
aim to reduce overfitting in order to minimize be-
havioral differences between training and non-training
data. Dropout and Label smoothing belong in this
category.

• Output-level defenses aim to obfuscate the model’s
output to conceal membership clues. Confidence score
masking belongs in this category.

Dropout. Dropout is a classical regularization method
that aims to reduce overfitting in a model. Dropout in-
volves randomly deleting (dropping) units during training,
which prevents the model from relying too heavily on
any individual training sample and therefore reduces the
likelihood of memorization [4]. Dropout helps mitigate the
risk of MIAs by making the model less reliant on individual
training data points and more on general patterns in the data
[5]. This helps models generalize better (since it reduces
their tendency to overfit/memorize the training data), which
lowers the generalization gap and therefore makes it harder
for the attacker to distinguish between training and non-
training data [2].

While dropout does affect the model’s accuracy (which
is natural since it makes changes to the training data itself),
past studies such as Salem et al. have shown that this
effect is not strictly negative and that, in some cases,
the regularization imposed by dropout even improves after
applying dropout [1]. However, this effect on accuracy is
a tradeoff of dropout that is important to monitor as we
apply it to mitigate MIAs.

Label smoothing. Label smoothing is another classical
regularization method that aims to improve the generaliz-
ability of an ML model [3]. It works by replacing one-
hot labels with a smoothed distribution that blends the true
class with a uniform distribution over all classes, which

1Adversarial regularization [[3], p.10]; Adversarial training [[4], p.274]
[[2], p.3]; Algorithmic stability [[5], p.273]; Batch normalization [[5],
p.272]; Differential privacy [[3], p.8] [[4], p.270]; Difficulty calibration
[[2], p.3]; Ensemble models [[3], p.10] [[4], p.275]; L1 and L2 regulariza-
tion [[3], p.9] [[5], p.273] [[4], p.273]; Model pruning [[5], p.272]; Testing
defenses with shadow models [[3], p.10]; Weight decay [[5], p.273]

allows it to address both overfitting and overconfidence. [6].
Thus, instead of assigning a probability of 1 to the correct
class and 0 to all others, label smoothing replaces the
target distribution with a mixture of the ground-truth and a
uniform prior; typically, it assigns 0.9 to the true class and
0.1 distributed evenly among all others [7]. This prevents
the model from producing very peaked output distributions
(i.e. overly confident predictions) with large logit gaps
between the predicted and non-predicted classes [7], [6].
This, in turn, reduces the generalization gap and therefore
makes it more difficult for the attacker to distinguish
between training and non-training data.

However, a key tradeoff introduced by label smoothing
is that it may hurt model performance if the labels are
correct, especially in cases where we may want confident
predictions; this is because label smoothing ultimately
affects the model’s confidence across all predictions, even
for correct ones [6]. If label smoothing is applied too
aggressively, this could even lead to underfitting, which is
why it is important to track and control the tradeoff as we
apply label smoothing.

Confidence score masking. Confidence score masking
aims to mitigate the effectiveness of MIAs by hiding
the true confidence scores returned by a classifier model.
There are several widely used variants of confidence score
masking, ranging from adding noise to providing only
limited prediction labels [3]. However, this project applies
a type of masking in which the target classifier does not
provide a complete prediction vector, but rather provides
top-k confidence scores to the attacker [3]. For exam-
ple, in a classification problem of 10 classes, the model
would only provide the largest 3 confidence scores when
the attacker queries the input record [3]. Once the top-3
confidence values are extracted, the remaining 7 values in
the prediction vector are set to zero; however, the resulting
sparse vector with only 3 non-zero values would violate
the properties of a probability distribution as the top 3
values no longer sum to 1. Therefore, confidence score
masking applies renormalization by dividing each of the
top-3 retained values by their sum, so that the prediction
vector again sums to 1 and the output thereby still behaves
like a probability distribution, but with the fine-grained
confidence detail hidden from the attacker.

Since this is an output-level defense, the key advantage
of confidence score masking is that there is no need to
retrain the classifier model, since this method is simply
implemented on the output prediction vectors [3]. How-
ever, a significant drawback of confidence score masking
arises from the fact that it only reduces the ostensibility
of the output confidences but does not actually reduce
the generalization gap. As long as this generalization gap
exists, a simple prediction-correctness MIA will always
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achieve better attack performance than random guessing
[3]. Therefore, while confidence score masking can make
it more difficult for an attacker to distinguish between
training and non-training samples, it does not fully remove
the patterns of difference that result from the model’s
generalization gap.

C. Contribution

While existing work explores various defense methods
in rigorous detail, defense methods are mostly evaluated in
isolation. While this allows us to gain a deep understanding
of the merits and tradeoffs of individual defense methods,
it leaves us with unanswered questions on the potential
of combining defenses to achieve synergies in defending
against MIAs, but also to reveal new tradeoffs or risks.
The contribution of this project lies in its approach of
evaluating combinations of defense methods (dropout, label
smoothing, and confidence score masking) to take a step
towards answering these important questions. In particular,
this project works on defense methods against MIAs that
target ML classifier models and therefore explores defense
methods that work well with precisely these classifiers.

The particular methods that this project uses were chosen
for several reasons. First, all three defenses target different
vulnerability layers in the classifier model:

• Dropout targets internal memorization in the model
and aims to reduce memorization.

• Label smoothing mitigates overconfidence at the
model’s output layer and aims to reduce output confi-
dence and sharpness.

• Confidence score masking controls model output
exposure at inference time and aims to limit exposed
signals in the output.

The goal of applying defenses to different vulnerability
layers on the same model is to evaluate the effects of
targeting multiple levels of the model on attack success.
Second, these defense methods present relatively low-risk
tradeoffs; while other defenses (such as differential privacy
and adversarial training) offer stronger theoretical guaran-
tees, this often comes at the cost of significant utility loss or
implementation complexity. In order to be able to evaluate
the merits of multiple defense methods, we chose simpler
and widely applicable methods that allow us to control the
privacy-utility tradeoff as much as possible.

III. METHODOLOGY

This section introduces the ML-Leaks model introduced
by Salem et al. [1] and the basis it provides for this
project, before moving to present the CIFAR-10 dataset
and its applications for the project. Then, this section
describes the experimental setup along with implementation
and evaluation.

Two central objectives drive the empirical methods de-
sign:

1) Reducing the attack success rate. This is the
driving motivation for implementing defenses, as
our ultimate goal is to prevent data extraction and
privacy violations, which we can most immediately
measure by measuring the attack success rate (i.e.
how accurately the attack model classifies a sample
correctly).

2) Minimizing the privacy-utility tradeoff. Each de-
fense method affects the target model’s performance
and thus creates a tradeoff between ensuring in-
creased privacy but also reducing the model’s utility.
We hope to ensure that building robust defenses
against attacks still leaves us with functional models
that can perform adequately in their given tasks,
so minimizing the privacy-utility tradeoff is a key
consideration as well.

A. The ML-Leaks Model

ML-Leaks (Salem et al., 2019) [1] presents a generalized
framework for MIAs that reduces prior assumptions on
attacker knowledge and models a range of increasingly
relaxed threat scenarios. It does so by improving on the
original Shokri et al. [4] attack, which was the first work to
formally demonstrate and define MIAs against ML models
in a reproducible and generalizable format. Specifically,
ML-Leaks demonstrates that only a single shadow model
and a single attack model are sufficient to launch successful
MIAs, which significantly reduces the cost and complexity
of the attack. The ML-Leaks framework supports multiple
types of target models (including convolutional neural
networks (CNNs) and MLPs), and additionally, it evaluates
MIAs across 8 diverse datasets (including CIFAR-10 and
CIFAR-100); this flexibility makes the framework both
model- and data-independent and widely applicable to
different formats.

The attack model in ML-Leaks is a binary classifier,
and it is trained on the outputs of a shadow model that
mimics the target model’s behavior by predicting member-
ship based on confidence scores (posterior probabilities),
according to the shadow model training process described
in Section II-A. Salem et al. introduce 3 adversarial types:

1) Adversary 1 has access to data from the same distri-
bution as the target model’s training data and knows
its model architecture. It trains a shadow model based
on this information to mimic the target model closely.

2) Adversary 2 has access to data from a different
distribution as the target model, and may also use
a different model architecture. This is a weaker
adversary with less knowledge of the target model
but still trains a shadow model to mount the attack.
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3) Adversary 3 trains no shadow model at all and
instead relies on simple heuristics such as prediction
confidence or loss for membership inference. While
this adversary is the simplest and weakest of the
three, it is also the most realistic in terms of resource
constraints.

ML-Leaks in this project. This project uses Salem et
al.’s work as a foundational paper because ML-Leaks offers
a reproducible, modular, and broadly applicable pipeline for
testing membership inference threats and defenses, as es-
tablished above. This makes ML-Leaks an ideal foundation
for implementing and evaluating multiple defense combi-
nations. This project adopts ML-Leaks’ Adversary 1 setup
and thus uses a single shadow model and attack model. The
project’s implementation reuses core architecture from the
ML-Leaks GitHub repository,2 specifically its CNN target
model and the attack pipeline. The choice to reuse this
core architecture to enable direct comparison to baseline
results, and also to reproduce the confidence-based attack
mechanism that is instrumental for this project.

Additionally, the decision to focus on CNNs is aligned
with Salem et al.’s evaluation on CIFAR-10/CIFAR-100 on
convolutional networks. Since this project also adopts the
CIFAR-10 dataset [8] (as discussed below), the choice of
CNNs allows for a clear replication of the MIA setting and
defenses. Finally, this project implements dropout as one of
our defense methods following the proposal of this method
in ML-Leaks, where Salem et al. apply dropout to input
and hidden layers [1] to reduce overfitting and therefore the
generalization gap that is so central to how MIAs exploit
ML models.

Limitations of ML-Leaks. In the selection of ML-
Leaks as the basis for this project, an important limiting
consideration was the framework’s age; it is over 6 years
old, which in the rapidly evolving field of machine learning
means that it cannot incorporate more recent attack models.
However, despite its age, ML-Leaks remains an influential
and widely reproducible foundational work in the field for
black-box MIAs, and the clear experimental structure it
offers allows for an ideal environment for isolated and
combined testing of multiple defense mechanisms.

B. Experimental Design

The experimental design takes the ML-Leaks framework
as its basis and builds the defense methods upon this
foundation. The design overview in this section covers the
dataset selection, implementation details, and evaluation
metrics.

Dataset. This project uses the CIFAR-10 dataset.3 This
dataset consists of 60,000 color images of size 32x32

2https://github.com/AhmedSalem2/ML-Leaks
3https://www.cs.toronto.edu/∼kriz/cifar.html

pixels across 10 classes, with 6,000 images per class and a
standard train/test split of 50,000 and 10,000 respectively
[8]. CIFAR-10 is widely used in ML research; this is not
only thanks to its moderate complexity but also because it
is suitable for image classification benchmarks, especially
in CNNs, which makes it particularly suitable for this
CNN-based project. This project uses the CIFAR-10 dataset
in order to align with the original ML-Leaks evaluation,
and to ensure results that are reproducible and comparable
within a well-established benchmark dataset. Additionally,
its manageable size and balanced class distribution also
make CIFAR-10 a practical choice for conducting exten-
sive experiments across multiple defenses without hitting
significant time or resource limitations.

Implementation details. All code for this project builds
upon the public ML-Leaks GitHub repository4 and it intro-
duces extensive modifications for the following goals:

1) Implement defense methods. This includes dropout
as well as the new defense methods of label smooth-
ing and confidence score masking.

2) Improve experimental tracking. This involves
auto-saving model outputs as .npz files and clearly
logging output and evaluation metrics per run.

3) Introduce modular configuration. This involves re-
structuring the codebase to enable toggling and com-
bining defenses without rewriting any core pipeline
logic.

The base CNN model and attack pipeline are pre-
served from the original code; this includes the shadow
model training, attack model architecture, and confidence-
based membership inference. Dropout is implemented as
a model-level defense inserting dropout layers at both the
input and fully connected layers of the CNN, which is in
accordance with the original dropout proposal in ML-Leaks,
and the dropout rate was fixed at 0.5 during training. The
implementation relies on Theano 1.0.5 and Lasagne, which
are legacy deep learning libraries that the original ML-
Leaks codebase uses. Accordingly, the environment was
set up using Conda on macOS ARM64 (Apple Silicon),
with Python 3.8 to ensure compatibility with Theano and
Lasagne. Similarly, and to resolve deprecation issues during
setup, this implementation uses manually configured de-
pendencies, including legacy versions of NumPy. The full
implementation code and experiments are available at the
project’s GitHub repository.5

We implement label smoothing by modifying the target
labels into smoothed soft-label vectors before training and
using a smoothing parameter of 0.1. This implementation
then involves updating the training function to accept and

4https://github.com/AhmedSalem2/ML-Leaks
5https://github.com/eva1azaz/CS2980-MIA-project

5

https://github.com/AhmedSalem2/ML-Leaks
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/AhmedSalem2/ML-Leaks
https://github.com/eva1azaz/CS2980-MIA-project


process one-hot vectors with adjusted probabilities. To
reduce runtime during training with label smoothing, the
smoothed labels are precomputed for the entire training set
rather than generating them on the fly for each minibatch.
To achieve this, we modify the iterate_minibatches
function to return sample indices, which then allows each
minibatch to directly index into the precomputed smoothed
label array and thus significantly improves efficiency. Then,
confidence score masking is implemented post-training
by modifying prediction vectors to retain only the top-3
confidence values per prediction and then renormalizing the
prediction vector. We recall from Section II-B that there are
several widely used variants of confidence score masking.
In this implementation, the top-3 confidence masking was
chosen for its ability to retain partial predictive information
by suppressing fine-grained leakage of confidence scores
without fully discarding informative outputs, with the ex-
pectation that this variant in particular is most likely to
achieve a balance between privacy and utility.

Finally, we evaluate all three defenses individually as
well as in combinations (iterating through all possible
combinations, e.g. dropout + masking, dropout + label
smoothing, all three combined, etc.). While target and
shadow models are retrained for each combination of
defenses involving dropout and label smoothing, confidence
score masking is applied post-training. When running these
combinations, each run (target, shadow, attack) automati-
cally saves output data and model parameters to uniquely
named .npz files, so as to facilitate reloading each run for
subsequent confidence score masking or analysis without
needing to retrain. All models were trained for 50 epochs
using a batch size of 100 and a learning rate of 0.01,
unless otherwise specified. These exhaustive combinations
allow us to measure the individual impacts of each defense
method, as well as the synergistic impacts that combi-
nations of defenses may have on both utility and attack
success.

C. Evaluating MIA success

There are several commonly used metrics to evaluate the
success of MIAs, including balanced accuracy [2], AUC-
ROC [2], and True Positive Rate at low False Positive
Rate [2]. In addition to comparing attack accuracy across
defenses, this project primarily uses balanced accuracy to
evaluate attack success when faced with different defense
methods. Balanced accuracy is the simplest method to
evaluate attack efficacy, and it measures how often an attack
correctly predicts membership on a balanced dataset of
members (class 1) and non-members (class 0) by computing
the mean of sensitivity (true positive rate, or recall for class
1) and specificity (true negative rate, or recall for class 0)

[2]:

Balanced Accuracy =
1

2
(Recallclass 0 + Recallclass 1)

Balanced accuracy was chosen for its ability to compare
fairly across defenses. While defenses such as dropout
reduce both member and non-member confidence indis-
criminately, others like confidence score masking target
only members; balanced accuracy accounts for both sides
of the inference and therefore provides a fairer metric for
comparing these tradeoffs. Therefore, balanced accuracy
reflects the success of the defense methods in narrowing
the generalization gap that MIAs exploit, which makes it a
valuable evaluation metric. Additionally, balanced accuracy
can handle class imbalance (if there is not a perfect balance
of member to non-member samples), and it also offers an
improvement from using plain accuracy or precision, which
could potentially misrepresent imbalanced datasets.

As discussed in Section II-B, this project aims not only to
reduce MIA success but also to optimize the privacy-utility
tradeoff when implementing defense methods. Therefore,
this project also records accuracy scores for the target
model as well as the shadow model and the attack model,
and compares these scores across the different combinations
of defense methods that are applied.

IV. RESULTS

This section presents the results of the empirical study
outlined in Section III, covering baseline results, each
defense in isolation, and finally the combined defenses, and
commenting on trends and observations. Section I summa-
rizes the target and attack performance along with balanced
accuracy across all the different defense configurations.
After running the model on each combination of defense
methods discussed in Section III, we recorded the most
relevant values for this study:

1) Target accuracy. This measures the accuracy of
the target model in classifying samples correctly
among 10 classes; it is a core indicator of utility,
where higher target accuracy means that the defense
preserves accuracy more effectively.

2) Attack accuracy. This measures the accuracy of
the attack model in distinguishing between training
and non-training samples in the target model; it is a
core privacy metric, where a lower attack accuracy
indicates that the model has higher privacy.

3) Balanced accuracy. This measures how often the
attack correctly predicts membership; it is an indi-
cator of attack fairness across member/non-member
classes, and is useful to detect class imbalance effects
[2]. Balanced accuracy is computed from recall for
class 1 and recall for class 0 according to the formula
outlined in Section III-C.

6



Defense(s) Target
Accuracy

Attack
Accuracy

Balanced
Accuracy

Recall
(class 1)

Recall
(class 0)

None
(Benchmark) 0.60 0.82 0.83 1.00 0.65

Dropout 0.49 0.51 0.51 0.69 0.33

Smoothing 0.60 0.72 0.73 1.00 0.61

Masking 0.59 0.80 0.81 1.00 0.45

Dropout
+ Smoothing 0.60 0.73 0.73 1.00 0.46

Dropout
+ Masking 0.58 0.81 0.81 1.00 0.62

Smoothing
+ Masking 0.60 0.74 0.74 1.00 0.48

All Three 0.60 0.73 0.73 1.00 0.46

TABLE I
RESULTS SUMMARY

4) Recall for class 1 (members). This is the true
positive rate (sensitivity). It asks: out of all actual
members, how many were correctly predicted as
members?

5) Recall for class 0 (non-members). This is the true
negative rate (specificity). It asks: out of all actual
non-members, how many were correctly predicted as
non-members?

The defense combinations for each run, along with their
recorded accuracy values in each of the above categories,
are recorded in Table I.

Benchmark. First, we consider the benchmark (with no
defense) and note that the attack accuracy is at 0.82, which
indicates a highly effective MIA (as the goal of the defense
implementations is to reduce this value). The balanced
accuracy at the benchmark is 0.83, which means that the
attack model identifies members (class 1 recall) perfectly,
while only identifying 65% of non-members (class 0 recall)
correctly. This asymmetry further highlights that there is a
large generalization gap in the target model and that this
facilitates a strong attack. On the other hand, the target
accuracy at the benchmark is 0.60, and we hope to keep
this as high as possible to maintain the target model’s utility
and therefore minimize the privacy-utility tradeoff from the
defense implementations.

A. Defenses in isolation

Dropout. As we can see, dropout alone significantly re-
duces attack accuracy, with the implementation of dropout
reducing the attack accuracy from 0.82 to 0.51, which
means that the attack model is barely performing better
than random guessing (which would be 0.50). Looking at
the balanced accuracy value of 0.51 (compared to 0.83 at

benchmark), this confirms the effectiveness of dropout, as
it reduces the model’s generalization gap so well that the
attack model struggles to distinguish members from non-
members in both classes, leaving the attack model to barely
more than random guessing. However, we note that dropout
significantly reduces the target accuracy as well (from 0.60
to 0.49), which indicates that this increased privacy comes
at the cost of model utility.

Label smoothing. While label smoothing does not lead
to the same drastic reduction in attack accuracy as dropout,
we can still observe a significant drop in attack accuracy
at 0.72 compared to 0.82 at the benchmark. The balanced
accuracy of 0.73 is a significant reduction from 0.83 at the
benchmark, which indicates that the attack is meaningfully
less effective across both classes (as we can also see in
the Recall columns). While the drop in attack accuracy
seems moderate, the balanced accuracy confirms that this
really is a two-sided defense (affecting both members and
non-members) and does not just skew predictions towards
one class. Crucially, label smoothing maintains the target
accuracy at 0.60 and therefore, unlike dropout, leaves the
target model’s utility intact.

Confidence score masking. While confidence score
masking also largely maintains the target model’s utility
by barely affecting the target accuracy (0.59 compared to
0.60 at benchmark), it only reduces attack accuracy by a
small amount (0.80 compared to 0.82 at benchmark) and
therefore did not seem to have a significant impact on the
attack mechanism. Significantly, the balanced accuracy for
confidence score masking is barely lower than the bench-
mark, at 0.81 compared to 0.83 with no defense. Therefore,
despite the slight reduction in attack accuracy, we can infer
from the balanced accuracy score that the attack model
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still performs almost perfectly on at least one class; this
is indeed confirmed when we look at the recall columns,
which indicate that the attack model performed perfectly
on class 1 (members). This suggests that confidence score
masking does not significantly reduce the generalization
gap in the target model. That is not surprising, given that
this defense only hides the confidence vector but does not
affect the model’s internal learning.

B. Defenses in combination

Dropout + label smoothing. The combination of
dropout and label smoothing produces very similar results
to label smoothing alone, with an attack accuracy just
slightly above that of label smoothing (0.73 compared to
0.72), while maintaining almost exactly the same values for
target accuracy and balanced accuracy as label smoothing.
This seems to suggest that the combination of these two
defense methods does not augment their individual impacts,
and the influence of dropout specifically does not seem to
be clearly reflected in this combination.

Dropout + confidence score masking. The combination
of dropout and confidence score masking yields an attack
accuracy of 0.81, which is higher than dropout alone
(0.59) and around the same as masking alone. This result
suggests that confidence score masking may dominate in
this combination and the most substantial effect of dropout
is not preserved here. For balanced accuracy, we also see
that it is significantly higher than for dropout alone (at 0.81
compared to 0.51), which indicates that the attack model
still performs well for at least one class (and we can see in
the recall columns that it performs perfectly on members).
Therefore, this combination does not improve over either
individual defense method in isolation, and it may even
suffer from conflicting or redundant effects.

Label smoothing + confidence score masking. The
combination of label smoothing and confidence score mask-
ing produces nearly identical results to label smoothing
alone, with attack accuracy and balanced accuracy both at
0.74 (compared to 0.72 and 0.73 respectively for smoothing
alone), along with the same target accuracy as smoothing
alone at 0.60. Here, it seems that label smoothing dominates
and carries over most of the defense impact, whereas con-
fidence score masking seems to contribute little additional
protection once label smoothing has already weakened the
model’s confidence distribution.

All three combined. Interestingly, adding confidence
score masking to the dropout + label smoothing combina-
tion does not improve results further, as we can see that the
attack accuracy remains at 0.73 and balanced accuracy is
also unchanged at 0.73. This absence of change underlines
the observation that when confidence score masking is
applied in addition to strong regularization methods like

dropout and label smoothing, it has limited marginal benefit
and thus diminishing returns.

C. General observations

In general, with respect to the privacy-utility tradeoff,
we can observe that the strongest defenses seem to appear
in combinations that include label smoothing. Among all
the different evaluated combinations, label smoothing in
isolation offered the most favorable privacy-utility tradeoff,
as it reduced attack accuracy to 0.72, while preserving
full target accuracy at 0.60 and also maintaining class
balance with a balanced accuracy of 0.73. While dropout
in isolation was the most effective method in suppressing
attack accuracy, this came with a high cost to the target
model’s classification performance and thus comes with a
sharp privacy-utility tradeoff. Not shown in Table 1 but
still recorded in the model output were shadow model
accuracy scores for each combination; these stayed constant
around the range of 0.60-0.61 for all combinations except
dropout in isolation, where it dropped to 0.46 and thus
further reinforces our takeaway that the privacy benefits
of dropout come with significant utility costs. Finally,
confidence score masking offers minimal additional benefit
when combined with the other two methods (which are both
strong regularization techniques) and shows diminishing
returns in combination; this suggests that the benefits of
confidence score masking are more focused on the defense
method on its own, or perhaps in combination with weaker
defenses.

V. DISCUSSION

This section discusses and contextualizes the results and
key takeaways from this project, including interpretation of
results, challenges and limitations, and directions for future
research.

Interpretation of results. As we saw in the results
analysis, a key observation is that additional defenses have
diminishing returns and do not offer significant improve-
ments over defense methods in isolation. For example, the
results clearly show that confidence score masking does
not offer additional protection when strong regularization
methods like dropout and label smoothing are already ap-
plied (even though confidence score masking does improve
privacy when applied in isolation, which highlights the
diminishing returns of combining defenses). Adding output-
level defenses to model-level defenses (like regularization)
may thus have only a marginal benefit, if any.

When contextualizing results, it is additionally important
to consider practical applications of defenses and partic-
ularly the privacy-utility tradeoff as a primary driver of
defense method selection. As we know from the results
analysis, dropout in isolation can significantly reduce attack
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accuracy (and therefore improve privacy) but this comes
with a utility cost (lower target accuracy) that would deter
those who want to maintain functional ML models when
implementing privacy protections.

Balanced accuracy (and the recall values that constitute
it) provide additional clarity on these interpretations as
they indicate whether defenses work equally well across
members and non-members. This is an additional important
consideration when evaluating defenses, as the balance
between a model’s performance on member and non-
member classes is a key factor in determining fairness and
analyzing the generalization gap of a model. Considering
these priorities, label smoothing stands out as an effective
defense method as it provides significant and balanced
privacy improvements with minimal utility loss.

Challenges and limitations. The implementation of
this project came with several technical challenges. First,
training dropout and (especially) label smoothing was com-
putationally expensive; while label smoothing optimiza-
tions somewhat circumvented this problem and reduced
the runtime to a reasonable scale, this may have affected
the performance of label smoothing and our subsequent
analysis. Additionally, as discussed in Section III-A, the age
of the ML-Leaks frameworks caused limitations with the
legacy code, as Theano/Lasagne and ML-Leaks’ older ar-
chitecture posed compatibility challenges and limited some
modern techniques (e.g. preventing the implementation of
recent adversarial training techniques).

ML-Leaks’ age of over 6 years, as well as the specialized
implementation on CNNs and using CIFAR-10, limit the
scope of applicability of these results to other domains
(such as medical or financial data) and other model types
(such as transformers). Additionally, this framework does
not reflect more recent advances in the rapidly evolving
field of ML and newly developed defenses. However, while
these constraints do limit the generalizability of these
specific results, the flexible and reproducible environment
for isolated and combined testing of multiple defenses
still allows us to gain valuable insights into the synergies
of these defense mechanisms. Building on these insights,
future works can apply them to more current attack frame-
works and wider domains.

Future work. As just discussed, the flexibility of the
ML-Leaks framework makes these results a valuable ba-
sis for further research. Future work could extend these
experiments to newer MIA frameworks (such as difficulty
calibration or RAPID [2]), and it could apply the defense
combinations explored in this project to non-vision datasets,
or even alternative new model types such as transformers or
LLMs. In terms of evaluation metrics, finer-grained metrics
such as True Positive Rate at low False Positive Rate [2]
could be integrated into future studies to add an additional

layer of evaluation to defense methods.
Additionally, this project’s findings with reference to

the marginal benefits of adding output-level defenses to
strong model-level defenses (i.e. adding confidence score
masking to dropout and/or label smoothing) opens the
door for further experimentation. In particular, it could
be valuable to test other output-level defenses such as
different variants of differential privacy or adversarial noise
injection, and to compare their effects to this project’s
observations on confidence score masking. Finally, and
considering the pivotal role of the privacy-utility tradeoff in
this project’s methods and conclusions, future work could
explore additional methods to optimize the tradeoff and
continue building towards effective MIA defenses.
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