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Abstract
While distribution provides several benefits with regard to
data segmentation and preservation, fault tolerance, and ad-
ditional processing due to having additional processors, it
also provides several new challenges regarding data and state
distribution that must be addressed. This paper presents Dis-
tributedWeb Atlas, a scalable, content-based, and distributed
MapReduce-driven digital library search engine that aims to
address some of the issues inherent in distributed computa-
tion. It covers the design, implementation, and evaluation
of this search engine, its related crawling, indexing, and
querying subsystems, and the methods and approaches used
to preserve state and communicate across the independent
nodes. The Web Atlas subsystem was deployed on a set of
Amazon EC2 instances and was tested extensively in order
to analyze the processing and memory load allocated to each
node.

1 Introduction
Digital eBook libraries like the Gutenberg Project have pro-
liferated across the internet, housing millions of freely acces-
sible books and a plethora of other digital resources. While
these resources are invaluable, it is equally critical to have an
efficient search engine capable of querying vast datasets by
specific terms and returning precise results promptly. This
paper presents a distributed and scalable MapReduce-driven
digital library search engine architecture, named Distributed
Web Atlas (DWA). We implemented crawling, indexing, and
querying workflows using the MapReduce[3] framework
and processed massive textbook data on multiple AWS EC2
nodes through parallel computing, with the aim of making
it efficiently searchable and accessible.
Our search target is the Project Gutenberg (Brown CS

mirror). Our system features a robust capability that enables
users to search not only by metadata but also by specific
words within the text, facilitating deeper, more detailed, and
more accurate search results. Here’s the URL link to our
GitHub repository: https://github.com/nathanjandrews/m6.
Table one shows the component decomposition of our

DWA search engine, which consists of 4 key components:

Figure 1. Distributed Search Engine

Table 1. Component decomposition. The table below
summarizes the components comprising our search engine
DWAs.

Component Lead LoC Test

Crawling Yuxuan 150 9
Indexing Nathan 100 9
Query Sebastian 100 9
Web(frontend+backend) Leishu & Justin 240 1

crawling, indexing, querying, and a web service, and it sum-
marizes the component, lines of code, and the number of
tests for each component. The crawling subsystem includes
three sub-crawlers: URL crawler, content scraper, and meta-
data scraper. Each crawler takes a URL link to an e-book
as input and parses the corresponding information of the
book. The indexing subsystem takes the result of the crawl-
ing system, uses it to create an inverted term to URL indices
through the map function, and then ranks the terms by an
indexing technology TF-IDF[6]. Then the query subsystem
receives a query and responds with a list of pages ordered by
TF-IDF scores. Finally, the web service provides an interface
for users to interact with our system.

https://github.com/nathanjandrews/m6
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Figure 2. Search by Metadata(Author)

The paper is structured as follows. It starts by introducing
an example of a typical use of our search engine DWA (§2).
Sections 3–5 highlight key contributions:

• §3 outlines the crawling subsystem and contribution.
• §4 outlines the indexing subsystem and contribution.
• §5 outlines the query subsystem and contribution.

After DWA’s evaluation (§7) and comparison with related
work (§9), the paper concludes (§8) and (§10).

2 Example
This section demonstrates a typical use of the Distributed
Web Atlas (DWA). Our user interface is simple, consisting
of a logo, an input box, and a search button. End-users can
enter general information about a book, such as the title and
author. As shown in Figure 2, when a user types in the term
’Abraham’, DWA returns a list of books whose metadata
includes ’Abraham’ and whose content contains the word
’Abraham’. A typical search result displays the book title,
author, publication date, language, and a book cover image if
available from the Gutenberg Library. Additionally, while the
Gutenberg website doesn’t support this, DWA allows users
to input specific terms from the book content to refine their
search. For instance, when a user inputs ’irresolution and
inaction’—a phrase from the content, DWA returns a list of
books that include this term in their content. A comparison
between the search results of Gutenberg and DWA is shown
in Figure 3 and Figure 4.

Figure 3. Gutenberg’s Search Engine

Figure 4. Search by Content

3 Crawling Subsystem
The crawling subsystem consists of three components, a URL
crawler, a content scraper, and a metadata scraper.

3.1 URL Crawler
URL crawling involves systematically discovering and visit-
ing web pages. Here are some techniques:

• Breadth-First Crawling: Start from a seed set of URLs
and explore pages level by level, only moving onto the
next level once the entire first one has been categorized.
Useful for discovering a wide range of content.

• Focused Crawling: Prioritize specific topics or domains.
Since the goal of our project is to implement a dis-
tributed search engine for Project Gutenberg, the URL
must end in .txt, and we need to narrow down the
domain name to the official Project Gutenberg site or
a mirror site.
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3.2 Content Scraper
We can efficiently scrape content from large numbers of
URLs like 10k or even 100k pages by leveraging MapReduce.
To distribute the workload across multiple machines, we
employ consistent hashing. This technique ensures that data
is evenly distributed among nodes while minimizing data
movement during scaling or failures.

Then we implement the map function for MapReduce. The
input data is in the form of key/value pairs. In our case, each
key represents an identifier, and the value is the URL.

For a large-scale content scraper, themap function extracts
relevant information from each URL. It involves fetching web
pages, parsing HTML, and extracting specific data points.
The output of the map function consists of intermediate

key/value pairs. These pairs represent the processed data,
where the key is a unique identifier (e.g. the hash of the URL)
and the value contains the extracted content.

3.3 Extra Credit Feature: Metadata Scraper
Our search system aims to index a vast collection of books
from the Gutenberg Project. We’d like to implement an extra
credit feature: a metadata scraper. This scraper leverages
MapReduce to extract valuable metadata from the books.
There are some key differences between content scraper
with metadata scraper.

• Data Source: Because we use Brown University mirror
sites, where books are available as plain text and lack
metadata. We need to transform the mirror site URLs
to Project Gutenberg websites.

• Extraction: We utilize JSDOM to parse the web pages
to retrieve metadata such as author, cover image, pub-
lished data and so on. For instance, we target relevant
elements using queries like a[itemprop="creator"]
to extract the author of the book.

By combining metadata extraction with our existing con-
tent scraping techniques, we enhance the richness of our
search system’s index. This allows users to discover not only
the content but also essential details about the books they
seek.

4 Indexing Subsystem
For the indexing component, the map function plays a crucial
role. It operates on the raw content obtained from the crawler
component. Here’s how it works:

• Tokenization: We use the "natural" library for tokeniza-
tion, which is a natural language facility for NodeJS.
The document is tokenized into individual terms (words).

• Stopwords: Common words (such as “the,” “and,” “is”)
are removed before the stemming.

• Stemming: terms are reduced to root form and lower-
case. (e.g., "Running" becomes "run").

• N-gram: The map function will also generate a se-
quence of n adjacent terms for word counting and
indexing.

• Counting Term Frequencies(TF): The frequency of
each term in the document is calculated.

• Output: Themap function emits key-value pairs, where
the key is the term, and the value includes information
like the document ID and the term frequency.

The reduce function aggregates the intermediate results
produced by the map function. Specifically, for a given term,
it performs the following tasks:
Concatenating URLs: For each term, concatenate the

URLs of the documents where the term appears.
Data Sharding: After the reduce function completes, the

system utilizes consistent hashing based on the term values
to store and merge the indexing results on the distributed
storage system. This process is employed for data sharding,
allowing the query component to efficiently retrieve relevant
data segments for querying.

5 Querying and Web Service
In a distributed search engine, efficient querying relies on
smart indexing and retrieval strategies[2]. We can achieve
this using distributed storage systems, consistent hashing,
and the incorporation of TF-IDF (Term Frequency-Inverse
Document Frequency) during query processing.

5.1 Query Component
In our search engine, documents and indices are distributed
across multiple nodes (servers) to handle large-scale data.

During indexing (using MapReduce), we only know local
information (within each shard). For a single term, we don’t
have a global view of its document frequency (DF) across all
shards.

𝑇𝐹 (𝑡, 𝑑) = frequency of term 𝑡 in doc 𝑑 (1)

𝐼𝐷𝐹 = log
(
𝑁

𝑛𝑡

)
(2)

Where 𝑁 is the total number of documents, 𝑛𝑡 is the num-
ber of documents where the term 𝑡 appears.
In order to incorporate TF-IDF, we can combine the TF

results from indexing with IDF during querying [5]: When a
user submits a query, we follow these steps:

• Tokenization: Tokenize the query into terms.
• Hashing and Matching: For each term in the query, use
consistent hashing to find the corresponding index file.

• Retrieve Local Term Frequencies (TF): Fetch the term
frequencies (TF) for each term from the corresponding
shards like equation 1.

• Calculate Global IDF: IDF is based on the total number
of documents and the number of documents contain-
ing the term like equation 2.
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• TF-IDF: Combine local TFs with global IDFs to obtain
TF-IDF scores for each term.

• Ranking: Rank documents based on their TF-IDF scores
in equation 3.

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑, 𝐷) = 𝑇𝐹 (𝑡, 𝑑) × 𝐼𝐷𝐹 (𝑡, 𝐷) (3)

5.2 Web Service
After the implementation of the crawling, indexing, and
querying components, our distributed search engine is ready
for deployment. We have chosenAmazon EC2 for its robust
and scalable infrastructure, which is ideal for handling the
demands of a distributed system.
Accessibility and User-Friendliness: To ensure that

our search engine is accessible and user-friendly, we have
developed a simple web interface. This interface allows users
to interact with our search engine without needing to un-
derstand the underlying complexities. We follow the deploy-
ment steps:

• HTTP Backend Server: Since our nodes are using the
HTTP PUT method to communicate, we can easily
implement a simple back-end server to call the node
of the indexing group to search the query keys from
the distributed storage system.

• Web Interface: We implemented a UI, which can be
run on web browsers to start searching through the
indexed books.

By following these steps, our distributed search enginewill
be up and running, providing a seamless search experience
to users as shown in Figure 2 and Figure 4.

6 Deployment
For the deployment of our distributed search engine on AWS
EC2, we utilize Amazon Machine Images (AMIs) to stream-
line the setup process as shown in Figure 5. Here’s a break-
down of the deployment steps:

• Amazon Machine Images: We begin by creating a
custom Amazon Machine Images(AMI) that includes
our base code and a start-up shell script. This AMI
serves as a template for launching multiple EC2 in-
stances with identical environments, ensuring consis-
tency across our distributed system.

• EC2: Using the custom AMI, we launch the required
number of EC2 instances. Each instance is configured
with the necessary resources (CPU, memory, storage)
to handle the demands of web crawling and indexing
tasks.

• Security Groups: Since our nodes and web services
run on different ports, we need to create security groups
for the EC2 instances and define inbound/outbound
rules for the ports.

Figure 5. AWS EC2 Deployment

To deploy our distributed system, we manually instanti-
ated EC2 instances that we then configured to be able to
communicate with one another to run our benchmarks. Be-
tween the five people in our group, we were able to test on
a maximum of 100 ‘t2.micro‘ EC2 nodes.

7 Evaluation
The evaluation of a search engine’s performance on single-
node versus multi-node configurations is a critical aspect of
distributed computing research. This subsection will explore
the rationale behind conducting such an evaluation, which
is twofold:
Firstly, it provides insights into the scalability of the sys-

tem. By comparing the performance on a single node against
that on multiple nodes, we can understand how well the sys-
tem utilizes additional resources and whether it can handle
larger datasets efficiently. This is particularly important for
search engines, which must process vast amounts of data
rapidly.

Secondly, the evaluation sheds light on the fault tolerance
and reliability of the system. Multi-node environments are
more complex and can introduce new challenges, such as
network latency and synchronization issues. Understanding
how the system behaves under these conditions is essential
for ensuring robustness and continuous service availability.

In this subsection, we will delve into the outcomes of our
evaluations, discuss the implications of our findings, and
consider how they can inform future enhancements to the
search engine’s architecture and design.

7.1 Scraper Evaluation
Figure 6 shows the execution time of the crawler workflow
executed with different numbers of nodes (EC2 instances).

One thing to note about Figure 6 is that with less than 20
nodes, crawling 100,000 web pages actually failed with our
implementation. This is why execution times for crawling
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Figure 6. Crawler and Scraper Benchmarks

Figure 7. Uneven Data Distribution (100 nodes)

100,000 URLs are only present with distributed systems with
20 or more nodes.

Another anomaly we found with our graph is that there is
not a significant change in execution time between crawling
1000 pages between 3, 5, and 10 nodes. This is due to an
uneven amount of work assigned to each node during the
map phase, the cause of this unbalance is discussed further
in the Discussion section.
In our implementation, we employ SHA-256 for hashing

keys of objects and even the id of nodes, which are then
converted to hexadecimal format. This process is integral to
our naive, consistent hashing or rendezvous hashing mecha-
nism, designed to distribute URLs across a network of nodes.
Ideally, with 100 nodes, the expectation is to have an even dis-
tribution, where each node is responsible for approximately
10 URLs.

However, upon inspection, we observed an anomaly: only
25 nodes were allocated URLs, each handling around 40
URLs. This uneven distribution contradicts the principle of
consistent hashing, which aims for a balanced load across
all nodes.

The discrepancy disappears when the system scales to 101
nodes with the same number of URLs (1000), resulting in an
even distribution of approximately 10 URLs per node. This
observation led us to hypothesize that the issue lies within
the parseInt(sha256, 16) function used to convert the
hash into an integer. The suspected cause is a precision loss
during this conversion, which could lead to hash collisions.

Figure 8. Even Data Distribution (101 nodes)

Consequently, multiple key IDs may end up being routed to
the same node, causing uneven distribution.

To address this, we propose investigating alternative pars-
ing methods that preserve the full precision of the SHA-256
hash. Additionally, implementing a collision resolution strat-
egy couldmitigate the impact of any potential hash collisions.
By refining these aspects of our hashing process, we aim to
restore the intended uniformity of our consistent hashing
distribution.

7.2 Indexer Evaluation
The indexing subsystem generates a reverse index that maps
n-grams (1-grams, 2-grams, and 3-grams) to a list of (URL,
frequency) pairs. The URL is the link to a webpage that the
n-gram appears in. The frequency is the number of times
that the n-gram appears on that page.
Figure 9 shows the execution times for the indexing sub-

system to generate these reverse indexes for the page content
of 1 and 10 URLs. Surprisingly, we saw that the indexing sub-
system took about 1 minute and 48 seconds to index a single
page, and took 4 minutes to index 10 pages. Attempting to
index larger page amounts results in execution times that we
believe to last over an hour with our current implementation
(we stopped trying after indexing took over 30 minutes).

We believe that the long execution times come from in-
efficiencies in the indexing process as well as potential un-
necessary overhead with our distributed service methods.
Another potential cause of the long execution times is our
uneven distribution of map-reduce tasks described in detail
in the crawler evaluation section.

7.3 Query Evaluation
As the number of nodes within a distributed system increases,
a corresponding increase in query latency is often observed
as shown in Figure 10. This phenomenon can be attributed to
the complexities introduced by data sharding and the inter-
communication required among the nodes. The inter-node
communication required to process queries in a distributed
environment can compound latency. Each node must of-
ten wait for responses from other nodes before proceeding,
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Figure 9. Indexer Benchmarks

which can introduce delays, especially as the network of
nodes grows larger.
However, this increase in latency is a trade-off for en-

hanced scalability and fault tolerance. With a larger number
of nodes, such as 50, the system is designed to handle a
greater load, thereby increasing its capacity to scale. This
scalability ensures that the system can accommodate growth
without a proportional increase in latency or degradation in
performance.
Fault tolerance is another critical advantage of a higher

node count. The system’s ability to continue functioning
even when one or more nodes fail is crucial for maintaining
availability and ensuring that queries can still be processed.
With 50 nodes, the loss of a single node has a relatively
minor impact on the system’s overall capability. In contrast,
a system with only 10 nodes would suffer a more significant
loss of capacity in the event of a node failure.
In essence, while a larger number of nodes may lead to

higher query latency due to data sharding and inter-node
communication, the benefits of improved scalability and fault
tolerance are substantial. These benefits are particularly valu-
able in scenarios where the ability to handle large volumes
of queries and withstand node failures is paramount.

8 Discussion
Reflections: Building a distributed search engine was a
complex and enlightening process that involved several key
phases. Initially, we focused on designing a scalable architec-
ture, choosing between distributed databases and file systems
based on our data management needs. Throughout the imple-
mentation, we tackled challenges related to data partitioning
and load balancing to ensure efficient data distribution and
quick query responses. Testing played a crucial role, as we
rigorously evaluated each component to identify and rec-
tify issues related to concurrency, data integrity, and system
failures.

The paper alone took 8 hours to complete; the poster took
about 5 hours.

Figure 10. Query Latency

In total, the distributed version of the project ended up
taking 3000 lines of code (LoC).

The code for the distributed systemwas significantly more
complex than that of a non-distributed system. The dis-
tributed architecture required additional mechanisms for
managing communication between distributed components,
handling failures, and ensuring equal data distribution across
different nodes. This complexity was reflected in the in-
creased LoC and the need for sophisticated concurrency
control mechanisms to manage simultaneous operations
across multiple nodes. Furthermore, robust error handling
and recovery procedures were essential to deal with potential
network failures, node failures, and data replication issues.

The original prediction from initial estimates (M0) ranged
between 2000–2500 LoC. The actual LoC for the distributed
system ended up being higher, primarily due to the added
complexity needed for ensuring robust fault tolerance and
scalability.

Differences in these numbers across team members can be
attributed to various factors. Some team members focused
on developing core functionalities like data partitioning and
load balancing, which required writing more complex and
extensive code. Others concentrated on integration and test-
ing, which involved less coding but more debugging and
optimization. This division of labor was strategic, allowing
members to specialize and focus on different aspects of the
project, ultimately enhancing efficiency and effectiveness
in tackling the complex challenges posed by a distributed
system.
One of the reasons for the initial underestimation of the

code complexity was a lack of accounting for the intricate
details involved in ensuring data consistency and fault tol-
erance in a distributed environment. The prediction did not
fully anticipate the challenges associated with network com-
munications and the need for robust error-handling strate-
gies, which significantly increased the coding requirements.
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Limitations: Despite the significant advancements made
in developing our distributed search engine, one area where
our solution fell short is in the robust handling of fault toler-
ance. This limitation has had noticeable impacts on system
reliability.

• Single Points of Failure:While efforts were made to
distribute data and processing across multiple nodes,
certain critical components of our infrastructure re-
mained centralized, such as the MapReduce coordi-
nator. This centralization resulted in single points of
failure that could lead to partial or total system outages
during node failures.

• Inadequate Replication Strategies:We did not have
a replication strategy thus data availability during si-
multaneous failures of multiple nodes could not be
guaranteed.

• Reliance on Callbacks: The callback mechanism is
susceptible to failure when there are network issues.
Over-reliance on callbacks in MapReduce diminishes
the ability of our system to be fault tolerant.

9 Related Work
In our Related Work section, we analyze the deployment
of distributed databases versus distributed file systems in
search engine architectures. Distributed databases are often
favored for search engines requiring dynamic and complex
querying capabilities, particularly useful for systems that
need to manage structured data with real-time responsive-
ness and transactional consistency. This makes them ideal
for search engines that frequently update their indices and
respond to user queries instantly. Conversely, distributed file
systems are preferred for their scalability and efficiency in
handling vast amounts of unstructured data, such as logs,
documents, and text files. They are particularly beneficial for
search engines that rely on batch processing techniques to
periodically update indices, offering a cost-effective solution
for managing large-scale data. This comparison underscores
the need to align technological choices with the specific oper-
ational demands and data processing requirements of search
engine projects.

10 Conclusion
In conclusion, the development of a search engine based on
MapReduce represents a significant achievement in the field
of distributed computing and information retrieval. The im-
plementation of our crawler, indexer, and query component,
along with the integration of web services, demonstrates a
comprehensive understanding of search engine architecture.
Utilizing TF-IDF for relevance scoring and conducting ex-
tensive evaluations across various node configurations (1, 3,
5, 10, 20, 50, 100 nodes) with the dataset open books ranging

from 100 to 100,000 URLs on AWS EC2 instances has pro-
vided valuable insights into the scalability and performance
of the system [1, 4, 7].
Through this venture, we have gleaned critical insights

into the essence of judicious resource allocation within dis-
tributed frameworks and the consequential effects of node
quantity on processing expediency and precision. The as-
sessments conducted have underscored the inherent trade-
offs between computational expenditure and search efficacy,
thereby charting a course for subsequent refinement endeav-
ors. Moving forward, there are several avenues to explore:

Moreover, the journey has unveiled certain imperfections
within our code—specifically, the uneven distribution of data
sharding attributable to precision loss. This discovery under-
scores the complexities and challenges inherent in construct-
ing large-scale distributed systems. It serves as a reminder
that while we strive for scalability and fault tolerance, atten-
tion to detail in data management and algorithmic accuracy
remains paramount.

As we forge ahead, the path is rife with opportunities for
enhancement and innovation:

Algorithmic Enhancements: Delve into the exploration
of sophisticated ranking algorithms that transcend TF-IDF,
such as PageRank, to augment search pertinence.

Real-time Indexing: Devise and implement methodolo-
gies for instantaneous data indexing, thereby ensuring the
search engine mirrors the latest information available.

Code Optimization: Address the identified bugs by refin-
ing data sharding techniques to mitigate precision loss and
achieve a more equitable distribution of data across nodes.
Scalability vs. Performance: Continue to investigate

the delicate balance between scalability and performance,
aiming to optimize both without compromising the system’s
robustness or user experience.
These initiatives are poised to not only elevate the oper-

ational efficacy of our search engine but also to contribute
to the broader discourse on the trade-offs and optimization
strategies pivotal to the evolution of large-scale distributed
systems[7].
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