
The Release of S-Store System

Bikong Wang
Department of Computer Science

Brown University
Advisor: Prof. Stan Zdonik

ABSTRACT
In this paper, I describe multiple aspects that are closely re-
lated to the release of S-Store system, including dockerized
S-Store system, new benchmark MIMIC2BigDAWG, dock-
erization of the integrated streaming processing system, ver-
ification of new S-Store scheduler and collection of stored
procedures statistics. Although many other indispensable
works are also finished for the final release, they will not be
discussed in detail there.

1. INTRODUCTION
S-Store, built on top of H-Store, is a transactional stream-

ing database system that features ACID transactions, dataflow
ordering and exactly once processing [7]. Through inherit-
ing most basic functionalities from H-Store and integrating
many new design and features (dataflow, stream, window,
trigger), S-Store owns all functionalities and features needed
to guarantee strong support for both ACID and streaming.
According to the experiment, S-Store can serve both OLTP
and streaming applications without much sacrifice, it has
demonstrated desirable performance and strong correctness
guarantees compared with other state-of-the-art streaming
systems [8].

The release of S-Store will further accelerate the appli-
cation of streaming transactional engine in multiple fields,
such as management of real-time and high-velocity data,
ETL (Extract, Transform, and Load) processes, and stream
processing in big data application, etc. It also helps for
developing the new time-series database system for better
managing the data generated via IoT and serving future big
data and intelligent applications.

Moreover, the release makes S-Store completely open to
the general system community, and increases accessibility of
the system to new users, which will help to attract more
researchers and developers to work on and contribute to the
project and promise S-Store’s future development.

Although the most components and core functionality of
S-Store are already finished, many tasks important to the
release have not completed yet and they are supposed to be
done during release preparation phase. The rest of this pa-
per documents several aspects and new features important
for the final release and future development, such as verifi-
cation for correctness of new S-Store scheduler, new bench-
mark MIMIC2BigDAWG, and dockerization of S-Store sys-
tem and its application with stream generator and Big-
DAWG using Docker.

2. SCHEDULER VERIFICATION

The streaming transaction in S-Store can be regarded
as stored procedure (SP) which operates on input stream
(batch of tuples) [4]. The whole streaming workflow (DAGs)
might involve multiple different stored procedures, as showed
in Figure 1 from the paper [8]. Because of the dependency
between data and processing order, transaction executions
(TEs) should be guaranteed to be performed in proper order
[4]. The execution order is not necessary to be first in and
first out (FIFO), but it should always be consistent with the
dataflow graph, i.e. it could be one of all possible order of
the topological ordering of dataflow graph.

Figure 1: Dataflow Graph

The S-Store scheduler ensures the proper ordering execu-
tion of streaming transactions, and guarantees the correct
batch ordering within a stored procedure and across different
stored procedures, i.e. earlier batch should be executed be-
fore latter batch (identified by both the procedure and batch
ID) in either one stored procedure or across multiple stored
procedure. The scheduler should also guarantee that each
transaction will only be executed once. The verification of
scheduler is basically the test of correctness of functionalities
(execution ordering guarantee and exactly once execution)
that scheduler provides using both regression and unit tests.

As for implementation details, the new implemented sched-
uler test suite is based on TPC-DI benchmark [10], it in-
cludes the execution of single transaction and multiple trans-
actions with and without order, and covers both single stored
procedure and multiple stored procedures. The implemented
scheduler test suite will fail in the case that transactions are
executed out of batch order or that the same transaction
has been executed repeatedly (more than once).

To make it easier for future adjustment, the new imple-
mented test suite has been integrated as one piece of whole
test suite of S-Store system, it will automatically execute
when users test system or build system with test option en-
abled. Besides, S-Store terminal’s output has been largely
improved, statistics of stored procedures are collected and

1



reorganized to better demonstrate the number of transac-
tions actually executed within each stored procedure, so per-
formance of the new scheduler could be evidently inferred
there.

3. BENCHMARK MIMIC2BIGDAWG
MIMI2BigDAWG is a new benchmark created from scratch,

which uses the schema and data from MIMIC II dataset [3]
that is consist of heterogeneous types of data collected in
the hospital. MIMIC2BigDAWG is setup on top of stream
generator and BigDAWG polystore [6] aside from S-Store.
The stream generator is a streaming tool with adjustable pa-
rameters, it is able to continuously send data files as tuples
via specified port. BigDAWG polystore is a distributed fed-
erated storage engine, which enables data migration across
each of databases (PostgreSQL, SciDB, and Accumulo) and
provides functionality of unified querying to clients. From
users’ perspective, the BigDAWG polystore appears as a
single system.

Different from other benchmarks of S-Store, the goal of
the MIMIC2BigDAWG benchmark is do the real-time data
ingestion, which is primarily consist of data extract, data
cleaning, and data transform. As a demonstration, the
benchmark is implemented to simulate a simplified stream-
ing data migration process which migrates data from files to
database system.

Figure 2: MIMIC2BigDAWG Data Migration

The general dataflow graph of MIMIC2BigDAWG bench-
mark is showed in Figure 2 [9], the whole data migration
process can be separated into three stages, which include
collection and dispatch of heterogeneous data from MIMIC
II dataset, data processes via stored procedures (cleaning,
transforming, etc.), and data route and transfer to the ap-
propriate processing engine (Postgres) through BigDAWG.
While the benchmark is initialized, it will first start prepa-
ration process, then the data will continuously flow from
stream generator to the Postgres in BigDAWG via S-Store.

As to implementation, the client of stream generator is
constructed inside the benchmark to receive tuples sent by
stream generator server. Once tuples are received, they will
go through all new implemented and predefined stored pro-
cedures in proper order controlled by scheduler, then data
will be transferred and loaded into Postgres. Another thing
deserve notice there is that MIMIC2BigDAWG is designed
and implemented to be more straightforward and extensi-
ble for the purpose of making catch of any data flow errors
caused by system much easier and making benchmark own
the capability to handle more complex scenario in future.

4. DOCKERIZATION
Docker is the software container platform, which auto-

mates the deployment of application using container image.
The container image is stand-alone and executable package
containing source code, system libraries, runtime environ-
ment, etc [2]. Docker makes software development, shipment
and deployment much easier, efficient and secure by pack-
ing software into isolated standardized units which guaran-
tee software run completely the same no matter where it is
deployed [2].

Compared with virtual machine (VM), Docker is more
portable and resource efficient because OS kernel is shared
by multiple containers rather than including a full copy of
OS in each virtual machine. The difference between Docker
and virtual machine is demonstrated in Figure 3 from [2].

Figure 3: Docker vs Virtual Machine

Since the deployment of S-Store replies on many other
software dependencies, packages and environment setups,
dockerization of S-Store will save users from setting up S-
Store manually. It makes S-Store much easier to use either
deploying S-Store as a single system or making S-Store as a
subsystem of larger integrated system [9].

Dockerfile is the script file which is used for building the
Docker image, so S-Store Dockerfile is implemented and also
released as a part of S-Store source code. Once user start
the image building process, the S-Store Dockerfile will be
used by Docker to integrates all resources and dependencies
that S-Store requires, and then S-Store will automatically
setup environment by instruction specified in Dockerfile. By
taking advantage of Docker, S-Store could be run on any
machines no matter what the operating system they use, as
long as Docker are properly installed.

There exist cases that S-Store is used as a subsystem [9],
which justify the necessity of dockerization of S-Store, since
such an integrated system involves too many complex pack-
ages and configurations, it becomes difficult and time con-
suming to manually setup all of them correctly. In our case,
dockerization of S-Store with BigDAWG is more complex,
it not only requires dockerization of each subsystem at the
first step, but also the connection of each subsystem between
corresponding containers because of the communications be-
tween either S-Store and BigDAWG or each database of Big-
DAWG. There S-Store is configured to join in the Docker
network of BigDAWG, as showed in the Figure 4 [1], Big-
DAWG network bridges all components of BigDAWG and
S-Store, each component makes specific ports available for
communication with clients or transferring data and con-
necting within the system.

Considering that the complexity and flexibility of system
in our case, there exist multiple different ways that users

2



would like to use S-Store via Docker (only benchmark, in-
teraction through terminal, etc.), which require various com-
mands for different purpose. It becomes important to docu-
ment the detailed instructions about how S-Store commands
are used with Docker containers. Therefore, the document
of S-Store Docker usage has been written and integrated into
the S-Store document, which can either be used as a refer-
ence or help new users to quickly similar with the system
[5].

Figure 4: Dockerization of S-Store and BigDAWG

5. CONCLUSIONS
This paper gives an overview of several aspects I worked

on for the final release of S-Store system. Some other works
are also finished, including S-Store versions comparison and
copyright updates through scripts, modification of S-Store
default configurations, alteration of S-Store build scripts,
and stream generator’s integration into S-Store system (com-
pilation and testing), etc., which are not given a detailed
description there.

Through all works mentioned above for the S-Store re-
lease, the latest release version of S-Store is expected to be

more stable and easier to use, and it should better support
later projects and applications which use or build on top of
S-Store system.

6. ACKNOWLEDGMENTS
I would like to thank Professor Stan Zdonik, and John

Meehan for their patient guidance on this project.

7. REFERENCES
[1] BigDAWG. http://bigdawg.mit.edu.

[2] Docker. https://www.docker.com.

[3] MIMIC2. https://physionet.org/mimic2.

[4] S-Store. http://sstore.cs.brown.edu.

[5] S-Store Document. http://sstore-doc.readthedocs.io/.

[6] J. Duggan, A. J. Elmore, M. Stonebraker,
M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. Zdonik. The BigDAWG
Polystore System. SIGMOD Rec., 44(2):11–16, Aug.
2015.

[7] J. Meehan, C. Aslantas, S. B. Zdonik, N. Tatbul, and
J. Du. Data Ingestion for the Connected World. In
CIDR, 2017.

[8] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas,
U. Cetintemel, J. Du, T. Kraska, S. Madden,
D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and
H. Wang. S-Store: Streaming Meets Transaction
Processing. Proc. VLDB Endow., 8(13):2134–2145,
Sept. 2015.

[9] J. Meehan, S. B. Zdonik, S. Tian, Y. Tian, N. Tatbul,
A. Dziedzic, and A. J. Elmore. Integrating real-time
and batch processing in a polystore. 2016 IEEE High
Performance Extreme Computing Conference
(HPEC), pages 1–7, 2016.

[10] M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield.
TPC-DI: The First Industry Benchmark for Data
Integration. Proc. VLDB Endow., 7(13):1367–1378,
Aug. 2014.

3


