VectraFlow: Integrating Vectors into Stream Processing

Duo Lu
Brown University
duo_lu@brown.edu

Franco Solleza
Brown University
franco_solleza@brown.edu

Abstract

Vectors have quickly become the de facto standard in mod-
ern search-oriented applications due to their ability to rep-
resent complex data in a structured and effective manner.
While existing work has focused mainly on scalable retrieval
over vector databases, this paper is the first to tackle unique
challenges and opportunities in a streaming environment,
where continuous and scalable vector processing is required.
Streaming settings present distinctive constraints, such as
low-latency processing requirements and dynamic data flows,
which necessitate new trade-offs and the application of both
novel and established techniques.

To this end, we are developing VectraFlow, a stream-oriented
data flow engine to support scalable monitoring applications
involving vector data. We argue that VectraFlow can be ef-
fectively used to support a large suite of online applications
such as continuous prompts, copyright infringement detec-
tion, and video-based surveillance where vector streams
need to be processed continuously and with low latency.
VectraFlow’s design emphasizes efficient handling of data
streams, ensuring that latency is minimized while maintain-
ing accuracy and scalability.

We detail VectraFlow’s architecture, focusing on vector-
based streaming filtering, top-k, and join operations imple-
mented through efficient clustering and novel indexing struc-
tures. We also investigate the use of alternative data represen-
tation techniques, such as quantization, which demonstrate
substantial performance improvements over current meth-
ods while maintaining high-quality results. We conclude
with ongoing and future research directions in this area.

1 INTRODUCTION

Vectors carry semantic richness: they can encapsulate in-
tricate relationships and attributes of data, enhancing the
effectiveness of similarity searches. For text-based search,
vectors enable nuanced comparisons beyond simple keyword

This paper is published under the Creative Commons Attribution 4.0 Inter-
national (CC-BY 4.0) license. Authors reserve their rights to disseminate
the work on their personal and corporate Web sites with the appropriate
attribution, provided that you attribute the original work to the authors and
CIDR 2025. 15th Annual Conference on Innovative Data Systems Research
(CIDR °25). January 19-22, 2025, Amsterdam, The Netherlands.

Siming Feng
Brown University
siming_feng@brown.edu

Malte Schwarzkopf
Brown University
malte@cs.brown.edu

Jonathan Zhou
Brown University
jonathan_zhou@brown.edu

Ugur Cetintemel
Brown University
ugur_cetintemel@brown.edu

matching, capturing the underlying meaning and context
of the data. For instance, the words "king" and "queen" can
be represented as vectors in a way that their relationships
and contexts are captured, allowing a search for "royalty”
to return both words, even if the keyword "royalty" is not
directly matched in the text. For image-based search, simi-
larly, vectors allow for the encapsulation of multidimensional
information, enabling deep similarity comparisons.

Much recent work has been dedicated to supporting scal-
able vector search and retrieval within traditional database
settings, typically to support efficient Retrieval-Augmented
Generation (RAG) for Large Language Models (LLMs) [17]
via top-k queries. To this end, vector databases [2, 7, 9, 26]
have emerged as a specialized solution to store and retrieve
vector data, focusing primarily on similarity search. They
support indexing techniques to handle large datasets where
exact searches are computationally infeasible. Approximate
Nearest-Neighbor Search (ANNS) approaches [7, 14, 15, 18,
19, 24-29] that trade-off performance and recall are com-
monly adopted in this context. They work well because vec-
tor embeddings are already intrinsically probabilistic models,
and interactive performance is crucial for user-facing LLM
loads.

To make the search more effective, approximations based
on quantization [15, 16] are also used. For example, FAISS [14]
is a vector support library that offers a wide range of meth-
ods such as product quantization, inverted files, and indexing
(e.g., hierarchical navigable small-world graphs (HNSW) [19]).
DiskANN [25] is another effort whose focus is on efficient
disk-based indexing for handling large disk-resident datasets.
There is also ongoing work to improve existing databases
with vector support, notably exemplified by pgvector [22],
an open-source extension that integrates vector data han-
dling capabilities into PostgreSQL. As far as we are aware,
VectraFlow is the first to provide native support for mod-
ern vectors within a traditional stream-oriented data flow
architecture.

We are building VectraFlow to provide scalable, high-level
vector processing support for monitoring-oriented applica-
tions that require immediate and accurate results in current
and evolving Al workloads. For example, a continuous prompt

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

. o)
[, Online
1 1
Raw texts Sparse keyword | Over-retrieval Dense vectors Re-ranked
1 - -
—) 1 Data2Vec vectors 1V-TopK keyword top-k Data2Vec for results iV-TopK) —
1 results :
—) ! —
% (a) iV-TopK '
Input data streams LT T TTTTTTCTTTTCTTTTCTTTTTTTTTTTToTo Output results
4 N
— [) —)
—) i Vectors . Quantized | . Vectors Re-ranked 1 —
i Quantize vecors 0| LV-Filter ermmer®l iV-TopK]
' results 1
! N (b) iV-Filter ,
______________________________________ D ————
N .
4 Offline
~_ Documents
‘ Keyword sparse vectors

Full dense vectors

[Radius converter |

| Hyperparameter tuner |

Figure 1. VectraFlow design. The figure demonstrates two data flow examples: (a) the top-k operation processes raw text,
such as continuous streams of tweets, and (b) the filter operation processes dense vectors such as those of image streams. The
offline component shows storage and indexing for continuous base vectors.

implemented by an LLM-based data agent would require con-
tinuous top-k results from the incoming data streams. Simi-
larly, copyright infringement detection over LLM responses
would require real-time comparisons of new content against
a large database of protected works to identify unauthorized
use. Real-world applications require LLM responses to be
continuously monitored to ensure adherence to predefined
rules and standards in real-time, providing guardrails against
hallucinations, bad or biased language, or private data leak-
age. A video surveillance application would require rapid
similarity searches to compare streaming image frames with
either each other or an image database.

These and other similar applications necessitate a special-
ized approach beyond what existing batch-oriented systems
offer for vector processing:

1. Continuous queries over vectors: Existing systems lack
vector-based operators that can effectively express con-
tinuous query logic, alongside relevant data structures
and optimization strategies necessary for their efficient
implementation.

2. High-throughput, low-latency vector processing: Manip-
ulating high-dimensional vectors requires new strategies
for complex computations, in particular for expensive
vector-to-vector distance calculations. By taking advan-
tage of the streaming nature of the data, these compu-
tations can be optimized using batch and incremental
processing techniques, along with caching methods that
are not applicable in batch processing systems.

3. Balancing trade-offs between result quality and perfor-
mance: There is a need to balance processing efficiency
with result accuracy to maintain low-latency processing
in the presence of fluctuating streaming data rates and
characteristics. Batch systems, optimized for fixed work-
loads and tune accuracy globally, lack the flexibility to

adapt in real-time, where streaming must adapt accuracy
per query based on current load and query importance.
4. Supporting multi-stage dataflows: Modern Al workflows
often involve multiple stages that are often chained to-
gether in a pipelined fashion, such as vector extraction,
similarity-based filtering, clustering, and routing. Ensur-
ing that each stage operates efficiently and in concert with
others requires a tight integration of specialized operators.

To address these needs, VectraFlow (i) supports complex
pipelines of vector operations, including novel vector-based
versions of standard relational operations such as filtering,
top-k, and joins over streaming data; (ii) employs a number
of techniques, including clustering, batch and incremental
processing, as well as new main-memory indexing struc-
tures that significantly reduce computational overhead; and
(iii) introduces adaptive processing techniques to trade off
efficiency and result quality, ensuring the system remains
scalable while maintaining low latency.

In the rest of the paper, we first describe the general ar-
chitecture of VectraFlow (Section 2), highlighting its data
flow and vector models. We then focus on efficient support
for filtering and top-k, two fundamental vector-based search
operations, using clustering, indexing, and optimized vector
computations (Section 3). We also discuss how to leverage
quantization and other alternative data representations to op-
timize continuous vector-based queries using over-retrieval
and re-ranking (Section 4). Experiments with an initial Vec-
traFlow prototype quantify the performance of these tech-
niques: they show that streaming-specific solutions can have
significant performance gains and allow the system to trade
performance and result in quality as needed (Section 5). We
end the paper with a discussion of ongoing and future work
(Section 6). Related work is discussed throughout the text,
where appropriate.

VectraFlow: Integrating Vectors into Stream Processing

Table 1. VectraFlow Operators

[Category [Description
Manipulation
Data2Vec() Converts various data formats such as text, images, or video into sparse or dense vector representations.
Vec2Data() Recovers raw data from vector representations.
Chunk () Divides data into manageable segments, allowing for parallel processing or batch operations.

V-Quantize()
V-Cluster()
V-Partition()
V-Sort()

Reduces the precision of vector elements, creating a compact representation.
Groups vectors (k) into clusters by similarity.

Maps vectors into clusters by similarity.

Sorts vectors according to a specified criterion.

Vector-based Query Operators

V-Filter ()

iV-Filter ()

V-TopK ()

iV-TopK ()

V-Join ()

Each input vector defines a similarity query specified by a similarity threshold. The operation selects
base vectors that are similar to the input vector, effectively implementing a similarity-based filter on the
base vectors.

Each base vector defines a similarity query specified by a similarity threshold. The operation selects
input vectors that are similar to the base vector, effectively implementing a continuous (inverse) filter
operation on the input vectors.

Each input vector defines a top-k query. The operation identifies the top-k base vectors most similar to
the input vector, effectively implementing a top-k selection over the base vectors.

Each base vector defines a continuous top-k query. The operation identifies the top-k most relevant
input vectors to each base vector within a window, effectively implementing a continuous (inverse) top-k
selection.

Input vectors on different streams are joined if they fall within the same window and their similarity is
higher than a specified join threshold. This is a continuous similarity-based join operation.

Model-based Query Operators

P-Filter(), P-Aggregate(),
P-TopK(), P-Map(),
M-Filter(), M-Aggregate(),

M-TopK(), M-Map(),

Prompts an LLM to execute the operation. Predicate evaluation, ranking conditions, and transformations
specified by the prompt.

Invokes a ML model to execute the operation. Predicate evaluation, ranking conditions, and transforma-
tions specified by the model.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

2 VECTRAFLOW

VectraFlow’s architecture follows that of traditional stream
processing systems (e.g., Aurora [4], Stream [20], Flink [6],
Storm [1]), and functions as a data flow system where op-
erators connected with queues process input streams to
generate output streams. There is also basic support for in-
memory tables. These operators can perform a wide range
of tasks, including filtering, transformations, aggregation,
inference, and data enrichment. By chaining these operators,
VectraFlow constructs complex data processing pipelines
that can adapt to various applications and use cases.
Extended Relational Model. VectraFlow is built on the re-
lational model, extending it to work with two new data types:
vector and unstructured. The latter can be any arbitrary
unstructured or semi-structured data such as free-form text,
images, audio, or video data. We facilitate the conversion of
these unstructured data forms into vectors using appropriate
transformers (e.g., [8], [12]).

The vector type encapsulates data points in a structured
format suitable for similarity searches and other analytical
operations. Vectors are further categorized into two subtypes:
sparse and dense. Sparse vectors are efficient for representing
data with many dimensions but few nonzero elements, mak-
ing them ideal for applications like text analysis where only

a small subset of words might be present in a document. Con-
versely, dense vectors hold values across all dimensions, mak-
ing them suitable for uniformly distributed datasets, such as
image embeddings or general text embeddings, which are
commonly utilized by LLMs and other machine ML models.
Data Flow and Query Model. In addition to standard rela-
tional operators that operate on structured data, VectraFlow
supports custom operators to handle various aspects of vec-
tor data transformations, clustering, ranking, and filtering,
allowing the system to support a wide range of applications
that utilize vector data. These vectors may originate from
streams, such as real-time cameras or social media feeds, or
from tables, such as a database of static documents, and Vec-
traFlow supports operators that create vectors from raw text
and image data by invoking existing embedding libraries.
These operators are shown in Table 1.

Broadly, VectraFlow’s query operators are being designed
to extend relational operators with the ability to work on
vectors and ML models, including direct support for LLMs.
The focus of this paper is the motivation and support for
vector-based operators, which makes it possible to utilize the
semantic expressiveness of vectors to enable a broad range of
relational-like operations on unstructured data. We describe
the vector-based query operators in detail in Section 3. We
briefly discuss our ongoing work on integration model-based
operations in Section 6.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Table 2. VectraFlow Operator Use Cases

[Query operator [

Example Use

V-Filter ()

iV-Filter ()

V-TopK ()

iV-TopK ()

V-Join ()

Retail product matching: In an internet retail context, V-Filter can be used to identify product listings with similar
images across different retail platforms. Each input vector represents a new product image, and V-Filter selects base
vectors from a large product database that are similar to the input. This can help online retailers identify duplicate or
nearly identical products being sold by different vendors, ensuring consistency in pricing and detecting unauthorized
listings.

Real-time copyright detection: iV-Filter can be used to continuously monitor new content being generated by LLMs,
such as articles, blog posts, or even multimedia content. Each base vector represents a (chunk of) copyrighted work, and
the iV-Filter operation selects input vectors (representing new LLM-generated content) that are similar to these base
vectors. This ensures that infringing content is identified in real time, preventing it from being presented to users or
downstream applications. This proactive detection is essential for public-facing platforms or automated workflows where
adherence to copyright laws is critical, helping to prevent unauthorized use and mitigate legal risks.
Retrieval-augmented generation (RAG): V-TopK can be used to find the top-k relevant documents or text passages to
augment LLM-generated responses. Given a user query represented as an input vector, V-TopK identifies the top-k base
vectors that are most similar to the query. These base vectors represent sections of a knowledge base containing relevant
information. By retrieving the top-k relevant documents, VectraFlow can provide the LLM with rich and pertinent context,
enabling it to generate more informed and accurate responses.

Continuous prompts: A prompt to be continually executed is registered and converted into a base vector, representing
its intent and focus. VectraFlow then continuously monitors incoming tweets, represented as input vectors, for the most
relevant information that aligns with the prompt’s base vector. Relevant tweets are identified and included in the prompt’s
context, allowing the prompt to be reevaluated and refined based on the new data. Such a continuous prompt can adapt
dynamically in response to new information, ensuring that the output is always up-to-date and contextually enriched.
Such an approach is particularly useful in scenarios like live event tracking or trending topic analysis, where real-time
updates and adaptability are crucial to maintaining relevance.

Traffic monitoring: V-Join can be used to track cars across multiple camera feeds by joining similar vectors representing
visual features (e.g., color, shape, and speed) from different streams. For instance, if a car is moving through different
areas covered by separate cameras, V-Join can join the vector representations of the car from different feeds, enabling

continuous tracking across the entire monitored space.

Figure 1 illustrates the design of VectraFlow, for both on-
line and offline components. The data flow in (a) receives
raw texts (e.g., tweet streams), transforms them into sparse
keyword vectors (Data2Vec), and retrieves the top matches
using an over-retrieval factor (iV-TopK), as discussed in Sec-
tion 4. Then it generates vector embeddings for only these
matches (Data2Vec), followed by another (iV-TopK) to re-
turn the top matches using full vector embeddings.

The data flow in (b) quantizes the input vectors (Quantize),
then filters them according to user-defined radii (iV-Filter),
ensuring that only vectors meeting specific similarity cri-
teria progress to the final ranking stage where full vector
embeddings can be used to identify matches (iV-TopK).
Table-based Storage and Indexing. As shown in the offline
component of Figure 1, VectraFlow also provides memory-
resident storage for base vectors in terms of in-memory
tables. VectraFlow also supports custom indexes to speed up
similarity-based filtering operations (Section 3). VectraFlow’s
statistics collection and tuning modules are crucial for opti-
mizing online querying: they adjust parameters and thresh-
olds based on historical data and performance metrics (Sec-
tion 6).

3 VECTOR-BASED QUERY OPERATORS

In this section, we describe VectraFlow’s vector-based query
operators. These include filtering, top-k, and join operations

(shown in Table 1 along with general descriptions). While
we discuss all the operators for completeness, our main fo-
cus is on the operations that are unique to the streaming
setting and continuous processing, in particular iV-Filter,
iV-TopK, and V-Join. We emphasize that, in this context, the
stored base vectors serve as a set of continuous query vectors,
that is, they are used to continuously search over incom-
ing vector streams. This inverse search approach (hence the
"i"s in the name of the respective operators) flips traditional
vector searches on its head, necessitating new techniques.
We discuss how VectraFlow supports these operators ef-
ficiently using clustering, indexing, batch processing, and
incremental evaluation techniques to maintain and update
results efficiently. Table 2 describes sample use cases for each
vector-based operator.

3.1 iV-Filter

The inverse vector filter operation returns all input vectors
that fall within a specified distance (i.e., radius) of each base
vector (Figure 3(b)). More specifically, iV-Filter acts as a filter
on the input stream vectors, returning the indices or unique
IDs of the input vectors that match each base vector within
each batch. Here, the radius of a base vector serves as a simi-
larity threshold: A smaller radius retrieves the most relevant
input vectors, while a larger radius captures a wider set of
matches. Users may directly define the radii for base vectors,

VectraFlow: Integrating Vectors into Stream Processing

or they can be adjusted by the system based on statistical val-
ues or offline learning processes to match a target frequency
over, for example, a time period. In general, adjustable radii
allow the system to meet specific requirements, either prior-
itizing high precision (i.e., low false positives) or high recall
(i.e., low false negatives). iV-Filter resembles a range query in
vector databases, but it works inversely for each base vector.
The brute-force way of performing iV-Filter requires com-
paring every input vector with all base vectors and then
filtering out those that fall outside the similarity thresholds.
Alternatively, one can also adapt an existing ANNS method
to implement iV-Filter: first, we can index base vectors, and
then, for each input vector, we can search for the top-k most
similar vectors and finally apply filtering. However, there
are a couple of challenges with this approach: (i) It is difficult
to determine the optimal value of k. If k is too low, some
matches will go unnoticed; if it is too high, redundant vec-
tors will be retrieved and filtered out. (ii) ANNS indexes are
typically designed for very large vector databases. Indexing
a smaller set of base vectors might introduce more overhead
than even the brute-force approach.
OPList. As another alternative, we introduce a new index
structure to support iV-Filter: the Overlapping Partition List
(OPList). We define the overlap of two base vectors b, and
b, with given radii as all base vectors that match:

dist(by, by) < radius(by) + radius(b,) (1)

This inequality implies that two vectors by and b, are consid-
ered to overlap if the sum of their radii is greater than or equal
to the vector distance between them. The idea is to record the
indices of base vectors that overlap with each other, leverag-
ing the fact that the base vectors that encompass incoming
data within a specific radius must inherently overlap with
each other. VectraFlow then performs the search by first
identifying an initial base vector that contains (or “matches”)
the input data vector, followed by a scan of the correspond-
ing OPList to identify the base vectors that truly include the
incoming data, that is, filter out the false positives.

This naive OPList approach suffers from two problems: @
It is difficult to find base vectors that first match the input
vector — in other words, the anchor point to initiate which
OPList to scan is hard to establish. @ It takes O(N?), where
N is the number of base vectors, time and space to build the
vanilla OPList. This does not scale when the number of base
vectors is large.
Centroid OPList. This baseline approach requires an OPList
per base vector, so VectraFlow further optimizes it using
clustering-based techniques. Specifically, VectraFlow clus-
ters the base vectors and generates OPLists for each cluster
centroid. It then assigns radii to centroids, using statistics
about the member base vectors, and for each cluster records
the base vectors that overlap with the radius of the centroid.
In the search phase, VectraFlow assigns each input vector to
the nearest centroid and scans the corresponding OPList for

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

7

Distance

Figure 2. An example Centroid OPList sorted based on the
overlap metric.

matches. As multiple input vectors can be assigned to the
same cluster and scan the same OPList, VectraFlow batches
these input vectors to enable simultaneous scanning. Conse-
quently, VectraFlow approximates each input vector using
the centroid it is associated with, using the centroid’s ra-
dius to adjust the degree of approximation. Since all scan
operations are in memory (making retrieval fast), the actual
distance computation is the bottleneck in VectraFlow. Rather
than performing pairwise distance computations, VectraFlow
uses Equation 2 where squared norms (||v;||* and ||v;||?) can
be computed independently and only once for each vector.

dist(v;,0;) = lloill* + lloj|I* = 2 - 0; - v; (2)

VectraFlow further leverages Intel MKL’s sgemm() [13] to
compute the dot product (2 - v; - v;) efficiently. This batch
approach works well for our setting, as the data is already
segmented into windows.
Ordered Centroid OPList. For each Centroid OPList, we
can further sort and bucketize the elements in the list so
that the most promising elements (that is, base vectors that
are more likely to “match”) are visited earlier in the scan.
In addition to distance, which is the distance between the
centroid and the base vector, we also define two additional
sorting metrics:

overlap(b;, cj) = rp, + re; — dist(b;, cj) (3)

_(dist(bi,c:j‘).)

exp(b,-, Cj) = ¢ \overap(Bic)) (4)

The overlap metric (3) captures the geometric relation-
ship between the radii. The exponential decay metric (4) is
designed to capture the intuition that, as the distance be-
tween two points increases, their similarity should decrease
rapidly. The objects that are closer in some feature space
(e.g., semantic similarity) have much stronger relationships
than those that are far apart. For vectors that have the same
level of overlap, this metric can give a large penalty to those
distances that are larger. Figure 2 illustrates the Centroid
OPList organization, where base vectors (labeled b1-b9) are
clustered. Each centroid maintains an ordered list of its as-
sociated overlapping base vectors, as described in Eq. (1),

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

with the ordering determined by metrics like overlap (Eqg.
(3)), exponential decay (Eq. (4)), or vanilla distance (Eq. (2)).
Bucketing. VectraFlow implements a bucket-based early
termination strategy for Centroid OPList scanning. Each Cen-
troid OPList can be divided into buckets using either equal
depth partitioning (where each bucket contains the same
number of vectors) or equal weight partitioning (where vec-
tors are grouped to maintain a similar metric distribution
within buckets). During the search phase, we scan these
buckets sequentially and monitor the match productivity of
each bucket. If we observe that subsequent buckets yield sig-
nificantly fewer matches compared to previous ones (below
a configurable threshold), we can terminate the scan early.
This adaptive stopping mechanism provides an effective run-
time trade-off between recall and performance, particularly
valuable when the system faces high-rate streaming inputs.
The intuition behind this approach is that since vectors in the
Centroid OPList are ordered by their matching likelihood, a
substantial drop in the match rate suggests that continuing
to scan the remaining buckets will provide diminishing re-
turns and may not justify the additional computational cost.
By detecting significant drops in match productivity, we can
avoid unnecessary computation on less promising buckets
while maintaining competitive recall rates.

3.2 V-Filter

V-Filter (vector filter) performs a similarity-based range search
for each input vector, identifying the matches within the
stored vectors (Figure 3(a)). It is a special case of iV-Filter
where each base vector has an identical radius; as such the in-
dexing approach presented for iV-Filter should readily apply.
This contrasts with a common implementation of V-Filter
that involves a series of top-k queries on the base vectors un-
til all matches in the target range are identified. Our solution
supports range searches more directly.

3.3 iV-TopK

This inverse vector top-k operation continuously returns the
top-k matching input vectors for each base vector and each
window (Figure 3(d)). Specifically, input vectors accumulate
within a window, which slides after either a certain number
of input vectors are seen or some time period has passed. The
unique IDs of the matched top-k input vectors for each base
vector are then returned for each window. As in iV-Filter,
VectraFlow uses clustering over base vectors to reduce search
scopes by recording the top-k results for cluster centroids
instead of for every base vector. Each base vector approxi-
mates the results to its cluster centroid, reducing the need
for brute-force searches.

Simply using k to approximate the results of base vectors
is often insufficient. We therefore employ a over-retrieval
factor, m, to increase the number of k results that need to
be retrieved for centroids. For each base vector, the method
examines the k * m closest vectors to its centroid to re-rank

the top-k most similar vectors. We implemented both an
incremental and a non-incremental version of the min-heap
structure to keep track of the top-k results for each base
vector.

There has been much work on supporting top-k queries
(e.g., SAP [30]) over streams, but no prior work addressed
vector data and the optimizations that VectraFlow employs.

3.4 V-TopK

V-TopK (vector top-k search) is the streaming version of the
standard, widely supported, and heavily optimized vector
retrieval in vector databases: For each input vector, V-TopK
identifies the top-k most similar to base vectors (Figure 3(c)).
Our streaming setting allows us to perform batch distance
computations for a set of input vectors at the same time, thus
optimizing the distance computations.

3.5 V-Join
The streaming vector join operator processes two streams of
vectors using a window. For each vector on the first stream,
it compares vectors on the other stream that are within the
same window (Figure 3(e)). A brute-force approach to V-Join
is straightforward; however, optimizations are possible by
learning the distribution of input vectors and performing
clustering. For example, each vector can be assigned to a
centroid, allowing the join operation to be computed within
each cluster in a way similar to traditional hash-based joins.
We note that a stream-to-table join on vectors was intro-
duced in VBASE [29], where the use case was to assign a very
large number of tags to documents based on their semantic
similarity threshold. We support this use case with V-Filter
and use V-Join to perform stream-to-stream joins.

4 LEVERAGING ALTERNATIVE VECTOR
REPRESENTATIONS

We now study leveraging more efficient but lower-precision
data representations to improve processing speed while still
achieving high recall rates. Although this general idea has
been successfully applied in vector databases (e.g., [10]), its
effectiveness in a streaming environment remains uncertain,
as these alternative representations must be generated in real
time during the query processing phase. We investigate two
scenarios: a dense binary quantization method and a sparse
keyword vector technique, showcasing their advantages. No-
tably, we observe that the keyword-based methodology is a
particularly good fit for streaming settings, when it is applica-
ble, since it can offer substantial performance improvements
by obviating the creation of embeddings for all input data
when they do not already exist.

Over-retrieval & Re-ranking. The basic approach is to use
a two-stage process, starting with an efficient and approx-
imate data representation and then refining with the full

VectraFlow: Integrating Vectors into Stream Processing

(c) V-TopK (d) iV-TopK

(e) V-Join

Figure 3. Vector-based query operators supported by Vec-
traFlow. We primarily focus on (b) iV-Filter (d) iV-TopK, and
(e) V-Join, continuous query operations not well-supported
by vector databases. The input vector(s) are shown on the
arrows, and the base vectors are shown below them in stor-
age.

vector representation [10]. VectraFlow initially uses an effi-
cient data representation to perform rapid similarity compu-
tations, specifically distance computations, which are crucial
to narrow down candidate results to a manageable subset.
At this first stage, we over-retrieve results, meaning that the
resultant set size should be larger than what is ultimately
needed. The rationale behind this is to account for the inher-
ent approximation of the efficient representation, which may
lead to some inaccuracies in the selection of similar vectors.
By over-retrieving, we ensure that the subset includes all
potentially relevant vectors, despite the approximate nature
of the initial computations. We then transition to stage two,
employing the full, high-fidelity vector representation. In
this stage, VectraFlow performs precise computations on this
smaller set of candidates. This two-stage process strikes a
balance between computational efficiency and accuracy, and
has the potential to significantly improve the overall perfor-
mance of similarity searches over vector streams. Below, we
present two examples of alternative representations.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

1. Dense: Binary Quantization (BQ). In BQ [16], each di-
mension of a vector is converted into a binary value using
a threshold value and then stored in a singular bit. In the
quantization phase, values above a chosen threshold are
assigned a 1, and values below it are assigned a 0. BQ
allows us to simplify the vectors, reducing the amount
of memory required to store the vectors. BQ also speeds
up the time it takes to do distance computations because
using less memory can lead to less cache misses and al-
lows us to use an XOR to compute the distance between
two quantized vectors, which is much faster than doing
distance computations in the full vector space.

2. Sparse: Keyword-based Representation. Consider the
case where we have text data, such as tweets, as an input
stream. Here, we can use a traditional keyword-based
representation where each tweet is represented as a sparse
vector, with dimensions corresponding to the presence
or absence of specific keywords. This approach allows
for rapid and efficient filtering that quickly identifies a
subset of tweets that contain relevant terms. We note
that we need to have full vector representations in the
second stage only for those items in the candidate result
set identified in stage one, not for all data items. This
optimization greatly reduces the computational burden.

Filter Cascades. We also explore the use of a cascade
approach with alternative representations. Consider a series
of binary quantizers to improve query execution. Adding an
extra quantizer introduces extra overhead as it requires an
additional quantization of input vectors in real-time. How-
ever, a cascading approach becomes advantageous if the new
quantizer eliminates enough vectors where its added pro-
cessing time is offset by the reduction in the time spent on
the slower, higher-precision filter.

Figure 4. Adding a quantizer into the system

Equation 5 describes the number of vectors an additional
quantizer must filter out, in order to maintain the same
throughput:

Qi+ (D; - nb)

s + (Dins - 1) ©

f=n

Here, f is the number of vectors filtered out; n is the number
of incoming vectors; Q; is the time it takes for quantizer i to
quantize one vector; D; is the time it takes for quantizer i to
compute one vector-to-vector distance computation, and nb
is the number of base vectors.

The equation reveals that the number of vectors that need
to be filtered out in order to make an additional quantizer

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

beneficial is directly proportional to the ratio between the
current quantizer and subsequent quantizer’s costs. Note
that the next filter could be another quantizer, entailing both
quantization and distance computation costs, or it could
be the full vector representation filter, in which case the
quantization time is negligible, and the distance computation
time contributes solely to the total cost.

5 PRELIMINARY RESULTS

We conducted a preliminary evaluation of a VectraFlow pro-
totype that implements the search operations and optimiza-
tions discussed. We report throughput and latency figures,
as well as recall values to quantify the quality of the results,
as is common in vector-based processing.

Experimental Setup. We conduct our experiments on a
dual-socket system equipped with two Intel(R) Xeon(R) Gold
6150 CPUs operating at 2.70 GHz with 18 physical cores and
377GB of DRAM.

Datasets: for iV-Filter, iV-TopK, V-Join, and Binary Quanti-
zation evaluation, we use the SIFT1M [11] dataset, a stan-
dard benchmark for evaluating the performance of ANNS
algorithms. SIFT1M comprises 1M 128-dimensional floating-
point vectors, supplemented by an additional set of 10K vec-
tors used as base vectors. Since keyword-based representa-
tion requires raw documents for experimentation, we utilize
a popular corpus from Hugging Face [5]. We shuffled and
sampled portions of the documents to serve as both query
and input data. When we used radii value, we generated
reasonable values using a normal distribution with a mean
of 300 and a standard deviation of 20 based on the average
Euclidean distance between vectors. V-Join operates on two
streams of shuffled SIFT1M dataset.

Streaming framework: We streamed 1M input vectors using a
socket interface, utilizing 18 threads pinned to physical cores
on the same CPU to prevent any hyperthreading or NUMA
effects across the evaluated methods. We used independent
sender and receiver sockets to simulate a realistic setting.
For V-Join, we used two sender sockets to stream the input
vectors, two receiver sockets to receive the vectors, and one
extra receiver to listen to the join results.

Methods Settings: (i) Centroid OPList is trained on the entire
set of training vectors to generate centroids. The number
of centroids is 64, with 20 iterations for training. (ii) Clus-
tering iV-TopK is similar to Centroid OPList: we train this
method on the full set of training vectors, producing 128
centroids over 20 iterations. (iii) For ANNS, we opted to use
FAISS [14], a widely-used library for in-memory vector sim-
ilarity searches. We utilized FAISS’s HNSW index and tuned
its parameters for best performance.

iV-Filter. Figure 5 shows iV-Filter performance for the Brute
Force, ANNS (HNSW), and Centroid OPList (Section 3) ap-
proaches across various batch sizes in terms of throughput
(1K vectors/sec) and latency (milliseconds). For all batch sizes,

Centroid OPList achieves substantially better performance
than the alternatives in terms of throughput (1.1-2.5x over
Brute Force and 3x-9x over HNSW) while maintaining fa-
vorable latencies. This demonstrates the benefits of Centroid
OPList’s task-specific index structure. The average recall val-
ues for the approaches (Centroid OPList: 0.946, Brute Force:
1, HNSW: 0.804) show that the resulting drop in recall for
Centroid OPList is acceptable relative to HNSW.

I Centroid OPList B2 Brute Force B ANNS (HNSW)

O
o
o

w o
o O
o O

Throughput (kvs)

o

500 1000 2000 4000

=
o a
o O

(€2
o

90th Percentile
Latency (ms)

o

100 500 1000 2000 4000
Batch Size

Figure 5. iV-Filter performance for Brute Force, HNSW, Cen-
troid OPList.

We note that the Brute Force approach performs well due
to its use of highly optimized batch distance computations
through the sgemm() library [13]. We also note that HNSW,
which is widely used within traditional vector databases,
underperforms even compared to the Brute Force approach.
One major reason is that the HNSW maintains additional
data structures, most importantly min-heaps, to manage top
k candidates, which is a relatively expensive operation in a
main-memory setting. Using an optimal top-k knob is also
challenging, as it requires robust tuning to achieve good
performance. Ideally, HNSW should be built over each batch
so that a top-k operation can be executed for each base vector,
but building HNSW in real-time is infeasible in general.

Figure 6 demonstrates the relationship between bucket
scanning depth and the number of matches using equal-
depth partitioning across 64 buckets for Centroid OPList. We
analyze three randomly sampled input vectors to demon-
strate how matching patterns evolve during run-time, with
each line marked at points where the match-growth plateaus
for two, three, and four consecutive iterations (denoted as
i). The results indicate that recall (R) stabilizes well before
all buckets are exhausted. Vector 1 reaches R = 0.83 ati = 2
(bucket 24), improving to R = 0.98 at i = 4 (bucket 53). Vector
2 shows a similar progression, achieving R = 0.79, 0.86, and
0.97 at the respective plateau points. In particular, Vector
3, although it has the highest absolute match count (220),
reaches R = 0.76 on its first plateau (i = 2), eventually reach-
ing R = 0.96. The evident early curve steepness followed by
distinct plateaus across all vectors validates our adaptive
stopping strategy, indicating that the scanning depth can be
dynamically adjusted based on consecutive plateau detection
without a significant impact on the quality of the result. This

VectraFlow: Integrating Vectors into Stream Processing

250 T -
—e—\Vector 1 R0

\
Vector 2 W‘A
200 2,R==0.76, 74 1

—*—Vector 3 \

—_
a1
o

i—4,R=0.94

i=3,R=0.90
i=2,R=0.83, .
s Ze

of Matches

0 8 16 24 32 40 48 56 64
of Buckets
Equal Depth

Figure 6. Early stopping during scans.
1

12

oy I Window Size: 1000
0.8} 10} EXRAWindow Size: 2000
ISR Window Size: 3000
=061 o 8| EEENWindow Size: 4000
3 S nlow St R=0.963
o b1
o 04F —e—Overlap 9
Exponential Decay L/D')-
02f —+—Distance 1

0

0 8 16 24 32 40 48 56 64
of Bucket

Threshold

Equal Depth

Figure 7. Sorting heuristics Figure 8. The streaming V-

for Centroid OPList. Join operator speedup over
Brute Force (recall values
shown above bars).

can allow the system to perform effective load shedding in
real-time under high load.

Figure 7 compares different sorting metrics: Overlap (Eq. 3),
Exponential Decay (Eq. 4), and Distance (Eq. 2) when Cen-
troid OPList is built with equal-depth bucketing. The experi-
ment measures recall performance as buckets increase from
0 to 64. The Overlap metric and Exponential Decay demon-
strate very similar performance characteristics, with both
achieving higher recall rates more quickly than the Distance
metric as the number of buckets increases. This suggests that
both Overlap and Exponential Decay metrics are more effec-
tive at prioritizing relevant vectors in earlier buckets. The
naive Distance metric’s lower performance can be attributed
to its simpler nature — it only considers raw distances with-
out accounting for the geometric relationships or gradual
similarity decay that the other metrics incorporate.
iV-TopK. Figure 9 shows the performance of iV-TopK, both
in its incremental and non-incremental versions, compared
to a Brute Force approach. The over-retrieval factor m is
set to make recall above and close to 70% with window
size 10,000 and slide size 1000. The results show that the
incremental method consistently achieves higher through-
put across all k values compared to other methods. This
performance improvement is due to the use of incremental
distance computations (i.e., enabled by a distance cache) and
the incremental updating of the underlying min heaps that
record the top-k results for each base vector across vector
streams.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

I Incremental EBZ&F Non-incremental B Brute Force

,§400 m-16 m=9 m=6
Recall=0.719 = = 5

= 300/ Recall=f:721: - Recall=0:70 Recall-0.711 m=3
=] Recall=0.707
2 200
¥
o 100
=

0 6 16

k

Figure 9. iV-TopK performance for three methods: Incre-
mental, Non-incremental, and Brute Force. The recall and
over-retrieval factor (m) values for each method are anno-
tated directly above the bars.

Table 3. Binary Quantization (BQ) optimization for iV-Filter
for varying numbers of base vectors (NB).

NB 10° 10* 102 103 10*

Speedup 0.91x 1.06x 2.46x 3.37x 4.04x
Recall 1.00 099 093 087 0.83

V-Join. Figure 8 evaluates the performance of a streaming
join algorithm under different window sizes (1k, 2k, 3k, and
4k vectors) at a fixed join similarity threshold value of 175.
The speedup is achieved through the clustering optimization
described in Section 3.5 over the brute force method. As the
window size increases from 1000 to 4000, the speedup in-
creases from approximately 2x to 10x compared to the Brute
Force approach, with a slight decrease in the recall values.
This significant increase in speedup with larger windows
is primarily because the Brute Force method complexity
grows quadratically with window size, while the clustering
approach better manages this growth by limiting compar-
isons to within clusters.

Alternative Representations. Table 3 shows the benefits
of using Binary Quantization (BQ) with the Over-Retrieval
and Re-ranking technique (Section 4) to optimize iV-Filter
for varying base vectors. We observe throughput increasing
up to 4x using BQ with a moderate reduction in recall.

Figure 11 shows the speedup in throughput and corre-
sponding recall values obtained when using the keyword-
based representation (with TF-IDF sparse vectors) with over-
retrieval (with SentenceTransformer [3] dense vectors) and
re-ranking for iV-TopK evaluation for varying k values. The
figure shows that we can effectively trade off performance
with recall and that higher k values are more costly to sup-
port compared to the dense vector representation of all data
items for each batch.

The preliminary results with the filter cascade approach
using two binary quantizers showed promising performance
improvements over the baseline, performing competitively
with the single binary quantizer. The efficacy of the cascade
approach is heavily dependent on the relative filtering char-
acteristics of each quantizer in the cascade, as well as the

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

1 ,\20‘.‘%&3 r
08 10876 -1
TR
0.6 3)
\z\ g5
0.4 &

T T 9

k=2

Recall

~d —m— k=4
02} —&— Incremental | 3 F—e—i-s
% Brute Force —— k=16
0 L L L L 1 i : i
0 100 235 370 505 640 0.2 0.4 0.6 0.8 1
Throughput (kvs) Recall

Figure 10. BQ optimization Figure 11. Keyword-based
for iV-TopK for varying over- representation for iV-TopK
retrieval factors (k = 8). for varied k values.

underlying data distribution. Exploring the utility of this
approach comprehensively is an ongoing research direction.

6 RESEARCH DIRECTIONS

In this section, we describe our ongoing and future research
directions.

Integration with LLMs and other ML Models. The combi-
nation of vector-based and model-based semantic operations
offers rich opportunities for augmenting data processing
with general Al capabilities. To this end, we are integrating
VectraFlow with LLMs and other ML models using model-
based operators. We have already extended the system with
prompt-based operators, such as P-Filter(), P-Aggregate(),
P-TopK(), P-Map(), and P-Join(), which are LLM counterparts
of the vector-based semantic operations we discussed ear-
lier. They invoke LLMs with text prompts that are used to
evaluate selection predicates, perform ranking, and apply
structured transformations, such as aggregations or maps
on multimodal, unstructured data. These draw inspiration
from and share similarities with other recent proposals that
also describe similar structured semantic operators based on
LLMs (e.g., [21], [23]).

We are also extending our set of operators further to in-
voke general ML models, allowing VectraFlow to incorporate
classifiers, regressors, and clustering algorithms at various
stages of data flow. For instance, M-Filter(), a filter operator
invoking an ML model, could apply a trained classifier to
filter data based on learned categories, while M-Aggregate()
could use regressors to generate aggregated metrics such
as trend predictions. Additionally, clustering models can be
used in an M-Cluster() operation to identify inherent group-
ings in the data, enabling segmentation and analysis. These
ML-based operations would seamlessly integrate into the
data flow, similar to how our vector- and prompt-based op-
erators are used, enhancing the ability to perform advanced,
model-driven data analysis and transformation.
Continuous and Agentic Prompts. Another key area of
interest is supporting continuous prompts and agentic LLM
workloads that operate persistently, iterating over responses
and updating them in response to new incoming data. For

example, a continuous prompt implemented by an LLM-
based data agent would need to continually retrieve top-k
results from the incoming data stream, ensuring that the
generated responses are always up-to-date and contextually
relevant. This type of workload requires efficient handling
of real-time data, incremental prompt evaluation, and intelli-
gent caching mechanisms to minimize latency and resource
utilization. To support such workloads effectively, we are
incorporating an iteration operator that executes a loop over
an operator pipeline, repeatedly applying transformations
and refining data until a certain condition is met. The ter-
mination condition can be a fixed number of iterations or a
custom convergence criterion that can also be evaluated by
a prompt.

Al Guardrails. VectraFlow aims to mitigate Al issues such
as errors, hallucinations, leakage of sensitive information
and inappropriate language by embedding predefined rules
and validation checks within its data flow. Such integrity
constraints can ensure that medication doses stay within
clinically safe boundaries, verify patient information accu-
racy across multiple data sources, and cross-check treat-
ment recommendations against established clinical guide-
lines. Transparently incorporating these integrity validations
into the prompt execution dataflow and applying them on
the streaming outputs of language models in real-time al-
lows VectraFlow to block inappropriate results from reaching
users or applications further down the line. This approach
mitigates the chance of clinical mistakes, ensuring compli-
ance with medical best practices and regulations. To react
to constraint violations, these rules also specify corrective
actions, such as using a revised prompt or utilizing inference
masking.

Auto Tuning and Optimizations. As we have discussed,
VectraFlow offers numerous "knobs" which can dynamically
determine the suitable representation and fidelity level based
on a task’s specific needs and its required recall rate. These
knobs enable temporary adaptations to lighter-weight rep-
resentations for the purpose of efficiently managing the in-
coming workload. Our initial experiments demonstrate that
conventional optimization strategies, such as caching and
prefetching, can be advantageously and seamlessly applied
within vector-based data streams, especially for continuous
queries. Duplicate or similar instances, such as re-tweets
or images of the same vehicle or product, are prevalent in
practical applications; hence, caching, reusing vector rep-
resentations, and vector-to-vector distance computations
prove to be effective. Efficiently merging vector-based and
raw data filtering in a streaming environment remains an
unresolved challenge.

More broadly, an open research direction involves devel-
oping an optimization framework for a system that supports
dataflows consisting of vector-based and model-based opera-
tors. Alternative implementations for the same operator (e.g.,
V-Filter vs. P-Filter), as well as different implementations of

VectraFlow: Integrating Vectors into Stream Processing

the same operator (e.g., different regression models for M-
Aggregate) offer rich optimization opportunities involving
trade-offs between response speed and quality.

7 CONCLUSIONS

VectraFlow aims to support a new class of vector-heavy Al
workloads that involve monitoring continuous streams. By
integrating techniques from both streaming and vector data-
base domains and supporting vector-based filtering, top-k,
and join operations with streaming-specific optimizations,
VectraFlow addresses the unique challenges of low-latency
query processing over vector streams. Experiments with our
initial prototype have shown that our design and optimiza-
tions have the potential to scale well, and their behavior
can be tuned to serve the needs of modern vector-based
workloads.

8 ACKNOWLEDGEMENTS

We thank Shu Chen, Alex Lee, Evan Li, Deepti Raghavan,
and Weili Shi for their feedback and contributions to the
project.

References

[1] [n.d.]. Apache Storm. https://storm.apache.org/ Accessed: 2024-08-02.

[2] [n.d.]. Pinecone. https://www.pinecone.io/ Accessed: 2024-07-30.

[3] [n.d.]. Sentence Transformers. https://huggingface.co/sentence-
transformers Accessed: 2024-08-02.

[4] D.]J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. 2003. Aurora: a new model
and architecture for data stream management. The VLDB Journal 12,
2 (August 2003), 120-139. https://doi.org/10.1007/s00778-003-0095-z

[5] L. Ben Allal, A. Lozhkov, G. Penedo, T. Wolf, and L. von Werra. 2024.
SmolLM-Corpus. https://huggingface.co/datasets/HuggingFaceTB/
smollm-corpus

[6] P. Carbone, A. Katsifodimos, Kth, Sics Sweden, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. 2015. Apache Flink™: Stream and Batch
Processing in a Single Engine. IEEE Data Engineering Bulletin 38 (2015).

[7] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and J. Wang.
2021. SPANN: Highly-efficient Billion-scale Approximate Nearest
Neighbor Search. arXiv:2111.08566 [cs.DB] https://arxiv.org/abs/2111.
08566

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805

[9] E. Dilocker, B. van Luijt, B. Voorbach, M. S. Hasan, A. Rodriguez,
D. A. Kulawiak, and P. Duckworth M. Antas. 2023. Weaviate. https:
//github.com/weaviate/weaviate

[10] M. Glass, G. Rossiello, M. F. M. Chowdhury, A. R. Naik, P. Cai, and A.
Gliozzo. 2022. Re2G: Retrieve, Rerank, Generate. arXiv:2207.06300
https://arxiv.org/abs/2207.06300

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

[11] M. Douze H. Jégou and C. Schmid. n.d.. SIFT1M dataset. http://corpus-
texmex.irisa.fr/. Accessed: March 29, 2024.

[12] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep Residual Learning for
Image Recognition. arXiv:1512.03385 [cs.CV] https://arxiv.org/abs/
1512.03385

[13] Intel Corporation. 2024. oneAPI Math Kernel Library (oneMKL) Inter-
face. https://github.com/oneapi-src/oneMKL. Accessed: 2024-07-31.

[14] J. Johnson, M. Douze, , and H. Jégou. 2019. Billion-scale similarity

search with gpus. IEEE Transactions on Big Data 7, 3 (2019), 535-547.
[15] H. Jégou, M. Douze, and C. Schmid. 2010. Product quantization for

nearest neighbor search. PAMI 33, 1 (2010), 117-128.

[16] N.Kasliwal. 2023. Binary Quantization. https://qdrant.tech/articles/
binary-quantization/. Accessed on: July 31, 2024.

[17] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H.
Kiittler, M. Lewis, W. t. Yih, T. Rocktaschel, S. Riedel, and D. Kiela.
2021. Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks. NeurIPS (2021).

[18] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. 2014. Ap-
proximate nearest neighbor algorithm based on navigable small world
graphs. Information Systems 45 (2014), 61-68.

[19] Yu A. Malkov and D. A. Yashunin. 2018. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs. PAMI 42, 4 (2018), 824-836.

[20] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G.
Manku, C. Olston, J. Rosenstein, and R. Varma. 2003. Query Pro-
cessing, Approximation, and Resource Management in a Data Stream
Management System.

[21] L.Patel, S. Jha, C. Guestrin, and M. Zaharia. 2024. LOTUS: Enabling Se-
mantic Queries with LLMs Over Tables of Unstructured and Structured
Data. arXiv:2407.11418 [cs.DB] https://arxiv.org/abs/2407.11418

[22] Postgres. 2024. pgvector. https://github.com/pgvector/pgvector.

[23] S. Shankar, A. G. Parameswaran, and E. Wu. 2024. DocETL: Agentic
Query Rewriting and Evaluation for Complex Document Processing.
arXiv:2410.12189 [cs.DB] https://arxiv.org/abs/2410.12189

[24] A.Singh, S.]J. Subramanya, R. Krishnaswamy, and H. V. Simhadri. 2021.
FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for
Streaming Similarity Search. arXiv preprint arXiv:2105.09613 (2021).

[25] S.]J. Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and R.
Kadekodi. 2019. Diskann: Fast accurate billion-point nearest neighbor
search on a single node. NeurIPS 32 (2019).

[26] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li, X.
Xu, and et al. 2021. Milvus: A purpose-built vector data management
system. SIGMOD (2021), 2614-2627.

[27] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, and Y. Cai. 2020.
Analyticdb-v: A hybrid analytical engine towards query fusion for
structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020).

[28] Y. Xu, H. Liang, J. Li, S. Xu, Q. Chen, Q. Zhang, C. Li, Z. Yang, F. Yang,
Y. Yang, and et al. 2023. SPFresh: Incremental In-Place Update for
Billion-Scale Vector Search. SOSP (2023), 545-561.

[29] Q. Zhang, S. Xu, Q. Chen, G. Sui, J. Xie, Z. Cai, Y. Chen, Y. He, Y. Yang,
F. Yang, and et al. 2023. {VBASE}: Unifying Online Vector Similarity
Search and Relational Queries via Relaxed Monotonicity. OSDI (2023).

[30] R.Zhu,B. Wang, X. Yang, B. Zheng, and G. Wang. 2017. SAP: Improving
Continuous Top-K Queries Over Streaming Data. IEEE Trans. on Knowl.
and Data Eng. 29, 6 (jun 2017), 1310-1328. https://doi.org/10.1109/
TKDE.2017.2662236

https://storm.apache.org/
https://www.pinecone.io/
https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers
https://doi.org/10.1007/s00778-003-0095-z
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://arxiv.org/abs/2111.08566
https://arxiv.org/abs/2111.08566
https://arxiv.org/abs/2111.08566
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://github.com/weaviate/weaviate
https://github.com/weaviate/weaviate
https://arxiv.org/abs/2207.06300
https://arxiv.org/abs/2207.06300
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://github.com/oneapi-src/oneMKL
https://qdrant.tech/articles/binary-quantization/
https://qdrant.tech/articles/binary-quantization/
https://arxiv.org/abs/2407.11418
https://arxiv.org/abs/2407.11418
https://github.com/pgvector/pgvector
https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2410.12189
https://doi.org/10.1109/TKDE.2017.2662236
https://doi.org/10.1109/TKDE.2017.2662236

	Abstract
	1 INTRODUCTION
	2 VECTRAFLOW
	3 VECTOR-BASED QUERY OPERATORS
	3.1 iV-Filter
	3.2 V-Filter
	3.3 iV-TopK
	3.4 V-TopK
	3.5 V-Join

	4 LEVERAGING ALTERNATIVE VECTOR REPRESENTATIONS
	5 PRELIMINARY RESULTS
	6 RESEARCH DIRECTIONS
	7 CONCLUSIONS
	8 ACKNOWLEDGEMENTS
	References

