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Abstract

String obfuscation remains one of the most pervasive challenges in malware re-
verse engineering, significantly complicating the analysis and timely response to
cyber threats. Current automated solutions for identifying and extracting deobfus-
cation functions within malicious binaries are limited by their reliance on narrowly
defined heuristics and specialized, malware-specific techniques. This paper presents
a novel automated pipeline, combining comprehensive static analysis heuristics with
statistical feature ranking to systematically detect and extract candidate string de-
obfuscation functions from malware binaries across multiple executable formats (PE,
ELF, Mach-O). Leveraging Pyhidra and Ghidra’s reverse engineering features, the
implemented static framework evaluates each function against diverse heuristic in-
dicators, including instruction patterns, XOR operation density, entropy analysis,
and control-flow characteristics. Evaluation against six known malware binaries
demonstrated high accuracy, correctly identifying all true deobfuscation functions
among top-ranked candidates, while maintaining an interactive runtime suitable for
practical incident response scenarios. However, high false-positive rates in smaller
binaries revealed the need for complementary dynamic validation methods. Future
extensions include integrating micro-execution and symbolic execution techniques to
reduce false positives and employing machine learning methods to enhance heuris-
tic specificity. This research provides a foundational step toward a comprehensive,
scalable, and generalizable automated malware string deobfuscation framework, ul-
timately enabling faster defensive responses to rapidly, evolving cyber threats.

Keywords: Malware Analysis, Reverse Engineering, String Deobfuscation, Static
Analysis, Dynamic Analysis, Pyhidra, Ghidra, Heuristic-based Detection.
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1. Introduction

Malicious software, commonly known as malware, has rapidly become one of the
most pervasive threats in today’s ever-changing digital landscape. From destructive ran-
somware that paralyzes critical infrastructure, to insidious spyware that exfiltrates sen-
sitive data; malware continues to cause widespread disruption and financial loss across
all sectors worldwide. Even more alarmingly, ransomware attacks surged by 45% in the
first quarter of 2025 compared to the previous year, a spike attributed to attackers com-
pensating for declining ransom payments by increasing attack frequency [1, 2]. At the
same time, the proliferation of spyware, capable of infiltrating devices and silently har-
vesting personal or organizational data, further underscores the sophistication and scale
of modern cyber threats [3].

To effectively combat these evolving threats, cyber security professionals increasingly
depend on advanced malware analysis and reverse engineering techniques. Malware anal-
ysis enables practitioners to examine malicious code, understand its behavior, identify its
targets, and respond accordingly. Analysts leverage both static and dynamic analysis to
detect vulnerabilities, generate signatures, and build timely defensive strategies. Reverse
engineering further enriches this process by revealing concealed functions, decryption rou-
tines, and embedded logic otherwise undetectable at a surface level. These techniques are
especially vital in addressing today’s rapidly adapting malware variants [4, 5].

A critical element of this analytical workflow is string deobfuscation. Malware authors
routinely obfuscate strings within binaries to thwart reverse engineering efforts and evade
detection mechanisms. These strings often contain vital information such as command-
and-control (C2) addresses, embedded URLs, configuration files, and encryption keys.
Obfuscated strings severely hinder rapid triage and impede the development of behav-
ioral or signature-based detections. However, most existing tools remain limited in scope,
capable of analyzing only specific malware families or narrow classes of obfuscation tech-
niques (e.g., fixed-key XOR, AES, or RC4 encryption) [6, 7, 8]. The need for more gener-
alized and automated approaches that can address a wide spectrum of string obfuscation
strategies is therefore imperative.

Currently, analysts often rely on labor-intensive manual methods for string deobfus-
cation, which requires both substantial expertise and time. Malware authors exploit this
weakness through a range of obfuscation strategies, including arithmetic and bitwise ma-
nipulation, API-level indirection, and layered cryptographic encryption. This not only
increases the complexity of the malware but also amplifies the difficulty of identifying the
deobfuscation routines embedded within it [9, 10]. Although some automated deobfusca-
tion tools exist, many are purely signature-based or limited to static decoding patterns,
leaving them unable to generalize across architectures or complicated obfuscation styles.

This paper attempts to address that gap. It explores the question: How can the
automated identification and extraction of deobfuscation functions within malware binaries
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be improved using static and dynamic analysis to facilitate string deobfuscation? To that
end, this research presents a framework that combines static feature extraction with
while enabling further verification through dynamic validation to streamline the process
of identifying likely string deobfuscation routines.

Due to dataset constraints and challenges with dynamic execution reliability, this work
currently focuses on just static analysis. A custom script was developed using Pyhidra, a
python library that provides direct access to API of Ghidra (a reverse engineering tool),
to analyze each function in a binary and evaluate it against a suite of string deobfuscation
indicators. These include instruction frequencies, entropy measures, control-flow patterns,
and specific instruction (e.g., MOV–XOR–MOV sequences or fixed-key XOR signatures). The
script then assigns z-scores to rank the statistical outliers per heuristic, which are then
exported to a JSON format suitable for manual triage or automated post-processing.
Future work will expand this pipeline by integrating symbolic execution tools and micro-
execution environments to confirm the presence of actual string deobfuscation behavior.

Contributions. This work provides two key deliverables:

• a Pyhidra-based static analysis script that outputs a list of outlier functions likely
to perform string deobfuscation, along with JSON-formatted results that facilitate
further integration and automated tooling1;

• a small, labeled dataset of malware binaries from various families with ground-truth
annotations identifying known or suspected deobfuscation functions2.

Together, these contributions advance the state of automated reverse engineering by
enhancing analysts’ ability to quickly identify and understand string deobfuscation logic,
thereby empowering faster responses to sophisticated threats and accelerating analytical
tool development.

2. Background and Related Work

Malware string deobfuscation lies at the intersection of malware analysis, reverse engi-
neering, and, more recently, applied machine learning. This section surveys the disciplines
informing this research, describes the ongoing technical challenges, and reviews current
state-of-the-art methods that this work builds upon.

2.1 Malware Analysis and Reverse Engineering

Malware analysis involves identifying malicious code, examining its logic, and doc-
umenting its indicators of compromise (IOCs) to enable defenders to detect, block, or
mitigate threats [4, 5]. Analysts typically rely on three primary methodologies:

1https://github.com/KelsieEdie/Static-String-Deobfuscation-Function-Detection/tree/main/v.1.0
2https://github.com/KelsieEdie/Static-String-Deobfuscation-Function-Detection/blob/main/Malware-

Dataset.zip
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• Static analysis examines a binary without execution. Tasks include disassembly,
control-flow-graph reconstruction, string detection, entropy analysis, and compara-
tive analysis to known samples. Static methods are quick and safe but struggle with
packed, obfuscated, or self-modifying code [5].

• Dynamic analysis executes malware samples within controlled environments such as
sandboxes, employing API tracing, taint tracking, debugging, and memory forensics
to capture runtime behaviors, including outbound command-and-control (C2) traffic
and real-time string decryption. Dynamic analysis is thorough but slower, resource-
intensive, and vulnerable to evasion through anti-analysis techniques [5].

• Reverse engineering combines static and dynamic analysis, frequently using ad-
vanced techniques such as symbolic execution, data-flow slicing, and program in-
strumentation to reconstruct higher-level logic from low-level code structures [4].

2.2 Common String Obfuscation Techniques

Malware authors commonly obfuscate critical strings containing URLs, IP addresses,
registry keys, or passwords, which can reveal their intentions. Table 1 summarizes fre-
quently observed string obfuscation methods identified in contemporary malware reports
[9, 10, 8].

Table 1: Common string obfuscation techniques used in malware

Obfuscation Type Description

Fixed-key XOR Each plaintext byte is XORed with a single constant key. Sim-
ple to implement and easily reversible if the key is reused [9].

Rolling XOR A multi-byte key applied cyclically increases the string data
entropy, but complicates brute-force recovery [9].

Arithmetic Masking Strings obfuscated via arithmetic (add/subtract) or bit-shift
operations, altering original byte patterns significantly [9].

Base64 Encoding Binary data encoded into ASCII form to evade static string
detection, commonly used for layering obfuscation [8].

Cryptographic Ci-
phers (e.g., RC4,
AES)

Secure cryptographic algorithms with dynamically generated
keys, significantly complicating analysis and recovery [8].

As indicated by Table 1, adversaries frequently combine simple and complex obfusca-
tion techniques, increasing analytical complexity and motivating the need for the devel-
opment of versatile automated solutions.
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2.3 Research on Automated Deobfuscation

Researchers have explored various methodologies to automate deobfuscation. Table 2
classifies these approaches and discusses their practical limitations based on recent liter-
ature.

Table 2: Current string deobfuscation techniques and limitations

Research Technique Approach Limitations

Heuristic Extraction [6,
7, 11]

Pattern-matches common de-
coding routines and emulates
code paths to recover strings.

Fails with novel encryption
or crypto-based loaders;
signature-driven methods
require continuous updates.

Statistical Fingerprints
[10]

Detects encoded data regions
using entropy and n-gram
statistical anomalies.

High false-positive rate with
compressed or multimedia
content; indirect identifica-
tion of decoding routines.

Formal Methods [12] Transforms binaries into
intermediate representations
(IR), solving semantic equiv-
alence constraints via SMT
solvers.

Scalability issues with large
binaries; dependency on ac-
curate IR translation; strug-
gles with properly recon-
structing obfuscated control
flow.

ML-assisted Classifica-
tion [13]

Uses convolutional neural
networks (CNNs) to classify
code segments containing
cryptographic routines or
decoding logic.

Demands extensive labeled
datasets; retraining required
for new instruction set archi-
tectures (ISAs); limited gen-
eralization to novel obfusca-
tion types.

Reinforcement Learn-
ing [14]

Agent learns decoding logic
via trial-and-error within a
virtual machine (VM).

Effective primarily in con-
trolled scenarios (e.g., Java
bytecode); slow training
convergence; impractical for
large binaries.

Large-language Models
(LLMs) [15, 16]

Prompt-based approach to
LLMs for reconstructing de-
coder logic or plaintext from
disassembly snippets.

Context limitations; prone to
hallucinations; requires con-
siderable analyst oversight
and validation.

Collectively, these studies listed in Table 2 demonstrate substantial progress but also
highlight fragmented approaches, typically focusing narrowly on certain malware families,
architectures, or obfuscation techniques.
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2.4 Current Tools for Automated Deobfuscation

Table 3 details existing tools leveraged by cyber security analysts, including their
capabilities and constraints.

Table 3: Commonly used deobfuscation tools

Tool Capabilities Constraints

FLARE-FLOSS [17] Heuristic tool detecting stack-
/heap strings using common
decoding patterns.

Limited to x86 PE files; inef-
fective against strong crypto-
graphic encryption.

Pikabot-Deobfuscator
[18]

IDA Pro plugin targeting Pik-
abot malware; extracts keys
and reconstructs configura-
tion data.

Family-specific; ineffective be-
yond known Pikabot struc-
tures.

Sidekick 2.0 [19] Generates Binary Ninja
scripts to analyze disassembly
and deobfuscate strings using
AI-driven methods.

Requires manual validation;
commercial licensing restricts
accessibility.

PowerPeeler/PowerDrive
[20]

Dynamic analysis of obfus-
cated PowerShell scripts; un-
wraps Base64/Gzip/AES lay-
ers.

Limited to PowerShell scripts;
not applicable to native bina-
ries; Windows dependent.

Despite their utility, these tools listed in Table 3 remain specialized and insufficient
for general application across different file formats and obfuscation techniques.

2.5 Recent Advances and Ongoing Gaps

Recent advancements have seen significant integration of static and dynamic method-
ologies, reducing sandbox analysis time considerably [21]. Machine learning, reinforce-
ment learning, and particularly LLMs have enhanced analyst productivity by automating
deobfuscation to varying extents [15, 16, 22]. However, constraints like limited context-
windows, model hallucinations, and manual supervision still pose challenges. No publicly
available solution currently integrates cross-architecture support, explainable scoring, au-
tomatic static-to-dynamic handoff, and an openly licensed dataset for model training -
emphasizing a clear research gap that this work aims to address.

3. Approach

3.1 Overview

The proposed automated pipeline facilitates malware string deobfuscation through
four distinct stages:
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1. Static feature extraction. Each function within an analyzed binary is processed
using a Pyhidra script, generating detailed heuristic metrics (Section 3.2).

2. Statistical ranking. Functions are evaluated using per-binary z-scores for each
heuristic metric, highlighting statistical outliers indicative of string deobfuscation
logic.

3. Deobfuscation candidate function export. Outlier functions and associated
feature vectors are outputted to a structured JSON file for straightforward integra-
tion with subsequent analysis stages.

4. Dynamic confirmation. Candidate functions identified statically can then be
executed dynamically using micro-execution and/or symbolic execution to confirm
actual string deobfuscation behavior.

3.2 Static Analysis Methodology

The script leverages Ghidra’s robust disassembly and control-flow graph reconstruction
via Pyhidra, systematically evaluating each function against several heuristic indicators.
Inspired by and expanding upon methodologies from existing heuristic frameworks such
as FLOSS [17, 7], these heuristics specifically target typical string deobfuscation and
decoding behaviors:

• Instruction-level metrics. Functions are evaluated for the presence of non-
zeroing XOR operations, since XOR encryption commonly characterizes string ob-
fuscation. Particularly, loops containing XOR operations suggest repeated decoding
patterns, which strongly indicate a decoding routine [6].

• Control-flow complexity. The script reconstructs the control-flow graph (CFG)
and checks for loops and indirect jumps. Obfuscation routines often exhibit complex
loops and atypical branch patterns, detected through heuristics such as branch
density and indirect call frequency.

• String-specific heuristics. Dedicated indicators detect patterns strongly as-
sociated with string decoding: a MOV–XOR–MOV instruction sequence followed by
conditional or unconditional jumps; consistent immediate XOR keys indicative of
fixed-key XOR obfuscation; and calls to known string-related library functions like
strlen, strcpy, or memcpy.

• Entropy analysis. XOR immediate operands undergo Shannon entropy calcula-
tion. Lower entropy values (typically below 2.5 bits per byte) are characteristic of
meaningful ASCII or repetitive byte sequences, suggesting fixed-key XOR obfusca-
tion rather than truly random cryptographic encryption.

7



• Cryptographic heuristic detection. Detection of AES or RC4 decryption logic is
accomplished through identifying known cryptographic instructions (AESENC, AESDEC)
and RC4 key-schedule patterns (XCHG operations with constants like 0x100 or 256).

• SIMD instruction detection. Presence of vectorized instructions such as MOVAPS,
MOVDQA, and related SIMD instructions indicates potential cryptographic or opti-
mized data transformations, flagged explicitly within the heuristic indicators.

• Mixed-operation loops. Loops with a high density of mixed operations (e.g.,
XOR combined with arithmetic and bitwise operations) indicate complex deobfus-
cation logic often used to evade simpler heuristic detections.

These metrics, derived from extensive malware-analysis literature and practical reverse-
engineering experience, ensure comprehensive coverage of common and advanced obfus-
cation techniques.

3.3 Proposed Dynamic Analysis Integration

Deobfuscation Candidate functions, ranked and described via JSON, can be veri-
fied through dynamic analysis to confirm actual deobfuscation functionality. Tools like
PANDA (for micro-execution) or angr (for symbolic execution) can execute candidate
functions in isolation, verifying if decoded (deobfuscated) strings appear in memory. The
results of this either confirm decoding routines or prompt further manual string deobfus-
cation analysis.

4. Implementation

4.1 Dependencies

The implemented system depends upon several integrated technologies:

• Ghidra v11.3 provides disassembly, instruction semantics (P-code), and control-
flow analysis.

• Pyhidra v0.3 exposes Ghidra’s Java API directly in Python, allowing scripting
and automation for analysis.

• Python v3.12 handles the analytical computations (statistics, entropy calcula-
tions) and the structured data (JSON output).

• Dynamic analysis (not implemented) via angr and PANDA can be used for
automated confirmation of the candidate functions identified statically.
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4.2 Script Architecture

The implementation comprises two primary scripts:

4.2.1 Main Analysis Script (deobfuscation_analysis.py).

This file conducts the overall analysis:

1. Initializes the Ghidra project and loads the binary.

2. Iterates over all identified functions, forcing full disassembly if necessary.

3. Computes metrics via helper functions (count_non_zeroing_xor, is_loop_detected,
get_string_deobfuscation_indicators, compute_stats, etc.).

4. Calculates statistical summaries (mean, median, standard deviation) and assigns
z-scores.

5. Produces a structured JSON output summarizing function analysis results and out-
lying candidate functions (based on the highest z-score for each heuristic).

4.2.2 Helper Functions (deobfuscation_analysis_helpers.py).

This file contains the core heuristic computations and utilities; a few representative
functions include:

• Entropy calculations (e.g., compute_entropy) measure the randomness in XOR
keys.

• Control-flow analysis functions such as is_loop_detected and get_loop_blocks
determine loop existence and complexity.

• Heuristic indicators implemented in get_string_deobfuscation_indicators
detect specific decoding patterns, including instruction sequences, consistent XOR
keys, library calls, cryptographic operations, mixed loop operations, and SIMD
instructions.

4.3 Script Snippet

Listing 1 shows the Python helper function that counts non-zeroing XOR instructions.
1 def count_non_zeroing_xor ( instructions ):
2 count = 0
3 for instr in instructions :
4 if instr. getMnemonicString ().upper () == XOR_MNEMONIC :
5 op0 = instr. getOpObjects (0)
6 op1 = instr. getOpObjects (1)
7 if op0 != op1:
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8 count += 1
9 return count

10

Listing 1: Code snippet for counting non-zeroing XOR operations

This logic captures XOR instructions that modify rather than clear register values,
which is strongly indicative of obfuscation routines commonly reported in malware anal-
yses [6, 7].

4.4 Output Format and Interoperability

The structured JSON output generated contains:

• Metadata about the analyzed binary (file type, total functions).

• Overall statical results (mean, median, standard deviation) for each metric.

• Outlier functions with the highest z-score per metric.

• Per-function metrics and normalized z-scores.

• Program’s call graph.

4.5 Current Status and Planned Extensions

The static analysis framework, JSON output capability, and the curated labeled mal-
ware dataset are currently complete. Future extensions include:

• Dynamic confirmation integration. Automating the handoff from static to
dynamic analysis using tools such as angr and PANDA.

• Machine learning enhancement. Incorporating deep learning (CNNs) or large
language models (LLMs) to augment or replace heuristic-based ranking methods,
improving generalization across architectures and malware families.

This implementation provides a significant step toward a comprehensive, automated
deobfuscation analysis pipeline that combines the strengths of heuristic static analysis and
confirmatory dynamic execution, ultimately enhancing incident response capabilities.

5. Evaluation

This section describes how I assess the static deobfuscation pipeline on real malware
samples, presents quantitative results, and discusses key takeaways as well as future work.
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5.1 Experimental Setup

Dataset. I conducted this evaluation on six ground-truth binaries spanning Mach-O,
PE, and ELF formats. Each contains a single known deobfuscation function (Table 4).
Four additional unlabeled binaries (Pikabot_S1, Pikabot_S2, Mekotio, Mirai) were omit-
ted from quantitative metrics due to lack of certainty about their deobfuscation functions.

Ground truth. A JSON file (ground_truth.json) maps each project name to its true
deobfuscation function’s identifier (“<function_name> @ <entry_address>), matching
the identifier field in my analysis output.

Metrics.

• Detection rate (TP (True Positive) / (TP (True Positive) + FN (False Negative))):
the fraction of binaries where the true deobfuscation function appears among the
flagged candidates.

• False-positive rate (FP (False Positives) / (Total Functions – 1)): the fraction of
non-deobfuscation functions erroneously flagged.

• Runtime: the execution time of the static analysis script.

Environment.

• Hardware - MacOS v15.3.2 running on a 2.6GHz 6-Core Intel Core i7 CPU with
16GB RAM.

• Software - Ghidra v11.3, Pyhidra v0.3, Python v3.12.

Table 4: Malware samples and their ground-truth deobfuscation functions

Sample Function Identifier Format / Obfuscation Type

simple_deobs _deobfuscate @ 0x100000f25 Mach-O / fixed-key XOR
simple_deobs.exe _deobfuscate @ 0x401450 PE / fixed-key XOR
Darkside_S1.exe FUN_00404C84 @ 0x404C84 PE / 128-bit ARX cipher
Darkside_S2.exe FUN_0040209C @ 0x40209C PE / 16-byte ARX decryption
Lockbit_E_S2 FUN_004056D0 @ 0x4056D0 ELF / looped XOR variants
Amadey FUN_00403249 @ 0x403249 PE / fixed-key XOR

5.2 Evaluation Methodology

I automated this evaluation using a driver script (see Listing 2). For each sample, it:

1. Invokes deobfuscation_analysis.py with the sample’s file paths.

2. Records the analysis runtime.
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3. Loads the resulting JSON and extracts all “highest_zscores” (functions identified
as having some sort of deobfuscation behavior) as the predicted set.

4. Computes True Positives, False Negatives, and False Positives against the ground
truth.

1 def main ():
2 gt = load_ground_truth ( GT_PATH )
3 perfs , metrics = [], []
4

5 for sample in SAMPLES :
6 print(f"\n=== Evaluating { sample [’ project ’]} ===")
7 rt , out = run_analysis ( sample )
8 print(f" Runtime : {rt :.1f}s")
9 cands , total = extract_candidates (out)

10 stats = evaluate_sample ( sample [" project "], cands , gt , total)
11 stats[" runtime "] = rt
12 print(f" Detection rate: {stats[’DR ’]*100:.1f}% | False -pos

rate: {stats[’FPR ’]*100:.1f}%")
13 perfs. append (rt)
14 metrics . append (stats)
15

16 # Summary
17 avg_rt = mean(perfs)
18 avg_dr = mean(m["DR"] for m in metrics )
19 avg_fpr = mean(m["FPR"] for m in metrics )
20 print("\n=== Summary ===")
21 print(f" Average runtime : { avg_rt :.1f}s")
22 print(f" Average detection rate: { avg_dr *100:.1 f}%")
23 print(f" Average false - positive rate: { avg_fpr *100:.1 f}%")

Listing 2: Main function of the evaluation script

5.3 Results

Table 5 summarizes per-sample detection rate, false-positive rate, and runtime. Across
all six binaries, I achieve a perfect detection rate, false positives vary inversely with code
complexity, and static analysis completes in under 25s even on the largest sample.

5.4 Discussion

Strengths. My static analysis pipeline demonstrates several notable strengths:

• High accuracy on known deobfuscation functions. Across all six labeled samples
evaluated, the analysis consistently identified the correct decoding functions among
its top-ranked deobfuscation candidates. This perfect detection rate underscores
the soundness of my heuristic selection, especially for common obfuscation patterns
such as XOR-based encryption and loop-driven decoders.
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Table 5: Per-sample evaluation results

Sample #Funcs Runtime (s) Detection (%) False-pos (%)

simple_deobs 4 9.0 100.0 100.0
simple_deobs.exe 86 9.9 100.0 65.9
Darkside_S1.exe 149 12.4 100.0 45.3
Darkside_S2.exe 101 11.7 100.0 51.0
Lockbit_E_S2 774 22.1 100.0 54.2
Amadey 2 9.3 100.0 100.0

Average — 12.4 100.0 69.4

• Cross-format compatibility. Unlike many existing tools, my approach supports
Mach-O, PE, and ELF binaries without having to modify the heuristic rule-set
or implementation details. This format-blind design significantly broadens the ap-
plicability of my method, providing utility across diverse operating systems and
malware families.

• Practical runtime performance. The entire static analysis consistently completes in
under 25 seconds, even for relatively large samples containing hundreds of functions.
Such performance, demonstrated on typical commodity hardware (a 6-core Intel
Core i7 laptop), confirms that the pipeline is suitable for interactive usage and
rapid incident-response workflows.

Weaknesses. Despite these strengths, several important limitations emerged from this
evaluation:

• High false-positive rate, particularly in smaller binaries. In extremely small binaries
(e.g., the Amadey sample, with only two functions), my pipeline flagged all available
functions as potential decoders, resulting in a false-positive rate of 100%. Similarly,
mid-sized PE samples (such as the Darkside variants) also exhibited relatively high
false-positive rates ( 45–66%). This indicates that while heuristics effectively identify
decoding behavior, they currently lack sufficient specificity to exclude unrelated but
structurally similar functions.

• Dependence on Ghidra’s disassembly quality. My pipeline heavily relies on Ghidra’s
disassembly accuracy. Poorly disassembled or intentionally obfuscated binaries
could generate incomplete instruction streams, leading to incorrect heuristic scoring
and reduced accuracy. For example, binaries employing aggressive packers, anti-
disassembly techniques, or highly dynamic/self-modifying code could substantially
degrade the effectiveness of my current implementation.

Key Takeaways. The evaluation results highlight several critical insights about my
static pipeline’s practical application:
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• While my heuristics reliably detect true deobfuscation functions (with high accu-
racy), high false-positive rates remain a key challenge. This emphasizes the impor-
tance of complementing the static analysis with secondary validation methods, such
as dynamic execution or symbolic analysis, to efficiently validate or reject flagged
deobfuscation candidate functions.

• The lower false-positive rates observed in larger binaries suggest heuristic scores be-
come more discriminative as binary complexity increased. Small binaries inherently
have fewer functions and less diversity, thereby elevating the relative significance of
any heuristic matches. Adjusting heuristic sensitivity or introducing size-dependent
normalization could mitigate this issue.

• Cross-format support without the need for any modification is a major strength,
indicating my method’s general applicability. This suggests that future iterations
could benefit significantly from extending the corpus of known decoder functions
across a wider range of malware families and (de)obfuscation strategies.

Future Work. Based on these insights, several directions are clearly warranted to en-
hance the robustness and effectiveness of the pipeline:

• Integration with dynamic analysis tools. Incorporating automated micro-execution
or symbolic execution tools such as PANDA, angr, Qiling, or Unicorn would allow
rapid confirmation or rejection of potential candidate functions. Such an approach
would drastically reduce false positives by filtering the heuristic matches through
runtime behavior validation.

• Improved heuristic specificity. Leveraging machine learning approaches, such as su-
pervised classifiers or large-language models (LLMs), trained on a broader labeled
corpus of malware samples, could improve heuristic specificity and reduce false-
positive rates. Machine learning-based models could dynamically weight heuristic
indicators according to empirical feature relevance, thereby optimizing discrimina-
tion between true deobfuscation functions and benign segments of code.

• Adaptive heuristic weighting. Current heuristics operate under the same of assump-
tions across all binaries. Future iterations might employ adaptive weighting strate-
gies that factor in binary characteristics, such as binary size, code complexity, and
instruction set architecture, to dynamically adjust heuristic thresholds and relevance
scores.

• Expanding ground-truth corpus. Building a more extensive labeled dataset, encom-
passing diverse obfuscation types (e.g., custom block ciphers, metamorphic mal-
ware), would further improve heuristic calibration. A more comprehensive dataset
would not only refine existing heuristics but also facilitate the creation of novel
indicators tailored explicitly to emerging obfuscation strategies.
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• Enhanced resilience against anti-analysis techniques. Improving my heuristic robust-
ness against adversarial methods, such as control-flow flattening and anti-disassembly
patterns, represents a crucial future direction. Techniques like IR-based analysis or
hybrid static-dynamic disassembly approaches could help overcome some current
limitations stemming from disassembly incompleteness.

Altogether, the combination of high accuracy, broad applicability, and practical run-
time demonstrates strong initial promise. However, significantly reducing false positives,
integrating dynamic verification, and refining heuristic adaptability remain critical steps
toward building a truly comprehensive and robust automated deobfuscation pipeline.

6. Conclusion

In this paper, I introduced an automated, static analysis framework designed to sys-
tematically detect and extract string deobfuscation functions within malware binaries.
By leveraging a diverse set of heuristic indicators and employing statistical ranking tech-
niques, the developed pipeline demonstrated effective and consistent identification of true
decoder functions across multiple executable formats. The evaluation conducted on a
representative set of labeled malware samples yielded high accuracy, ensuring all true de-
obfuscation routines were correctly flagged among top-ranking candidates. Additionally,
the practical runtime observed (under 25 seconds per binary) validated the approach’s
suitability for real-world incident response workflows.

Despite these strengths, the high false-positive rate, particularly apparent in smaller
binaries, highlights critical areas for improvement. Dependence on Ghidra’s disassem-
bly accuracy underscores vulnerabilities to adversarial obfuscation methods like packing
and anti-disassembly techniques. Future work will directly address these limitations by
integrating automated dynamic validation methods such as micro-execution (via PANDA
or similar tools) and symbolic execution (angr) to quickly and reliably confirm or re-
ject candidate functions identified statically. Furthermore, refining heuristic specificity
through machine-learning-based models trained on a broader, diversified ground-truth
corpus will significantly improve accuracy. To this point, this research marks a significant
advancement toward a unified, robust pipeline for malware string deobfuscation.

Availability

The Deobfuscation Candidate Finder is available at: https://github.com/KelsieEdie/
Static-String-Deobfuscation-Function-Detection/
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