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Chapter 1

Introduction

Reconstructing 3D dynamic scenes from one or more videos is a difficult problem in computer vision, with motiva-

tion in content creation, robotics, and other downstream tasks. Progress in novel view synthesis and scene recon-

struction has accelerated recently with neural field-based representations mixing with more classical ones to im-

prove reconstruction quality. In particular, the many variations of Neural Radiance Field [23] have demonstrated

remarkable rendering quality. Dynamic scenes pose a more challenging problem than static ones, and neural field

models have been developed for this setting as well. These methods, however, still lack the ability to represent

long sequences and often take hours or days to optimize. Existing dynamic models also do not support rendering

at interactive framerates, which is required for applications like virtual reality. In our previous work [2], optimiza-

tion and rendering speed were both orders of magnitude slower than interactive rates. Additionally, we found

that longer, more complex scenes or those with small camera baselines were difficult for the model to reconstruct.

Given these current limitations, it is our belief that at the core of representing a dynamic scene efficiently is an

understanding of the objects thatmake it up. Wepropose three approaches that integrate object-level information

into a hybrid scene representation. Our first approach uses a point cloud-based representation and develops the

notion of object clusters of points thatmove together over time. Instead of representing scenemotion as the output

of a neural network, we use a rigid transformation for each cluster at each timestep. This makes our representation

compact and easy to convert to a format that can be quickly rendered for interaction. Our second approach builds

on the first but uses a NeRF instead of a point cloud as the underlying representation. Cluster assignment is still

based on pretrained features, but instead of baking these clusters into the point cloud, they are parameterized

by a network that is optimized simultaneously with geometry and appearance. The network outputs can still be

translated into an explicit representation if desired, but the NeRF-first approach allows us to capitalize on the

benefits of NeRF and similar methods. For each of these two approaches we generate preliminary results on a sam-

ple dynamic scene dataset. We make limiting assumptions about the dynamic scenes that we can represent, but

these types of scenes do exist in the real world and further development would hopefully alleviate the limitations.

The final approach we propose focuses on discerning foreground objects in dynamic scenes. We augment

Neural Scene Flow Fields (NSFF) [19] with semantic and attention feature heads that allow us to propagate

object level information into the dynamic neural field. These semantic and attention features come from

DINO-ViT [4], a pretrained transformer model, and are improved through semantic feature pyramids. After
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volume integration, we perform saliency aware clustering to disentangle the important objects in the scene from

the background. The knowledge of where salient objects are in space and time allows us to more easily develop

a representation like the two previously described. The three approaches together provide a promising direction

for representing dynamic scenes with a more object-centric model.



Chapter 2

Related Work

Scene reconstruction and novel view synthesis (NVS) are long-standing problems in computer vision for both

static and dynamic scenes. Decomposing scenes into the objects that make them up has also been an area of

study for researchers. The introduction of Neural Radiance Fields (NeRFs) has had an outsized impact on

the field, and we focus on the work accomplished in this area.

2.1 Dynamic NeRFs

Since the introduction of NeRFs, much progress has been made on adapting the basic representation to work

for dynamic scenes. Many approaches accomplish this by optimizing the NeRF at a static point in time and

simultaneously learning a mapping for 3D points from other timesteps into that canonical “frame.” These

deformation-based methods include D-NeRF [29], NR-NeRF [43], and Nerfies [26]. VideoNeRF [50] optimizes

a latent code per-frame to capture time varying information that is passed along with positional information

to the network. NSFF [19] and NeRFlow [7] use scene flow to regularize a dynamic NeRF network. Raising the

coordinate space to a higher dimension has been shown to improve reconstruction quality by HyperNeRF [27].

Additionally, in our previous work, we showed that time-of-flight information can be used to improve geometric

reconstruction in scenes with little camera motion [2].

Another whole direction of research is the reconstruction of dynamic humans using NeRF-based methods.

These methods use prior information about human bodies and their motion constraints to aid in reconstruction

[30] [25] [47] [39] [28] [11].

In contrast to these methods, we focus on learning an object-centric representation that encodes scene

motion as explicit object transforms. Our representation is easily converted to other representations that can

be quickly rendered, which is not the case for prior work.

2.2 Efficient NeRFs

Significant progress has been made in making NeRF optimization and rendering more efficient. One promising di-

rection is baking parts of the NeRF into representations that can bemore quickly rendered [14] [6]. FastNeRF [12]
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caches the radiance output in a manner that can be efficiently queried at render time. Other approaches attempt

to limit the number of network queries altogether. [36] represents the scene as a light field so that rays can

be rendered with a single network evaluation. NSVF [21] creates a sparse voxel grid that eliminates the need for

network queries in empty space. Finally, KiloNeRF [33] optimizes thousands of tiny MLPs such that each MLP

can represent a small region of the volume with a much smaller number of parameters and computation time.

The most effective method for improving the efficiency of implicit scene representations has been to use

a hybrid approach. Several methods store features on a voxel grid that are then used to speed up the final

rendering of the scene. DirectVoxGo [40] directly optimizes a voxel grid representation, while Plenoxels [34] and

PlenOctrees [55] encode appearances using spherical basis functions within the voxel grid. A multiplane image

can also be used as an underlying data structure in place of a voxel grid [48]. While these works greatly improve

computation time, they come at an increased memory cost, which other methods have worked to alleviate.

Instant NGP [24] uses a multiresolution hash grid to reduce memory cost at higher feature grid resolutions. [41]

uses a dictionary based approach for multiresolution stored features. Tensor factorization of the voxel grid is

also a viable direction for reducing memory cost [5]. TiNeuVox [9] works to incorporate the benefits of a hybrid

approach into the dynamic NeRF setting.

Our method builds on the hybrid approach, but for dynamic scenes which have had minimal exploration

in this area. We take it a step further than TiNeuVox by using a non-neural representation for scene motion

in addition to the underlying geometry and appearance.

2.3 NeRFs with semantics and object-level information

NeRFs [51] have also spurred new scene decomposition research through volumes. ObSuRF [38] and uORF [56]

are unsupervised slot attention works that bind a latent code to each object. Unsupervised decomposition

is also possible on light fields [37]. For dynamic scenes, works like NeuralDiff [45] and D2NeRF [49] focus on

foreground separation, where foreground is defined to contain moving objects. Other works like N3F [44] and

occlusions-4d [15] also decompose foregrounds into individual objects. N3F requires user input to specify which

object to segment, and occlusions-4d takes RGB point clouds as input.

Other methods have integrated semantic information directly into the neural field. iLabel [57] adds a

semantic head to propagate user-provided segmentations in the volume, while DFF [16] integrates pretrained

features into the volume. PNF [18] and Panoptic-NeRF [10] attempt panoptic segmentation within neural

fields, and Object-NeRF integrates instance segmentation masks into the field during optimization [52].

Another class of works reconstructs human bodies using body part-level information. ANR [30], NARF [25],

HumanNeRF [47], and [39] use an articulation model to reconstruct people in motion. Neural body [28] and

[11] use learnable codes for novel view synthesis of human bodies and faces, respectively. Vid2Actor [46] creates

an implicit animatable person model from video.

Our work builds on the methods that integrate object-level information into the neural field, but does so

in the dynamic setting. We do so by adding semantic features directly to the field, as introduced by other works.

We also generalize to settings beyond just human bodies.



Chapter 3

Point Cloud-Based Cluster Model

3.1 Motivation

To represent longer videos with a method that allows for fast rendering and “online” optimization, we first

devise a method involving a discrete clustering of the scene. To make the space-time novel view synthesis

problem easier, we make critical assumptions that objects in the scene we reconstruct are non-deformable, move

by rigid transformations, and do not change in appearance over time. These are limiting assumptions, but they

give us a starting point to build from.

Given the premise of a scene comprised of rigid objects, we simplify the reconstruction task to three subtasks

that give us the ability to represent the scene at any timestep:

1. Represent the scene statically at a certain “canonical” timestep.

2. Segment the scene at that canonical timestep into clusters at least approximately corresponding to the

objects in the scene.

3. Determine the rigid transformations for each object from the canonical timestep to each other timestep.

With this set of information, we can morph our canonical frame representation into a representation of the

scene at any timestep. This representation has other benefits (and drawbacks) that we will discuss.

3.2 Method

3.2.1 Static canonical frame representation

The first task we tackle is representing the scene statically in the canonical timestep. To keep things simple,

the canonical timestep will be the first frame of our video sequence unless otherwise noted.

The first canonical frame representation we use is a NeRF, F ∗ : (x,d) → (c, σ) which maps a 3D position

x = (x, y, z) and viewing direction d = (θ, ϕ) to a color c = (r, g, b) and density σ. To render an image using

this representation we query the network at several points along each ray and accumulate the color values based
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on the scene density at each point. The second canonical frame representation we use is a point cloud P where

each point consists of a 3D position (x, y, z) and a color value with transparency (r, g, b, a). To render an image

using this representation, we use standard rasterization techniques.

3.2.2 Scene segmentation

Next, we devise a representation for our segmentation of the scene into clusters that move together over time.

We assume here that there are c clusters in the scene.

The first representation we use is voxel-based. For each voxel in a predefined volume, we define a cluster

assignment vector a = (a1, . . . , ac), where aj ∈ [0, 1] is the weight with which the voxel is assigned to cluster

j. The second representation adds cluster assignments directly to our point cloud P . In addition to 3D position

and RGBA color, each point now contains a cluster assignment vector a as defined above.

In practice, these representations are similar or even the same. If the points in the point cloud are chosen

to lie on a 3D grid with the same number of subdivisions as the voxel grid, the cluster assignment vectors will

be the same for each corresponding point and voxel.

3.2.3 Cluster transformations

The final piece of our dynamic scene representation is a parameterization of motion over time. For each timestep

i and cluster j, we define a rigid transformation T i
j : x∗

j → xi
j that maps a point from cluster j in the canonical

frame to its position at timestep i. Under the hood these transformations are parameterized by translation

vectors tij ∈ R3 and rotation vectors rij ∈ SO(3).

3.2.4 Rendering the scene

With these three components in place, we are able to render the scene from any viewpoint and timestep. For ren-

dering we will assume that we are using the point cloud representation for the canonical frame and segmentation.

The first step in rendering at timestep i is to transform the points in our canonical frame point cloud P to

their position at timestep i. For a given point p with position x and cluster assignment vector a = (a1, . . . , ac),

we compute its position at timestep i as the mean of x transformed as if it were part of each cluster, weighted by a:

xi =
1

c

c∑
j=1

ajT
i
j (x) (3.1)

The resulting point cloud after mapping each point’s canonical frame position x∗ to xi is then easily rendered

using rasterization techniques. In practice we use PyTorch3D’s point cloud renderer[32].

3.2.5 Building the representation

Now that we’ve defined the dynamic scene representation and how to render from it, we provide a process for

building it using images over time. The first step is to learn the canonical scene representation. For this, we opti-

mize the canonical NeRF F ∗ using images of the scene from the canonical frame. Because the representation that
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Figure 3.1: Sample images and depth maps from our Unity dataset. Images of the scene from the
canonical frame (left, center) and frame 6 (right).

we ultimately render from is the point cloud P , we then sample the optimized NeRF along a 3D grid, with the the

point p at position x’s (r, g, b, a) values corresponding to the color c and density σ obtained from evaluatingF ∗(x).

To get our cluster assignment vector a for each point, we first add a feature reconstruction head to our NeRF

model. For each input image, we compute a semantic featuremap using the pretrained self-supervised transformer

model DINO-ViT [4]. We then add an additional output to our NeRF to reconstruct these semantic features:

F ∗ : (x,d) → (c, σ, f). At our point cloud sampling step we can then append a feature vector f to each point p.

To turn these features into cluster assignment vectors, we perform k-means clustering on a weighted

combination of 3D position and feature vectors. We use this clustering to define a for each point as a one-hot

vector assigning the point fully to the cluster centroid it lies closest to.

The final piece of our representation to build from data is the rigid cluster transformations. To this point

we have only considered images (and corresponding semantic feature maps) from the canonical frame. Now

we consider images from subsequent timesteps, and assume that we have camera parameters and at least rough

depth maps for each frame. For each pair of adjacent frames in the video sequence, we estimate optical flow

using RAFT [42].

To compute the transformation from a frame i where we have the transformations T i
j to frame i+ 1 where

we do not, we use the optical flow, camera parameters, and depths from the adjacent frames. We backproject

the pixels from each frame to 3D points using the camera parameters and depth maps and then compute the

corresponding 3D scene flow from timestep i to timestep i+ 1 using the estimated optical flow. These back-

projected points can then be assigned to clusters using the centroids from our k-means clustering (transformed

by the known T i
j ). For each cluster j, we fit a transform T i→i+1

j that best represents the scene flow of the

backprojected points assigned to cluster j from timstep i to timestep i+ 1. The transform for cluster j from
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Figure 3.2: Sample results from the base representation Ground truth rendering of the scene from
frame 11 (left) and the rendering from the point cloud (center). There are significant errors around the black
object that has moved off of the desk. The cluster for the object (right) includes a large piece of the desk, which
then moves based on the estimated object transforms.

the canonical frame to timestep i+ 1, T i+1
j , is then simply T i→i+1

j ◦ T i
j .

Determining the cluster transforms for timestep i+ 1 relies on knowing the transforms for timestamp i,

so we build the transforms iteratively, starting with the canonical frame for which we constrain the transforms

to be the identity. Because the optical flow estimates are not perfect, if the estimated transform for a cluster

j from frame i to i+ 1 is small enough, we assume that the cluster has not in fact moved and set T i+1
j = T i

j .

These transforms are based on estimated optical flow and error can be accumulated over the video sequence

because of the iterative computation process. This means that the transforms may require finetuning. We

optimize the transforms using gradient descent, minimizing the RGB reconstruction loss when rendering frames

of the video sequence using our scene representation and PyTorch3D’s differentiable point cloud renderer.

3.3 Experiments

We perform a number of exploratory experiments to investigate the capabilities of our dynamic scene repre-

sentation and possible additions to the model.

3.3.1 Unity dataset

To evaluate our representation, we first created a dataset of images and depth maps using Unity, shown in Figure

3.1. The sequence contains 24 images of the scene in the canonical frame followed by 1 image of the scene for

each of 12 subsequent timesteps in which one of the objects in the scene moves. We also render depth maps and

save camera parameters for each of the 36 images. The dataset capture script can be used with any Unity scene.

3.3.2 Model investigation results

We perform a number of investigations to attempt to improve performance of the base representation as

previously defined. We begin with results using the base representation, point out limitations, and describe

our attempts to ameliorate the limitations.

Results from the base model. Example results using the method for building the representation defined
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Figure 3.3: Cluster transform optimization using PyTorch3D Ground truth rendering (left), our base
model rendering (center), and error (right) before (top) and after (bottom) optimizing cluster transforms using
PyTorch3D’s differentiable point cloud renderer. The black moving object is better aligned to the ground
truth after optimization.

previously can be found in Figure 3.2. The biggest limitation of the base method is that the k-means clustering

is inherently naive and does not accurately capture object boundaries. This is especially apparent when objects

are in contact with each other in the canonical frame, like the moving black object and desk in our Unity dataset.

The DINO-ViT supervised feature vectors assigned to each point are by definition unconstrained in regions of

the volume that are not directly projected into any of the input images. This means that the interior regions of

the desk and black object have unconstrained feature vectors which results in the poor clustering performance

we see in Figure 3.2, right.

Figure 3.3 shows the benefits of using gradient descent to optimize the cluster transforms that are initially

estimated from optical flow. For these results, the moving cluster is manually adjusted to not include points

from the desk.

Results after culling erroneous cluster points using projection. We now attempt to remove

erroneous points from the moving cluster to improve reconstruction performance. The key insight is that when

reconstructing an input image, the points that are erroneously included with a moving cluster will project into

a region of the image where the optical flow is not consistent with the motion of the cluster.

More specifically, for an input image and corresponding optical flow map from a given frame i, we first render

a corresponding image using our representation. We also render an image mapping each pixel to the point in P
that it was rendered from. Given a cluster j that is moving at time i, we find all pixels that were rendered using

points from the cluster. For each of the pixels that have magnitude of optical flow below a certain threshold,

we remove the points from j and merge them into the next closest cluster. By repeating this process, we remove

all points that are visible that do not project into a region of non-negligible optical flow. Figure 3.4, bottom
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Figure 3.4: Optical flow offers an opportunity to remove erroneous points from moving clusters
In the rendering from our base model, the moving cluster includes a number of erroneous points (top left).
The magnitude of optical flow (top right) from this frame gives us a mask to cull away the erroneous points
from the cluster. After culling away the points that project into regions of the flow that are inconsistent with
the motion of the cluster, we see improved reconstruction (bottom right).

right, shows the cluster for the black object before and after this cluster culling.

Results after culling erroneous cluster points using fitted planes. As can be seen in Figure 3.4,

even after culling points using projection and optical flow, there are still erroneous points in the cluster. The

next proposal is to fit planes to the boundaries between objects and use the planes to remove points from the

clusters. For example, in our Unity dataset, the black object initially lies on the desk. The boundary between

the desk and object is the plane defined by the surface of the desk. From the canonical frame NeRF, we have

a good model of the scene in the canonical frame. Points that are part of the contact area between two objects

in the canonical frame will not be visible until one of the objects move. Therefore, in the canonical frame, they

are “interior” points of the point cloud, meaning all adjacent points are not transparent. If “interior” points

of the point cloud are revealed in subsequent frames, they lay on an object boundary. We accumulate these

points over several frames and fit planes using RANSAC. We then use these planes to adjust the clustering.

Direct optimization of cluster assignment vectors. We also tried using gradient descent to optimize

each point’s cluster assignment vector directly using image reconstruction loss. This was largely unsuccessful,

as the reconstruction signal was not strong or directed enought to force erroneous points into adjacent clusters.

3.4 Discussion

The explicit clustering dynamic scene representation shows some promise for representing scenes with rigid

objects, but has clustering limitations that bring its viability into question. Setting aside the intentionally
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imposed assumptions, the reconstruction quality on an applicable scene, our Unity dataset, is poor because of the

underlying point cloud representation and the lackluster clustering performance. While we can improve the initial

clustering with our projection culling and plane culling approaches, they are more of hacks than real solutions to

the underlying problem. During NeRF optimization, gradient descent by definition continually improves recon-

struction quality. Here, however, there is no feedback loop to improve clustering other than our culling methods.

The clusters we have are taken mostly “as is” and therefore limit model performance. To combat these issues,

we turn instead to a model that uses NeRF as its core representation and clusters objects using a neural field.



Chapter 4

ClusterNeRF

4.1 Motivation

Neural fields have shown a remarkable ability to learn complex functions. Rather than extract information

from an initial NeRF representation into a point cloud-based one one, we now attempt to morph a standard

NeRF-based representation into one that resembles our explicit one. One problem that plagues most neural

fields-based methods is optimization time. While Instant NGP [24] and other methods have shown significant

improvements in this area, dynamic NeRFs are still relatively slow to optimize. We investigate a neural field

model with this in mind. Even if optimization is slower in this setting, rendering and incorporating information

from subsequent timesteps could theoretically still happen at interactive speeds.

4.2 Method

4.2.1 ClusterNeRF Representation

Again, we wish to represent a 3D scene at every frame i ∈ {1, . . . , t}, where t is the number of observed frames

in time. The first piece of our representation is still a NeRF that represents the scene in the canonical frame,

i∗. The modified NeRF is a function F ∗ : (x,d) → (c, σ) which maps a 3D position x = (x, y, z) and viewing

direction d = (θ, ϕ) to a color c = (r, g, b) and density σ. The ∗ superscript denotes that a function (F ∗ in this

example) represents the scene in the canonical frame.

We also use the same notion of clusters–sets of points in the canonical frame that move together over time.

Given a scene with c clusters, we now define an assignment function A∗ : x → a that maps a 3D position

x = (x, y, z) to a cluster assignment vector a = (a1, . . . , ac) where aj ∈ [0, 1] is the weight with which the point

x is assigned to cluster j.

Finally, we use the same transforms as our explicit model, with T i
j : xi

j → x∗
j being the function that

transforms a 3D position xi
j in frame i to its corresponding 3D position in the canonical frame if it were part

of cluster j. T ∗
j , the transforms for clusters in the canonical frame, are constrained to be the identity.

Rendering an image with this formulation is similar to rendering a NeRF. Given a camera pose and a frame i,

12
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points are sampled and accumulated along rays emanating from the camera center. For a NeRF, at each sample

point x and corresponding viewing direction d, the color and density are determined by a single evaluation of

F ∗. In our method, however, we must account for the possibility that at frame i, any cluster j may have moved

to occupy space containing the sample point x. Therefore, for each cluster, we query the network at x’s position

in the canonical frame if it were part of cluster j, with this position being represented by T i
j (x). We take the

weighted average of F ∗ evaluated at each of these c positions based on the corresponding evaluation of A∗:

F i(x,d) =

c∑
j=1

A∗(T i
j (x))jF

∗(T i
j (x), T

i
j (d)))

c∑
j=1

A∗(T i
j (x))j

(4.1)

A∗(· · · )j denotes the jth value in the resulting a vector when evaluating A∗. These F i(x) values are then

accumulated along each ray using the same method as standard NeRF to render images from any frame.

4.2.2 Building the representation

Unlike NeRF, optimizing our representation cannot be achieved using just reconstruction loss over a set of RGB

images. Therefore, we propose the following method for optimizing F ∗, A∗, and the parameterized values of

T i
j for each cluster and frame.

Similar to building our explicit representation, we take as input a set of images of the scene with corresponding

depth maps, and estimate optical flow between adjacent frames. We then use existing methods to estimate

a segmentation of each image into the objects we would like to be represented by different clusters. This can

be done using classical methods similar to the ones we use in our explicit model or deep learning approaches.

For our initial experiments on basic data, we simply use k-means clustering on the RGB images of the scene.

We could also use the same method we use to estimate T i
j in our explicit model for our NeRF-based model,

but for initial experiments we just initialize all T i
j to be the identity.

Learning the representation is more tractible now with supervision for A∗. We optimize the model using

reconstruction loss over the RGB images and clustering masks. Each T i
j function is parameterized by a cluster

center, a rotation, and a translation vector, which are directly optimized using gradient descent. The canonical

NeRF F ∗ and assignment function A∗ are hybrid models based on the approach of Instant NGP.

To avoid baking error from the estimated cluster masks, we decay the loss from reconstructing the masks

over time.

4.3 Experiments

4.3.1 D-NeRF dataset

For our initial experiments, we use a simple bouncing ball example provided by the authors of D-NeRF [29].

The sequence consists of three balls that bounce on a surface and is captured from several viewing angles over

150 input images, a few of which are shown in Figure 4.1.
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Figure 4.1: Sample images from the D-NeRF bouncing balls dataset. The figure contains 150 images
of the scene as the balls bounce on the white surface.

Figure 4.2: Sample results from our implicit model. These images are rendered from novel viewpoints
at three different timesteps.

4.3.2 Results

We optimize the model as described and show key results that suggest the assignment function is performing

relatively well. Figure 4.2 shows renderings from our model of the scene at novel views and different times. The

results are slightly fuzzy and there are errors in the shadows, but the model’s renderings are fairly accurate.

Importantly, the motion of the balls is correct in the reconstruction.

To investigate the quality of the assignment function A∗, we produce two additional sets of results. In the

first set, shown in Figure 4.3, we use A∗ to render the scene without one of the balls. The blue ball is removed

from the scene, but there are some ghosting artifacts. The shadow cast by the blue ball is not part of its cluster,

which leads to an inconsistent scene when deleting the ball.

Results from our second investigation are shown in Figure 4.4. Here, we render the scene with just one of the

clusters moving. To do this, we fix all other clusters’ transforms to be T ∗
j while cycling through the transforms

for the cluster containing the green ball. We see similar results to the removal experiment. There is some

ghosting where the green ball was in the canonical frame, and the shadow does not move to reflect the motion of

the ball. The model does successfully reconstruct the deformation of the ball when it bounces. We hypothesize

that the model assigns parts of the ball “softly” to multiple clusters, meaning that the assignment vector a
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Figure 4.3: Implicit model results without a cluster. Points assigned to the cluster for the blue ball
are rendered as transparent.

Figure 4.4: Results from our implicit model moving one cluster individually. The transforms for
the red and blue ball clusters are held constant while the green ball’s transform is varied over time. These
images are rendered from novel viewpoints.

would have multiple non-zero components as opposed to being a “one-hot” vector. This could theoretically

allow our model to represent more complex non-rigid objects.

4.4 Discussion

Our ClusterNeRF model produces generally higher quality results than the explicit one, albeit with a few

caveats. First, the dataset is different in the two sets of experiments. While the increase in quality from using a

NeRF-based method vs. a point cloud is expected and would likely carry over to different datasets, it is possible

that our model would fail to estimate the motion or clustering of the scene.

For the D-NeRF dataset we use for experiments, estimating cluster masks is easy, given that the objects

in the scene are monochromatic and distinctly colored. Initial experiments suggest that cluster masks can be

estimated for other scenes like our Unity dataset, but we have not conducted enough testing to suggest this

is broadly true. The model does have some ability to overcome error in the masks by using RGB reconstruction

loss as a stronger signal.

Overall, ClusterNeRF seems promising for representing dynamic scenes with rigid objects. It is also easy to



16

update with information from new frames. By simply estimating a new transform for each cluster, the scene could

be rendered from the new timestep without any gradient descent updates. The representation can also be easily

converted into an explicitmodel that is easy to render at interactive framerates. For example, each cluster could be

converted to a separatemesh that would be rendered using the transforms and standard rasterization techniques.



Chapter 5

Semantic Attention Flow Fields

5.1 Motivation

Thus far, we have designed methods that rely heavily on a clustering of the scene into objects that move together,

but we have yet to focus on dynamic scene decomposition as the core problem. We wish to discern the salient

objects in a dynamic scene from the background. Existing methods make limiting assumptions about the input

data, but we choose to work with casually captured monocular video to support the broadest spectrum of

possible applications. This problem is inherently tied to the efficient scene reconstruction problem our explicit

and implicit cluster-based methods have attempted to solve. A good dynamic scene decomposition would be

invaluable in optimizing our ClusterNeRF representation.

5.2 Method

For a baseline dynamic scene reconstruction method, we begin with NSFF from Li et al. [19] (??). Its low-level

scene flow frame-to-frame approach provides better reconstructions for real-world casual monocular videos

than deformation-based methods [43, 27]. We modify the architecture to integrate higher-level semantic and

attention (or saliency) features (section 5.2.1). After optimizing a SAFF for each scene, we can extract 3D

object representations and perform saliency-aware clustering of the field (section 5.2.3).

Input Our method takes in a single RGB video over time i as an ordered set of images I ∈ I and camera

poses. We use COLMAP to recover camera poses [35]. From all poses, we define an NDC-like space that bounds

the scene, and a set of rays r ∈ R, one per image pixel with color ĉ†. Here, ·̂ denotes a 2D pixel value in contrast

to a 3D field value, and ·† denotes an input value in contrast to an estimated value.

From pretrained networks, we estimate single-frame monocular depth d̂† (MiDaSv2 [31]), optical flow

p̂†
i (RAFT [42]), and semantic features ŝ† and attention â† (DINO-ViT [4]) after important preprocessing

(section 5.2.2).

17
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5.2.1 Semantic Attention Flow Fields

NSFF has only integrated low-level or bottom-up features into the field to represent a video. However, high-level

or top-down features are also useful in defining objects and helping down-stream tasks like segmentation. For

example, static/dynamic blend v estimates whether the volume appears to be occupied by some moving entity,

but this is not the same as objectness.

As such, we extract 2D semantic features and attention (or saliency) values from a pretrained DINO-ViT net-

work, then optimize the SAFF such that unknown 3D semantic and attention features over time can be projected

to recreate their 2D complements. This helps us to ascribe semanticmeaning to the volume and to identify objects.

To estimate semantic features s and attention a at 3D points in the volume at time i, we add two new heads

to both the static F st
θ and the dynamic F dy

θ networks:

F st
θ : (x,ω) → (. . . , sst,ast) (5.1)

F dy
θ : (x,ω, i) → (. . . , sdyi ,adyi ) (5.2)

Here, . . . is used as a placeholder for the outputs from the original NSFF static and dynamic networks. i is

the timestep we are querying. As semantic features have been demonstrated to be somewhat robust to view

dependence [1], in our architectures both heads for s,a are taken off the backbone before ω is injected.

To render semantics and attention from the volume, we replace the color term while volume rendering

with s,a. To encourage the flow to respect semantic features and attention over time, we penalize flow losses

complementary to the flow loss on color reconstruction from NSFF. Finally, to supervise the two extra heads,

we add respective losses on the reconstruction of the 2D semantic and attention features from projected 3D

volume points (R is the set of rays we render):

Lŝ =
1

|R|
∑
ri∈R

||ŝi(ri)− ŝ†i (ri)||
2
2 (5.3)

Lâ =
1

|R|
∑
ri∈R

||âi(ri)− â†i (ri)||
2
2 (5.4)

Unlike depth and scene flow priors, these are not priors—there is no self-consistency for semantics to constrain

their values. Thus, we do not decay their contribution. While decaying avoids disagreements between semantic

and attention features and color-enforced scene geometry, it also leads to a loss of useful meaning.

These additional loss terms based on semantics and attention are added to all loss terms from NSFF.

5.2.2 Semantic Attention Pyramids

When thinking about scenes, we might argue that semantics from an ideal extractor should be scale invariant,

as distant objects have the same class as close objects. We might also argue that saliency (or attention features)

may not be scale invariant, as small details in a scene should only be salient when viewed close up. In practice,

both extracted features vary across scale and have limited resolution, e.g., DINO-ViT [4] produces one output

for each 8 × 8 patch. But, from this, we want semantic features and saliency for every RGB pixel that still

respects scene boundaries.

Thus far, work on static scenes has ignored the input/feature resolution mismatch [17] as multi-view

constraints provide improved localization within the volume. For monocular video, this approach has limitations
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(a) Input (b) Semantics (c) Semantics (volume) (d) Saliency (e) Saliency (volume)

(f) Pyr. semantics (g) Our pyr. semantics (volume) (h) Pyr. saliency (i) Our pyr. saliency (volume)

Figure 5.1: Semantics and saliency improve by both volume integration and by our pyramid. On
Balloon NBoard , resolution is increased and unwanted saliency is softened. Semantics are visualized as most
significant three PCA dimensions; specific colors are less meaningful.

[44]. Forming many constraints on dynamic objects requires long-term motion correspondence—a tricky task—

and so we want to maximize the resolution of any input features where possible without changing their meaning.

One way may be through a pyramid of semantic and attention features that uses a sliding window approach

at finer resolutions. Averaging features could increase detail around edges, but we must overcome the practical

limit that these features are not stable across scales. This is especially important for saliency: unlike typical

RGB pyramids that must preserve energy in an alias-free way [3], saliency changes significantly over scales and

does not preserve energy.

Consider a feature pyramid P with loss weights per level:

LP ŝ =
∑
i∈P

λi
ŝLi

ŝ LPâ =
∑
i∈P

λi
âLi

â (5.5)

Naively encouraging scale-consistent semantics and whole-image saliency, e.g., λŝ = {1/3, 1/3, 1/3} with λâ =

{1, 0, 0}, empirically leads to poor recovered object edges because the balanced semantics and coarse saliency

compete over where the underlying geometry is. Instead, we weight both equally λŝ = λâ = {1/9, 4/9, 4/9}.
Even though the coarse layer has smaller weight, it is sufficient to guide the overall result. This balances high

resolution edges from fine layers and whole object features from coarse layers while reducing geometry conflicts,

and leads to improved features (fig. 5.1).

Of course, any sliding window must contain an object to extract reliable features for that object. At coarse

levels, an object is always in view. At fine levels, an object is only captured in some windows. Objects of

interest tend to be near the middle of the frame, meaning that boundary windows at finer pyramid levels contain

features that less reliably capture those objects. This can cause spurious connections in clustering. To cope

with this, we relatively decrease finer level boundary window weights: We upsample all levels to the finest level,

then increase the coarsest level weight towards the frame boundary to λŝ = λâ = {1/3, 1/3, 1/3}.

5.2.3 Using SAFF for Saliency-aware Clustering

We now wish to isolate salient objects. Even in dynamic scenes, relevant objects may or many not move,

meaning that analysis of dynamic elements is not sufficient (cf. [49]). We expand the 2D clustering of Amir



20

(i) Input frame (a) Our pyr. sem. (volume) (b) Sem. clustering (pre-merge) (c) Salient clusters (pre-merge) (iii) Extraction (fixed time)

(ii) Input semantic/attention (d) Our pyr. saliency (volume) (e) Our merged clustering (f) Our final foreground (iv) Extraction (fixed view)

Figure 5.2: Saliency-aware clustering improves decomposition. On Dynamic Face, the head and body
are semantically and saliently different, but are mutually different from the background. This allows us to
segment objects cleanly and extract a time-varying 3D field of the object.

et al. [1] to cope with volumes; this allows segmenting novel spatio-temporal views. Even though DINO-ViT

features are trained on images, they have been shown to represent saliency over time in videos [4].

Some works optimize a representation with a fixed number of clusters, e.g., via slot attention [22] in

NeRFs [38, 56]. Instead, we cluster on 2D volume projections using elbow k-means, letting us adaptively find

the number of clusters after optimization. This is more flexible than baking an anticipated number of slots

(sometimes with fixed semantics), and lets us cluster and segment in novel spatio-temporal viewpoints.

For N input poses, we render semantics (N×H×W×64) and saliency (N×H×W×1) from the SAFF,

and treat each pixel as a feature point. Then, we cluster all pixels together using elbow k-means to produce

an initial set of separate regions. For each cluster c, for each image, we calculate the mean attention of all pixels

within the cluster āc. If āc > 0.07, then this cluster is salient for this image. Finally, all images vote on saliency:

if more than 70% agree, the cluster is salient.

Salient objects may still be split into semantic parts: e.g., in fig. 5.2, the person’s head/body are separated.

Plus, unwanted background saliency may exist, e.g., input â† is high for the teal graphic on the wall. As such,

before saliency voting, we merge clusters whose centroids have a cosine similarity > 0.5. This reduces the first

problem as heads and bodies are similar, and reduces the second problem as merging the graphic cluster into

the background reduces its average saliency (fig. 5.2).

For novel space-time views, we render feature images from the volume, then assign cluster labels to each

pixel according to its similarity with stored centroids from the input views. All clusters not similar to the stored

salient clusters are marked as background. To extract an object from the volume, we sample 3D points along

each input ray, then ascribe the label from the semantically-closest centroid. We set non-salient label points

to have zero density.

5.3 Experiments

We show the impact of adding semantic and saliency features through reconstruction, scene decomposition,

and foreground experiments.
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Data: Dynamic Scene Dataset (Masked) We use NVIDIA’s Dynamic Scene Dataset [54] of eight

sequences. Each sequence comprises of 12 cameras simultaneously capturing video at 24 time steps. We

manually annotate object masks for view and time step splits; this data will be released.

Then, we define three data splits per sequence:

1. Input : A monocular camera that moves position for every timestep is simulated from the input sequences;

we use Yoon et al.’s input sequences [54].

2. Fix Cam 0 (hold out): We fix the camera at position 0 as time plays, requiring novel view and time synthesis.

{(cam0, timei), i ∈ [1, 2, ...23]}.

3. Fix Time 0 (hold out): We fix time at step 0 as the camera moves, requiring novel view and time synthesis.

{(cami, time0), i ∈ [1, 2, ...11]}.

Metrics To assess clustering performance, we use the Adjusted Rand Index (ARI; [−1, 1]). This compares

the similarity of two assignments without label matching, where random assignment would score ≈0. For

foreground segmentation, we compute IoU (Jaccard), and for RGB quality we use PSNR, SSIM, and LPIPS.

5.3.1 Comparisons including ablations

We compare to methods that operate on monocular videos and do not require user input or initial masks. While

very recent neural volumeworks use features, nonemeet these conditions, e.g., relatedN3F [44] requires user input.

SAFF (ours) We optimize upon the input split of each scene, and perform clustering to obtain object

segmentations. To produce a foreground, we merge all salient objects.

— w/ pyr λâ = {1, 0, 0} Pyramid with only coarse saliency (section 5.2.2) and balanced semantic weight

across levels.

— w/o pyr No pyramid (section 5.2.2); we optimize with features and saliency extracted from the input

image only.

— w/o merge With pyramid, but we remove cluster merging inside the saliency-aware clustering algorithm.

— w/ blend v To compare generic dynamic segmentation to saliency segmentation, we use the static/dynamic

weight instead of volume saliency to segment foreground objects. We set every pixel below the 80% v quantile

in each image to be background, or otherwise foreground.

— w/ post process We add a step after the saliency-aware clustering to refine edges.

NSFF[19] This method cannot produce semantic clusterings. While saliency and blend weight v have different

meanings, if we compare our v to NSFF’s, then we can see any impact of a shared backbone with attention

heads upon the static/dynamic separation. We disable the supervised motion mask initialization in NSFF as

our method does not use such information.

D2NeRF[49] This method also cannot produce semantic clusterings. Over HyperNeRF [27], it adds a shadow

field network and further losses to try to isolate objects into the dynamic NeRF over the separate static one.

The paper also compares to NSFF without motion mask initialization.
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(a) Input (b) DINO-ViT (2D) (c) ProposeReduce [20] (d) SAFF (Ours; input) (e) SAFF (Ours; novel)
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Figure 5.3: SAFF object segmentations show balanced quality and apply to novel spacetime
views (e). Basic DINO-ViT produces low-quality segmentations and misses objects. A state-of-the-art 2D
video learning method [20] sometimes has edge detail (Umbrella, legs) but othertimes misses detail and objects
(Balloon NBoard). Our approach balances these while recovering a 3D scene representation (table 5.2).

Table 5.1: SAFF does not hurt image quality. Adding semantics and attention on the same backbone
produces the same image quality as NSFF [19]. Metrics: L is LPIPS ([0, 1], lower is better), S is SSIM ([0, 1],
higher is better), P is PSNR ([0,∞], higher is better).

Input Fix Cam 0 Fix Time 0
L ▼ S ▲ P ▲ L S P L S P

D2NeRF 0.115 0.790 23.91 0.228 0.565 18.04 0.344 0.309 13.85
NSFF w/o masks 0.068 0.804 24.11 0.107 0.752 21.90 0.342 0.313 13.70
SAFF (ours) 0.069 0.804 24.12 0.104 0.754 22.08 0.342 0.313 13.69

DINO-ViT (2D) [1] We ignore the volume and pass 2D semantic and attention features into the clustering

algorithm. This cannot apply to novel viewpoints. Instead, we evaluate the approach upon all multi-view color

images—input and hold-out—whereas other methods must render hold-out views. With pyramid processing

(section 5.2.2).

— w/o pyr No pyramid; upsample to input RGB size.

ProposeReduce (2D) [20] We apply this state-of-the-art 2D video segmentation method that was pretrained

on YouTube-VIS 2019 [53]. As above, we provide hold-out images for splits with novel views. For foreground

segmentation, if a pixel belongs to any SAFF saliency object clusters, the pixel is labeled as foreground.

5.3.2 Findings

View synthesis and depth First, we evaluate whether RGB view synthesis performance is affected by adding

more heads to the MLP. We find that it is not affected (table 5.1). D2NeRF’s hyper-spacetime deformation

has trouble reconstructing images on this dataset, producing distorted dynamic objects or failing to freeze time.

For scene geometry over time (depth), we produce similar results to NSFF.
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Table 5.2: Spacetime volume integration improves dynamic scene decomposition. Our pyramid
construction and cluster merging also improve quantitative performance, and our approach is comparable to
SOTA 2D video segmenter ProposeReduce on our data. Metric: Adjusted Rand Index ([−1, 1], higher is better).

Input Fix Cam 0 Fix Time 0

ProposeReduce (2D) 0.725 0.736 0.742
DINO-ViT (2D) 0.501 0.495 0.321
w/o pyr ŝ, â 0.470 0.464 0.346

SAFF (ours) 0.653 0.634 0.625
w/ pyr λâ = {1, 0, 0} 0.620 0.598 0.592
w/o pyr ŝ, â 0.545 0.532 0.521
w/o merge cluster 0.593 0.574 0.563
w/ post process 0.759 0.733 0.735
w/ oracle 0.834 0.806 0.800
w/ oracle + post process 0.922 0.890 0.880

Table 5.3: Foreground segmentation improves by saliency. Adding saliency also slightly aids how
much static/dynamic blend weight v represents the foreground (cf. NSFF blend v to SAFF’s). No post process.
Metric: IoU/Jaccard index ([0, 1], higher is better).

Input Fix Cam 0 Fix Time 0

ProposeReduce (2D) 0.646 0.651 0.654
DINO-ViT (2D) 0.381 0.382 0.357

NSFF — blend v 0.322 0.309 0.268
D2NeRF— blend v 0.470 0.334 0.269
SAFF — saliency 0.609 0.589 0.572
— blend v 0.388 0.380 0.329

Dynamic scene decomposition Second, we ask the relevant methods to separate the background and each

foreground object individually (table 5.2). The baseline 2D DINO-ViTmethod produces reasonable results, with

our pyramid approach in 2D increasing performance. But, being only 2D, this fails to produce a consistent decom-

position across novel spacetime views even when given ground truth input RGB images. This shows the value of

the volume integration for constraining the solution. Next, ProposeReduce can produce good results (fig. 5.3),

but sometimes misses salient objects and only sometimes produces better edges than our method, tending to be

oversmooth. It is still a 2D representation, and so benefits from being given ground truth images in hold-out sets.

Our approach more reliably identifies objects, with more consistent segmentations through spacetime

manipulations—this is the added value of volume integration through learned saliency and attention heads.

Ablated components show the value of our pyramid step, its coarse-saliency-only variant, and the cluster

merge and image post processing steps. Qualitatively, we see a balance of detail and more often correct object

identification (fig. 5.3).

Foreground segmentation Third, we simplify the problem and consider all objects as simply ‘foreground’

to compare to methods that do not produce per object masks. Here, the same trend continues (table 5.3). We

note more subtle improvements to static/dynamic blending weights when adding our additional feature heads
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(a) Input (b) NSFF [19] blend v (c) D2NeRF [49] blend v (d) SAFF blend v (e) SAFF foregrounds
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Figure 5.4: Saliency improves foreground segmentation over static/dynamicweights. Static/dynamic
separations are not foreground segmentations, leading to limited use of dynamic NeRF models for downstream
tasks. Our approach produces more useful segmentations. Minor improvements to dynamic blending weight
v are seen in some sequences (Jumping) by adding the saliency head to the shared backbone.

(a) Input (b) SAVi++ [8] (c) SAFF

(d) Input (e) SAFF salient (f) Salient+dynamic

Figure 5.5: Limitations. DINO-ViT features are not instance-aware, causing groups of multiple objects
(top). Unwanted scene parts may appear salient; (f) assuming salient objects are dynamic fixes this.

to the backbone MLP, and overall show that adding top-down information helps produce more useful object

masks. Qualitative results show whole objects in the foreground rather than broad regions of possible dynamics

(NSFF) or broken objects (D2NeRF; fig. 5.4).
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5.4 Discussion

One question is why we cluster in projected 2D and not in 3D. We demonstrate that our approach still

benefits from volume integration without explicit 3D clustering. While volume clustering is possible, the scene

reconstruction is only of surfaces and, in the monocular case, the geometry can be noisy. Thus, taking advantage

of 3D separation is harder than it appears. It is difficult to collect ground truth segmented 3D data for dynamic

real world scenes (none exist to our knowledge); this is an area for future work.

Further, we manage varying saliency over scales through the pyramid and volume approach. Given the

concept of saliency, ideally it could be requested from the volume at different scales. This also is an area for

future consideration.

Limitations First, as DINO-ViT features are not instance-level, then the clustering is not instance-aware

either (fig. 5.5). This is in contrast to object-centric learning approaches, which aim to identify individual

objects more effectively. To represent these different approaches, we compare to a result from slot-attention

based SAVi++ [8]. This method trains on thousands of supervised MOVi [13] sequences with per-object masks,

whereas we tangentially use generic pre-trained features and gain better edges from volume integration. While

expensive, combining these two approaches could give accurate instance-level scene objects.

The MOVi sequences are similar to the data that we evaluate our methods with in chapter 3 and chapter 4.

The grouping of all objects into one cluster would be particularly bad for these methods, as the objects in the

scene do not follow the same motion trajectories. Given that many of the objects do not move, and the ambiguity

across object boundaries is propagated from DINO-ViT, additional investigation is needed. This could take

the form of improvements to the underlying feature network or improvements to the volume optimization or

post-processing methods.

Secondly, DINO-ViT saliency may attend to unwanted regions. In Figure 5.5, bottom, we might think that

the static pillars could be isolated using scene flow information. But, often our desired subjects do not move

(cf. people in Umbrella or Balloon NBoard). In applications or data that can assume that salient objects are

dynamic, we can exploit SAFF’s 4D scene reconstruction to reject static-but-salient objects by also merging

clusters via scene flow: First, we project f over each timestep into each input camera pose—this simulates optical

flow with a static camera. Clusters are marked as salient per image if mean flow magnitude per cluster ¯|p| > 0.07

and mean attention āc > 0.07. Finally, as before, a cluster is globally salient if 70% of images agree (fig. 5.5f).



Chapter 6

Conclusions

We set out to explore the possibilities of a more object-centric model for dynamic scene reconstruction. Our

first approach was a point cloud-based approach that used an explicit cluster and scene motion model. We then

moved to a version that formulated the clustering as a neural field. Finally, we explored the task of dynamic

scene decomposition with SAFF.

For the first two methods, future work will focus on evaluation on a more expansive dataset to get a better

sense of the capabilities and limitations of the models. Our ClusterNeRF model shows promise as a dynamic

scene representation, but we need a way to construct initial cluster masks for it to optimize the cluster assignment

network against. Adapting the model to work with scenes that contain non-rigid subjects (like people) is also

a future direction. The model does not inherently fail in this case; the soft cluster assignment should allow

for some level of non-rigid scene motion. There is a question of whether the desired effect can be achieved just

through the reconstruction losses we have proposed.

There is also potential to merge SAFF with the ClusterNeRF model and use the salient SAFF clusters as

a basis for our motion clusters in the NeRF-based model. SAFF would have to be adapted to support clustering

in the volume as opposed to in projected 2D images for this to be possible.

A final future research direction is investigating thesemethods in the online setting. Themethods examined in

chapter 3 and chapter 4 should have the ability to consume a new frame of image data and quickly estimate object

transforms to represent it. This could allow for applications like robot teleoperation, where real-time information

is critical. This has been a limitation of existing dynamic NeRF works and would be a big breakthrough.

Dynamic scene reconstruction is a complex 4D problem. Naively optimizing a neural field to represent

the scene in 4D has been shown to fail, so we and other researchers have worked to massage the optimization

problem into something tractible. In particular, our methods and others leverage object permanence. In

previous deformation-based works like Nerfies [26], a network has been required to learn this object performance

at every timestep, mapping the points in that frame to the canonical frame. Our methods require this only

in the canonical frame, but this adds the limitation of only working for rigid objects.

Neural fields have shown a powerful ability to reconstruct input signal, which is evident in our case as well.

The input signal reconstruction, however, does not always lead to high quality reconstructions where supervision

was not present. This is because neural fields can “cheat” and reconstruct the input data in a way that is

26
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not physically “correct”. For NeRF-based methods like ours, this occurs more often when strong multi-view

correspondences are not present. For our ClusterNeRF method in chapter 4, we use a dataset with several

viewpoints. This is what allows our model to learn the appropriate clustering of the scene, and we hypothesize

that without multi-view correspondences it would struggle to learn an accurate segmentation. Even with

multi-view data, our model still “cheats.” The moving shadows, for instance are somehow reconstructed despite

not having a cluster assigned to them. Striking a balance between a model that produces desirable results and

one that approximates a physically correct reconstruction of the scene is important and something that future

work could continue to investigate. Our previous work on TöRF [2] made progress in this area using time-of-flight

data to physically ground scene geometry, and a combination of these two methods could yield dividends.
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