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Abstract

The dominant paradigm in machine learning is to assess model performance based
on average loss across all samples in some test set. However, this approach fails
to account for the non-uniform patterns of human development and geography
that exist across Earth. We introduce SAFE, a package for elucidating the strati-
fied performance of a set of predictions made over Earth. SAFE integrates data
from myriad sources to perform stratification on different attributes associated
with gridpoints. In this work, we utilize SAFE to benchmark modern artificial
intelligence-based weather prediction models, finding that they exhibit disparities
in error rates when stratifying by territorial affiliation, global subregion, and gross
national income per capita. Among the tested models, FuXi is consistently the
most fair at lead times between a week and 10 days. The SAFE package is made
available at https://github.com/N-Masi/safe.

1 Introduction

Artificial intelligence weather prediction (AIWP) models, alternatively machine learning weather
prediction (MLWP) models or neural weather models (NWM), are becoming increasingly competitive
with traditional numerical weather prediction (NWP) models. As a result, AIWP are seeing increasing
adoption in interfaces such as Google’s Weather app [16] to various experimental models at the
National Oceanic and Atmospheric Administration (NOAA) [21, 28].

Root mean square error (RMSE) is the preeminent metric used in assessing the quality of AIWP
models [23]. The general form of RMSE is shown in Equation 1, where Y is the set of all ground
truth values that a model is trying to predict and ŷ is the model’s prediction for each corresponding
y ∈ Y . Every y is the value of some variable (e.g., temperature or wind speed) at some point in time
d ∈ D, longitude i ∈ I , and latitude j ∈ J , and vertical level v ∈ V .√

Σy∈Y (ŷ − y)2

|Y |
(1)

The square of RMSE, mean squared error (MSE), frequently referred to as the L2 loss, is often used
as a training objective. This is the case for Spherical CNN [8] and GenNet [18]. GraphCast [14] and
GenCast [22] use weighted MSE loss functions. Keisler takes a weighted sum of MSE values [11].
NeuralGCM [12] has a five-term loss function, each of which is a variation of MSE. FuXi [6] uses
the mean absolute error (MAE, the L1 counterpart of MSE).

The underlying commonality across all of these functions is that they completely reduce across the
spatial dimensions I and J . An issue with spatial averaging as the loss function is the resulting
“double penalty" that arises when predictions for high resolution events are even slightly spatially
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displaced, incurring the penalization for both that faulty prediction and the lack of prediction at the true
location [9]. This encourages models to blur their predictions, dropping these highly localized events
[14]. However, neglecting to predict these outlier events can have dramatic real-world consequences.
For example, improved accuracy of extreme heat predictions has been found to reduce mortality [29].
If it is unknown precisely where models are and are not performing well, then it is impossible to
know whether they can be trusted at inference time for a prediction in a given location.

2 SAFE

In this paper we create a framework for stratifying Earth predictions by various attributes, and leverage
it to benchmark the fairness of existing artificial intelligence (AI) weather forecasting models. Despite
the life or death impacts of weather forecasts and concrete evidence that existing forecasts provided
by the National Weather Service have error that varies across the geography of the United States [20],
there is little existing work that investigates model error spatially (see: subsection 2.4).

2.1 Data sources

Within SAFE, we provide the ability to investigate different attributes: territory, global subregion, and
territory income. The strata within the territory attribute is typically the country which a gridpoint is
located within, though there are some sub-national or not universally recognized territories. Territory
borders are pulled from the geoBoundaries Global Administrative Database [27]. Global subregions
follow the United Nation’s classifications over territories [30]. The income strata of a gridpoint is one
of “high income”, “upper-middle income”, “lower-middle income”, or “low-income” as defined by
the World Bank’s classification for the territory the gridpoint is within [32]. The polygons associated
with each strata are accessed through the MIT-licensed pygeoboundaries_geolab package 1. This
package is a python wrapper for the geoBoundaries Global Administrative Database [27], which
itself is made available under a open license CC-BY 4.0.

2.2 Methods

2.2.1 Stratification

Predictions from WeatherBench 2 [25] are associated with specific (longitude, latitude) coordinates,
or “gridpoints” on the Earth. Each pair of coordinates is converted into the polygon that is centered
on the gridpoint but which covers all the quadrilateral surface area defined by extending its borders
to the midpoint with its neighbords in both the longitude and latitude directions. The forecasts for
this polygon are associated with all of the strata it intersects with. While this will double count
some gridpoints towards different strata, measures are taken so that no single gridpoint counts more
than once within a given strata. We find that the double couting that does occur is in line with the
philosophy of SAFE, as the alternative is that without high enough resolution there will be strata for
which no data is recorded, rendering them invisible. In total, there are 230 territory, 23 subregion,
and 4 income strata.

2.2.2 Area weighting

In calculating the loss function for training it is common to weight the (squared if L2) difference in
variable prediction and ground truth by the area of the gridpoint cell the forecast was made at before
averaging. This weight varies with latitude. The reason for latitude weighting is that, when using an
equiangular gridding, the gridpoints are closer together near the poles than they are at the equator.
This results in a higher density of samples per area at the poles, which left unaccounted for could
cause the model to overfit to forecasting polar weather.

Complicating the matter, Earth is an oblate spheroid with an equatorial radius of 6378137m and a
slightly smaller polar radius of 6356752m. However, no python library that is known to the authors
exists which takes this into account to get the precise surface area of equiangular grids on Earth’s
surface. The standard solution would be to convert the cells to vector data and get the area of polygons.
However, virtually every approach, both training [14, 11, 2, 12, 19, 3] and benchmarking [25], make
the simplifying assumption of a perfectly spherical Earth. WB2 takes this approach in computing its

1https://github.com/ibhalin/pygeoboundaries
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metrics as well [25]. As part SAFE, we have provided a utility that can get the surface area of grids of
the Earth. We use the equation for getting the surface area of oblate spheroid caps from [5] which
builds on the model developed by [31]. For testing, the total surface area of the Earth was found
with the equation for oblate spheroid surface area from [1, p. 131], yielding an approximation of
510065604944206.145m2.

In calculating the RMSE as reported throughout this paper, we use these exact surface areas as weights,
but with the important distinction of normalizing them by the mean area. This same normalization is
taken in WB2 [25] and common in training [19, 3].

2.2.3 Metrics

The main metric utilized in SAFE is the latitude-weighted RMSE, which is averaged temporally by
initialization time (the timestamp of the climate variables fed into the model) not lead time (the
amount of time into the future for which to forecast the state of climate variables at), and averaged
spatially within the strata. Unless otherwise specified, reported RMSE refers to this.

2.3 Fairness definition

For each given weather variable (see: subsubsection 2.3.1) and a given attribute, fairness is defined as
the inverse of the greatest absolute difference between the area-weighted RMSE of any two strata.

2.3.1 Variables

In line with WB2 [25] we choose as our variables y the atmospheric temperature at 850hPa (T850, unit:
m) and geopotential at 500hPa (Z500, unit: m2s−2) as the main benchmark variables for comparing
cross-model performance. These are also defaults assessment variables for model developers to
report on in their work. Keisler [11], Pangu-Weather [2], Spherical CNN [8], and NeuralGCM [12]
report RMSE on these two variables in particular, FuXi [6] includes them among other variables, and
GraphCast [14] primarily reports on Z500.

2.4 Related work

WB2 [25] is an existing benchmark that assesses the spatially-averaged error of models against
ECMWF Reanalysis v5 (ERA5) [10], the most modern reanalysis dataset from the European Centre
for Medium-Range Weather Forecasts (ECMWF). It provides functionality to get per-region RMSE,
but these regions are limited to being rectangular in shape, making them unusable for the real-world
attributes we care about.

NeuralGCM also calculated per-region RMSE for T850 and Z500 [14, Supp. Mat. Fig. S14–S16],
borrowing region definitions from ECMWF scorecards. There are 20 of these regions, 3 that are
hemispheric (North, Tropical, and Southern) and 17 geographical. These regions are overlapping, and
the geographic regions include oceans while missing considerable sections of populated landmass
(including but not limited to significant portions of Central America, Eastern Africa, Brazil, California,
and the island of New Guinea).

In contrast, the regions used within SAFE cover all landmass across the Earth and no oceans. Regions
are non-overlapping, except at their borders where prediction polygons stretch over the border (this
being a result of finite resolution).

3 Using SAFE to benchmark AIWP forecast fairness

To minimize computational costs, we investigate models with already available predictions. This
eliminates the need for model training or inference, reducing the carbon footprint of our research.
WB2 provides easily-accessible cloud datasets of ERA5 data and inference runs in the year 2020
for a number of models. Because of the unified access endpoints and resolution, we use the models
available through these datasets to begin our investigation.

3



Table 1: Models assessed

Model Architecture Parameters

GraphCast [14] Graph neural network (GNN) 36.7 M
Keisler [11] GNN 6.7 M
Pangu-Weather [2] Earth-specific transformer 256 M
Spherical CNN [8] Spherical convolutional neural network (CNN) Not reported
FuXi [6] SwinV2 [17] transformer blocks in U-net [26] arrangement Not reported
NeuralGCM [12] Multi-layer perceptrons (MLPs) + CNNs + numerical solver 31.1 M

Figure 1: Greatest absolute difference of any two per-strata RMSE for each attribute when predicting
T850 and Z500 at different lead times. Lower difference is more fair. Starting at a lead time of one
week, FuXi is the most fair model across all attributes and variables.

3.1 Assessed forecasts

In this work with utilize WB2’s 1.5◦ resolution equiangular forecasts. Higher resolution forecasts
would permit more fine-grained stratification and remediate the double-counting issue discussed
in subsubsection 2.2.1. Indeed, WB2 provides higher resolution than this for many of its models.
However, benchmarking models against one another is only meaningful when performed at the same
resolution. Without this, predictions made at higher resolutions may not get assigned to the same
strata. We choose the 1.5◦ resolution (240×121 in terms of number of longitude by latitude) because
it has the most models with predictions available. These models are listed in Table 1. None of the
models we assess were trained on ERA5 variable data from 2020. For all the attributes in SAFE, we
get the RMSE for every strata and calculate the inverse fairness, where higher is worse. Generating
results for all six models took under 8 hours on a single CPU.
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3.2 Results

As seen in Figure 1, the fairness of predictions begin to rapidly decline once the lead time gets to
around 2 days. Across all three attributes and all lead times, Spherical CNN and Keisler are generally
the least fair. From a lead time of about a week onwards, FuXi is drastically more fair than all the
other models across all attributes.

3.3 Accounting for outliers

For each model we have assessed, the greatest absolute difference in RMSE for each variable decreases
as the number of stratum for each attribute (see: subsubsection 2.2.1) decreases. It is possible that the
unfairness phenomenon observed results from rare outliers that appear as the geographic area of the
smallest stratum decreases. To account for this, we filtered the list per-strata RMSE for every attribute
and removed those with an absolute Z-score greater than or equal to 2. The same figure as Figure 1
was generated except with these filtered values (i.e., excluding outliers), it is in Figure 2. To more
easily compare the results when both including and excluding outliers, we graph the largest per-strata
RMSE as a percent of the smallest per-strata RMSE in Figure 3. While there is slight differences in
the greatest absolute difference in RMSE (as evidenced by the different percentages), the general
shape of the curves as a function of lead time holds, while the amplitude has slight differences. This
indicates there are consistent trends in unfairness that persist when removing outliers.

This approach in accounting for outliers supports the finding that true disparaties exist across strata.
However, we discourage the use of this method in beyond this. Discovering and highlighting
disparately treated geographic outliers is the entire aim of this work. To the extent that anyone
deserves and benefits from accurate AIWP models, then regardless of how small in size—within
reason that is certainly cleared by 1.5◦ resolution—or count a region is, it and its inhabitants deserve
accurate AIWP models too.

3.4 SAFE utilization beyond weather

While the analyses in this paper have focused on weather forecasting models, another primary
contribution is the creation of a general package that allows for benchmarking any model which
makes predictions across the globe for which there are ground truth values. That is the collected
attribute data can be used to assess the fairness of any set of predictions that are made over the Earth
and are associated with a set of gridpoints.

4 Discussion

All of the models evaluated were trained on ERA5, developed by ECMWF. The Member States
of ECMWF includes primarily Western, Northern, and Southern Europe territories. Western and
Northern Europe are the subregions with the 2 lowest errors across all models (see: Figure 5), and
Southern Europe is among the lower half of subregions. Organizations like the NOAA are increasingly
utilizing ML systems in their forecasting, citing improvements in models such as ECMWF’s very
own Artificial Intelligence/Integrated Forecasting System (AIFS) [13]. The results of this work
indicate the need for more global efforts in weather data collection and forecasting. This benchmark
empowers deployers to select the model which is most performant for their local application. The
visibility provided by SAFE into model fairness encourages future development in this direction.

4.1 Future work

Incorporating more attributes within SAFE. First among these is landcover. We assessed the same six
models tested in section 3 by getting the average RMSE for landcover strata of land, ocean, and lake
areas. Landcover data came from the LandScan Global dataset [7, 15]. This data was available at 0.5◦
resolution. In this assessment, the predictions of models were treated as points rather than polygons,
and so the landcover strata assigned was the landcover of whatever 0.5◦ × 0.5◦ cell overlapped with
the center of the 1.5◦ × 1.5◦ prediction cell. Results are in Figure 4.

This experiment should be reconducted with the majority vote algorithm and using polygons rather
than points. The results should then be reduced by model by taking the greatest absolute difference in
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per-strata RMSE to find any patterns in unfairness. Additionally, existing work with implicit neural
representation (INR) models shows that it is important to consider coastlines and islands and their
own strata as well [4].

Next, population density as an attribute should be added to SAFE to understand the degree to which
AIWP models should be a trusted decision-making tool for different settled regions. Lastly, SAFE
currently operates at the inference-level of AIWP models only. It may prove beneficial to integrate
tracking of fairness metrics into the training regimes of models to understand how different training
dynamics affect fairness.

5 Conclusion

In this work we created SAFE, a python package that allows the user to assess a set of machine
learning predictions made over Earth in terms of stratified fairness. Strata are available for three main
attributes a gridpoint may have: territorial affiliation, global subregion, and territorial income. This
provides developers and decision-makers alike with an important tool to break free from the default
approach of spatially averaging. We apply SAFE to a set of state of the art [24] AIWP models, finding
that they all display unfair differences in performance across all three attributes. These disparities
increase with lead time, particularly starting around 48 hours.
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A Supplemental figures

Figure 2: Greatest absolute difference of any two per-strata RMSE for each attribute when predicting
T850 and Z500 at different lead times. Lower difference is more fair. Outlier RMSE values have been
removed. Starting at a lead time of one week, FuXi is still the most fair model across all attributes
and variables.
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Figure 3: Highest per-strata RMSE as a percent of the lowest per-strata RMSE with and without
outliers included.
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Figure 4: Results of preliminary experiments with landcover as an attribute.

Figure 5: Area-weighted RMSE by subregion by model.
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