
“This is weird”

The paper is “Memory that never forgets: Emerging nonvolatile memory and
the implication for architecture design”
* Similar to last paper, includes racetrack memory, circuit level
considerations and more detailed description of NVM shortcomings, new
research integrating NVM in computer system

Emerging NVMs:
* PCM: compatible to CMOS, good scalability, access speeds comparable to
DRAM
* RRAM: small cell factor, access speeds comparable to DRAM (not
discussed much, until end)
* STT-RAM: good scalability, access speeds comparable to SRAM
 * Qishen: really useful but not mature enough, performance limited ==>
read and write times are really slow
* RM: similar to STT-RAM but even higher density, domain shifts needed
for access
 * What is the layout of data? How do bit shifts work?
 * Shift-based read and write, shifting slows accesses, seems to
serialize reads and writes (makes the process slower?)
 * Semanti: Why is this not being adopted despite all the advantages?

Common ground on emerging NVM
* NVMs have nearly zero standby power
* NVMs allow for higher density (smaller size, multi-level cells)
* NVMs have high write latency and consume more dynamic power with writes
:(
* NVMs wear out faster compared to SRAM and DRAM :(
* STT-RAM, RM good candidates for on chip cache and PCM for main memory

Architecture Workarounds for Integrating NVM
* Reducing number of writes: optimize cache replacement policies to
reduce writebacks to NVM LLC or main memory
 * Caches currently replace LRU or LOU data, paper suggests other data
(not modified, so no rewrite in NVM ⇒ hurts the hit rate of the cache,
what level of a cache might this make sense?)
 * NVSim (circuit level simulation) and NVMain (architecture level
simulator) both mentioned in paper to study cache replacement policies,
etc…
* Partial write schemes that only update modified data (read first, then
write)
* Data compression for frequently written data
 * Does the dynamic power from writing used actually benefit the system
compared to the static power? It depends on the application (number of
reads/writes; not worthwhile in a first level cache, potentially more so
in main memory)
* Preemptive write buffers (hold writes until all reads done), setting
all bits to 1 prior to a write, then update to a 0-bits when writing to
valid data (counter intuitive, because double time and energy, but can

hide this during other operations if everything is going to be reset
anyways)
* Wear-leveling to periodically switch data write locations
 * Qishen: this is already being used, moving is nontrivial ⇒ similar
to hybrid NVM and VM architectures? Commercially available cache for SSD,
specs to be sent to discussion… same issue, so same technique should be
used - read and write are different than at other levels of the memory
hierarchy
* Hybrid memory workarounds
 * NVM only provide workarounds for multi-level cells versus single
level cells
 * Can relax STT-RAM non-volatility: cannot guarantee that entire
memory structure is nonvolatile, some parts are volatile (Karpur:
spintronics are underlying material of the memory rather than what causes
the volatility) ⇒ relaxing the volatility requirement, not the memory
itself, to optimize the speed of the memory
 * Interesting to explore loss of data as writability wears out?
Losing volatility over time?
 * Ratio of volatility? Ideal amount of volatility to non-volatility
for caches? Workload dependent, lots of writes to small fixed area would
be advantageous

New research areas with NVM
* Security for NVM-based main memory
 * Counter-mode encryption for secure NVM
 * Compression: doubly advantageous for NVM - smaller write and
ensuring that the state of the data isn’t preserved after power down
 * Word level counters are nice: reducing the write intensity and
helping with wear across, potentially a storage overhead (quantifiable?)
 * New method reduces write intensity: how? Sneak paths as it
relates to security? How random is the initial number (fabrication
variation? Addresses? Both might impact the level of randomness)?
* Persistent main memory and data consistency
 * Between storage and volatile main memory (totally replace?)
 * Persistent storage is NVM (retains state), flip side of the security
issue ⇒ quickly power up and recover data faster without fancy logging
mechanisms
* NVM-based storage + file systems
 * What used to happen in disk is now happening in NVM
* Non-volatile processors
 * Every component of the processor can be made non-volatile, processes
without power but relatively limited in capability
* Processing-In-Memory (Near Data Processing)
 * RRAM reappears as potential memory candidate
 * Embed computing inside memory: simple but widely required
computation (NN computation becomes key candidate), bias towards
computing in memory rather than talking about potential 3-d stacking and
thermal issues (how sophisticated is the processor core?)

* Approximate computing as a potential area as well to optimize writing?
Must be application aware, if it can tolerate that type of approximation

* NVSim: allows users to simulate different memory architectures using
different technologies, i.e. in this technology what will be the access
time and/or leakage? Read v write access time? (homework coming up next
week!) :-)
* NVMain: different architectures can be simulated (potentially used for
final project)
 * Other simulation tools as well for analysis of designs

