Quantum Computing

Presenter: Qishen

November 4, 2020

1 Background

1.1 Quantum Computing

Quantum computing is entirely different from regular computing. It has the additional
state, the uncertain state. This is demonstrated in the notation z|0 > + y|1 > to indicate
that there is probability x of the bit being 0 and probability y of it being 1. However,
you can stop flipping the qubits to trap them into 1 state. Bell states are the combination
of 2 qubits, and are generated with the CNOT gate. There are 4 possible bell states:
1/4/2(]00 > 4|11 >) and 1/+/2(|01 > |10 >)

1.2 Shor’s Algorithm

Schor’s Algorithm is used to find prime factors in an efficient amount of time: O(n?(log(n))(log(log(n)))).
The consequences of such an algorithm include breaking RSA encryption since it is based
on multiplying primes.

1.2.1 The algorithm:
1. Pick an a in [2, N — 1]
2. Compute ged(a, N)
3. for each i [1, N] compute a‘modN

e if result == 1 break

e clseset r=r+1
4. Compute z = a("/?)

e if x + 1modN == 0 then set result (p,q) = (ged(z + 1,N), ged(z — 1,N))

Shor is not a pure quantum algorithm. It uses a combination of both classical and
Quantum computing.

2 Questions

1.

The paper mentioned the algorithm needed to be run 8 times to get high certainty,
but this was just to factor 15. What would happen if it was a much larger number?
Would you need to run more times to get same accuracy? There are no good answers
to this questions because Quantum computers that can do such a computation have
not been constructed yet.

. How should an ideal a be determined such that you get a nontrivial result? Currently,

it seems like you just have to keep trying different number, but how long would this
take for large primes? Is it realistic?

. Is the confidence level of Shor’s algorithm acceptable? It’s higher than other imple-

mentations. Especially if run multiple times. This may have high overhead, but is
better than classical algorithms which simply do not terminate for large values of N.

. What makes Shor’s algorithm so usable in comparison to other factorization algo-

rithms? Shor is the most efficient factoring algorihtm out there so far. However, none
yet are efficient enough to be usable with large primes.

