
Memory Persistency

For this paper, it introduces the memory persistency and related
multithread conceptions & manipulations. For memory
consistency, “In multithreaded programs, some processes might
be doing read operations (search) and others might be doing an
update operation (insert/remove)”. It “allow programmers to
reason about the visible order of loads and stores among
threads”. For memory persistency, it guarantees that all threads
would have the same content and results. It is really important
because for threads we need to let them unify to make
programming and debugging easier. For sequential consistency,
it guarantees that the executing sequence would be predictable
and ordered. Because of the attribute for non-volatile memory, it
is also possible to recover the status of memory immediately
after crush (For example, halt, blue screen, etc.)

For discussion, the professor mentioned that for volatile
memory, it needs checkpoint & save to other spaces (HDD, etc)
to backup & recover the state of the memory. For non-volatile
memory, it just restore what it saved for the last time and restore
it. Also, for this paper, we do not talk about the burden for
programmer to make such multithread approach. What we care
about is just making the process of multithread predictable.
Also, another challenge for this is different performance for
different kinds of non-volatile memory. The write rate is
different from read rate for NVM and different approach for it
makes it very different for different NVMs. It is also the
challenge for memory persistency.

