
9/16/2020

1

TOPICS IN COMPUTING WITH
EMERGING TECHNOLOGIES

FALL 2020

PROF. IRIS BAHAR

SEPTEMBER 16, 2020

LECTURE 3: MEMORY DESIGN

OVERVIEW OF EMERGING
TECHNOLOGIES
Read and comment on 2 survey papers on emerging
technologies

 Find under ModulesWeek #1
 Read the following 2 papers:

 Computing’s Energy Problem (and what we can do about it)

 The era of hyper-scaling in electronics

 Click on online discussion

 Thanks to those who have already submitted.

 Post your comments ASAP.

SUBMIT TOPICS OF INTEREST

 Find under ModulesWeek #1
 Click on list of topics

 Also find under AssignmentsAssignment #1

 Think of topics you are most interested in learning about this
semester. They may or may not relate to your own research.

 Submit as a text entry with a list of 2-4 topics you would like to
cover this semester.

 This will help me plan paper topics for the semester and pair up
people with mutual interests.

 Due by Sept 16

LECTURE SLIDES FOR WEEK #2

 Lecture slides are posted on Canvas (see Modules: week #2)
and on the CS course webpages
(cs.brown.edu/courses/csci2952j)

 Recommended textbooks:
 Hennessy, Patterson, Computer Organization and Design: The

Hardware/Software Interface, Morgan Kaufmann

 Neil H. E. Weste and David Harris, CMOS VLSI Design: A Circuit and
Systems Perspective, 4th Edition, Addison Wesley Publishers, 2011

1 2

3 4

9/16/2020

2

COMING UP FOR WEEK #3

 We will continue with our overview of memory design and conventional transistor design

 Paper discussion delayed by 1 week

 Papers for 4th week of class:
 Emerging NVM: A Survey on Architectural Integration and Research Challenges
 Memory that never forgets: emerging nonvolatile memory and the implication for architecture

design

 I will post papers some time next week
 I will assign teams for reviewing the papers

 Expect different team assignments weekly

 I will also assign discussion leaders for the week
 If you want to volunteer, let me know

 We will rotate discussion leaders throughout the semester. Expect to lead 2-3 times

 Starting the 6th or 7th week of class, students will be able to choose papers to review

4X4 SRAM MEMORY
bit line precharge

A0

!BL
WL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

BL

WL[1]

WL[2]

WL[3]

2 bit words

clocking and
control

enable

read
precharge

BLi BLi+1

6-TRANSISTOR SRAM CELL

!BL BL

WL

M1

M2

M3

M4

M5
M6Q

!Q

SRAM: SIZING IS EVERYTHING

 Key takeaways:
 SRAM is very stable because of reinforcement of cross-coupled inverters

 Retains value as long as connected to power

 Correct sizing of transistors prevent read disturb and allow overwrite on write

 Dual rail adds extra noise resilience

 Use of sense amp to speed up transition of bit lines (!BL, BL) to “full rail” values

!BL BL

WL

M1

M2

M3

M4

M5
M6Q

!Q

5 6

7 8

9/16/2020

3

4X4 DRAM MEMORY

A0

BL
WL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

WL[1]

WL[2]

WL[3]

bit line precharge
2 bit words

BL0 BL1 BL2 BL3

clocking,
control, and

refresh

enable

read
precharge

 Key takeaways:
 Cell value is stored in capacitor Cs

 No regenerative property: noise disturbance
on cell can cause value to be lost.

 Single rail, also making it more susceptible to
noise disturbance

 Read: lose value stored by reading cell, so
write/refresh required

 Read: Sense amp is required to reach full rail
on BL

 Write: single phase operation

 Charge will leak from Cs after < 1 sec so
periodically need to refresh by reading all
rows and writing them back.

1-TRANSISTOR DRAM CELL

M1 X

BL

WL

CsCBL

ADVANCED DRAM ORGANIZATION

 Bits in a DRAM are organized as a rectangular array
 DRAM accesses an entire row

 Burst mode: supply successive words from a row with reduced
latency

 Double data rate (DDR) DRAM
 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM
 Separate DDR inputs and outputs

DRAM PERFORMANCE FACTORS

 Row buffer
 Allows several words to be read and refreshed in parallel

 Synchronous DRAM
 Allows for consecutive accesses in bursts without needing to send

each address
 Improves bandwidth

 DRAM banking
 Allows simultaneous access to multiple DRAMs
 Improves bandwidth

9 10

11 12

9/16/2020

4

INCREASING MEMORY BANDWIDTH

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

CACHE MEMORY
 Cache memory

 The level of the memory hierarchy closest to the CPU

 Given accesses X1, …, Xn–1, Xn

 How do we know if the data
is present?

 Where do we look?

TAGS AND VALID BITS

 How do we know which particular block is stored in a
cache location?
 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present

 Initially 0

HOW DO YOU DESIGN A DATA
CACHE FROM SRAM?

Say you want to store 8kbits (1kB)
of data in your cache using SRAM

 How many 32-bit words can you
store in your SRAM?

 How many address bits do you
need to access all words uniquely?

 If you have a 20-bit memory
address, how many bit remain?

13 14

15 16

9/16/2020

5

WHAT IS THIS TAG FIELD?

 We have 20-8 = 12 bits remaining of the memory address that become the TAG field

 Read the tag along with the data to see if this the data you desire.

 We have 8 bits of the address
used to access the data

 How do you distinguish between
address 1011100011 and
address 0111100011 ?

 We need to store a piece of the
memory address along with the
data. This is the TAG field

DIRECT MAPPED CACHE

 Location determined by address

 Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

 #Blocks is a power of 2
 Use low-order address

bits

CACHE EXAMPLE
 8-blocks, 1 word/block, direct mapped

 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

CACHE EXAMPLE

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

17 18

19 20

9/16/2020

6

CACHE EXAMPLE

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

CACHE EXAMPLE

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

CACHE EXAMPLE

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

CACHE EXAMPLE

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

21 22

23 24

9/16/2020

7

ADDRESS SUBDIVISION

 32 bits = 4 bytes (2
bits for byte offset)

 1024 unique blocks

 What is the data
capacity of this cache?
 210 * 22 =212 =4kB

 How many bits total
are required?
 Tag: 210 * 20 = 20,480

 Total = 4kB + 20,480

 Overhead: ~62%

CACHE MISSES

 On cache hit, CPU proceeds normally

 On cache miss
 Stall the CPU pipeline (wait for data for CPU to proceed)

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

BLOCK SIZE CONSIDERATIONS

 Larger blocks should reduce miss rate
 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks fewer unique blocks

 More competition increased miss rate

 Larger blocks pollution (if spatial locality is weak)

 Larger miss penalty
 Takes longer to fill block with new data

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

ASSOCIATIVE CACHES

 Fully associative
 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries

 Block number determines which set
 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

25 27

28 34

9/16/2020

8

SPECTRUM OF ASSOCIATIVITY
 For a cache with 8 entries

ASSOCIATIVITY EXAMPLE

 Compare 4-block caches
 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

 Address 8, 0 conflict in the cache (data thrashing)

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

ASSOCIATIVITY EXAMPLE
 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative

Block
address

Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

SET ASSOCIATIVE CACHE ORGANIZATION

36 37

38 40

9/16/2020

9

MULTILEVEL CACHES

 Primary cache attached to CPU
 Small, but fast

 Level-2 cache services misses from primary cache
 Larger, slower, but still faster than main memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

MULTILEVEL CACHE EXAMPLE

 Given
 CPU base CPI = 1, clock rate = 4GHz 0.25ns per clock cycle

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

EXAMPLE (CONT.)

 Now add L-2 cache
 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

MAIN MEMORY SUPPORTING CACHES

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

42 43

44 46

9/16/2020

10

MEASURING CACHE PERFORMANCE

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles

 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

CACHE PERFORMANCE EXAMPLE

 Given
 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

AVERAGE ACCESS TIME

 Hit time is also important for performance

 Average memory access time (AMAT)
 AMAT = Hit time + Miss rate × Miss penalty

 Example
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles,

I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

PERFORMANCE SUMMARY

 When CPU performance increased
 Miss penalty becomes more significant

 Decreasing base CPI
 Greater proportion of time spent on memory stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when evaluating system
performance

47 48

49 50

9/16/2020

11

INTERACTIONS WITH ADVANCED
CPUS

 Out-of-order CPUs can execute instructions during cache
miss
 Pending store stays in load/store unit

 Dependent instructions wait in reservation stations

 Independent instructions continue

 Effect of miss depends on program data flow
 Much harder to analyse

 Use system simulation

51

