
9/16/2020

1

TOPICS IN COMPUTING WITH
EMERGING TECHNOLOGIES

FALL 2020

PROF. IRIS BAHAR

SEPTEMBER 16, 2020

LECTURE 3: MEMORY DESIGN

OVERVIEW OF EMERGING
TECHNOLOGIES
Read and comment on 2 survey papers on emerging
technologies

 Find under ModulesWeek #1
 Read the following 2 papers:

 Computing’s Energy Problem (and what we can do about it)

 The era of hyper-scaling in electronics

 Click on online discussion

 Thanks to those who have already submitted.

 Post your comments ASAP.

SUBMIT TOPICS OF INTEREST

 Find under ModulesWeek #1
 Click on list of topics

 Also find under AssignmentsAssignment #1

 Think of topics you are most interested in learning about this
semester. They may or may not relate to your own research.

 Submit as a text entry with a list of 2-4 topics you would like to
cover this semester.

 This will help me plan paper topics for the semester and pair up
people with mutual interests.

 Due by Sept 16

LECTURE SLIDES FOR WEEK #2

 Lecture slides are posted on Canvas (see Modules: week #2)
and on the CS course webpages
(cs.brown.edu/courses/csci2952j)

 Recommended textbooks:
 Hennessy, Patterson, Computer Organization and Design: The

Hardware/Software Interface, Morgan Kaufmann

 Neil H. E. Weste and David Harris, CMOS VLSI Design: A Circuit and
Systems Perspective, 4th Edition, Addison Wesley Publishers, 2011

1 2

3 4

9/16/2020

2

COMING UP FOR WEEK #3

 We will continue with our overview of memory design and conventional transistor design

 Paper discussion delayed by 1 week

 Papers for 4th week of class:
 Emerging NVM: A Survey on Architectural Integration and Research Challenges
 Memory that never forgets: emerging nonvolatile memory and the implication for architecture

design

 I will post papers some time next week
 I will assign teams for reviewing the papers

 Expect different team assignments weekly

 I will also assign discussion leaders for the week
 If you want to volunteer, let me know

 We will rotate discussion leaders throughout the semester. Expect to lead 2-3 times

 Starting the 6th or 7th week of class, students will be able to choose papers to review

4X4 SRAM MEMORY
bit line precharge

A0

!BL
WL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

BL

WL[1]

WL[2]

WL[3]

2 bit words

clocking and
control

enable

read
precharge

BLi BLi+1

6-TRANSISTOR SRAM CELL

!BL BL

WL

M1

M2

M3

M4

M5
M6Q

!Q

SRAM: SIZING IS EVERYTHING

 Key takeaways:
 SRAM is very stable because of reinforcement of cross-coupled inverters

 Retains value as long as connected to power

 Correct sizing of transistors prevent read disturb and allow overwrite on write

 Dual rail adds extra noise resilience

 Use of sense amp to speed up transition of bit lines (!BL, BL) to “full rail” values

!BL BL

WL

M1

M2

M3

M4

M5
M6Q

!Q

5 6

7 8

9/16/2020

3

4X4 DRAM MEMORY

A0

BL
WL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

WL[1]

WL[2]

WL[3]

bit line precharge
2 bit words

BL0 BL1 BL2 BL3

clocking,
control, and

refresh

enable

read
precharge

 Key takeaways:
 Cell value is stored in capacitor Cs

 No regenerative property: noise disturbance
on cell can cause value to be lost.

 Single rail, also making it more susceptible to
noise disturbance

 Read: lose value stored by reading cell, so
write/refresh required

 Read: Sense amp is required to reach full rail
on BL

 Write: single phase operation

 Charge will leak from Cs after < 1 sec so
periodically need to refresh by reading all
rows and writing them back.

1-TRANSISTOR DRAM CELL

M1 X

BL

WL

CsCBL

ADVANCED DRAM ORGANIZATION

 Bits in a DRAM are organized as a rectangular array
 DRAM accesses an entire row

 Burst mode: supply successive words from a row with reduced
latency

 Double data rate (DDR) DRAM
 Transfer on rising and falling clock edges

 Quad data rate (QDR) DRAM
 Separate DDR inputs and outputs

DRAM PERFORMANCE FACTORS

 Row buffer
 Allows several words to be read and refreshed in parallel

 Synchronous DRAM
 Allows for consecutive accesses in bursts without needing to send

each address
 Improves bandwidth

 DRAM banking
 Allows simultaneous access to multiple DRAMs
 Improves bandwidth

9 10

11 12

9/16/2020

4

INCREASING MEMORY BANDWIDTH

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

CACHE MEMORY
 Cache memory

 The level of the memory hierarchy closest to the CPU

 Given accesses X1, …, Xn–1, Xn

 How do we know if the data
is present?

 Where do we look?

TAGS AND VALID BITS

 How do we know which particular block is stored in a
cache location?
 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present

 Initially 0

HOW DO YOU DESIGN A DATA
CACHE FROM SRAM?

Say you want to store 8kbits (1kB)
of data in your cache using SRAM

 How many 32-bit words can you
store in your SRAM?

 How many address bits do you
need to access all words uniquely?

 If you have a 20-bit memory
address, how many bit remain?

13 14

15 16

9/16/2020

5

WHAT IS THIS TAG FIELD?

 We have 20-8 = 12 bits remaining of the memory address that become the TAG field

 Read the tag along with the data to see if this the data you desire.

 We have 8 bits of the address
used to access the data

 How do you distinguish between
address 1011100011 and
address 0111100011 ?

 We need to store a piece of the
memory address along with the
data. This is the TAG field

DIRECT MAPPED CACHE

 Location determined by address

 Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

 #Blocks is a power of 2
 Use low-order address

bits

CACHE EXAMPLE
 8-blocks, 1 word/block, direct mapped

 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

CACHE EXAMPLE

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

17 18

19 20

9/16/2020

6

CACHE EXAMPLE

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

CACHE EXAMPLE

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

CACHE EXAMPLE

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

CACHE EXAMPLE

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

21 22

23 24

9/16/2020

7

ADDRESS SUBDIVISION

 32 bits = 4 bytes (2
bits for byte offset)

 1024 unique blocks

 What is the data
capacity of this cache?
 210 * 22 =212 =4kB

 How many bits total
are required?
 Tag: 210 * 20 = 20,480

 Total = 4kB + 20,480

 Overhead: ~62%

CACHE MISSES

 On cache hit, CPU proceeds normally

 On cache miss
 Stall the CPU pipeline (wait for data for CPU to proceed)

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

BLOCK SIZE CONSIDERATIONS

 Larger blocks should reduce miss rate
 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks  fewer unique blocks

 More competition  increased miss rate

 Larger blocks  pollution (if spatial locality is weak)

 Larger miss penalty
 Takes longer to fill block with new data

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

ASSOCIATIVE CACHES

 Fully associative
 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries

 Block number determines which set
 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

25 27

28 34

9/16/2020

8

SPECTRUM OF ASSOCIATIVITY
 For a cache with 8 entries

ASSOCIATIVITY EXAMPLE

 Compare 4-block caches
 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

 Address 8, 0 conflict in the cache (data thrashing)

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

ASSOCIATIVITY EXAMPLE
 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative

Block
address

Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

SET ASSOCIATIVE CACHE ORGANIZATION

36 37

38 40

9/16/2020

9

MULTILEVEL CACHES

 Primary cache attached to CPU
 Small, but fast

 Level-2 cache services misses from primary cache
 Larger, slower, but still faster than main memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

MULTILEVEL CACHE EXAMPLE

 Given
 CPU base CPI = 1, clock rate = 4GHz  0.25ns per clock cycle

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

EXAMPLE (CONT.)

 Now add L-2 cache
 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

MAIN MEMORY SUPPORTING CACHES

 Use DRAMs for main memory
 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

42 43

44 46

9/16/2020

10

MEASURING CACHE PERFORMANCE

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles

 Mainly from cache misses

 With simplifying assumptions:

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory





CACHE PERFORMANCE EXAMPLE

 Given
 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

AVERAGE ACCESS TIME

 Hit time is also important for performance

 Average memory access time (AMAT)
 AMAT = Hit time + Miss rate × Miss penalty

 Example
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles,

I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

PERFORMANCE SUMMARY

 When CPU performance increased
 Miss penalty becomes more significant

 Decreasing base CPI
 Greater proportion of time spent on memory stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when evaluating system
performance

47 48

49 50

9/16/2020

11

INTERACTIONS WITH ADVANCED
CPUS

 Out-of-order CPUs can execute instructions during cache
miss
 Pending store stays in load/store unit

 Dependent instructions wait in reservation stations

 Independent instructions continue

 Effect of miss depends on program data flow
 Much harder to analyse

 Use system simulation

51

