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“You shall know a word by the
company it keeps!”

— J. R. Firth
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Behaviorism

"‘Behaviorism was developed with the mandate that

, namely that they must be
repeatable at different times and by independent
observers, were to be admissible as evidence. This
effectively dismissed introspection, the main technique of
psychologists following Wilhelm Wundt's experimental
psychology, the dominant paradigm in psychology in the
early twentieth century. Thus, behaviorism can be seen as

a form of materialism,

http://www.newworldencyclopedia.org/entry/Behaviorism



http://www.newworldencyclopedia.org/entry/Behaviorism

Firth (1957)

Language is a learned behavior, no different than
other learned behaviors

Restricted languages and registers
Collocations: word types -> meaning

Colligations: word categories -> syntax
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Look-ahead: Frege’s Sense and Reference

(for this Thursday)
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Contextualism vs.
"Linguistic Meaning”

“the robot”
~ "thte autonomous agent”
“‘that little guy”




Contextualism vs.
"Linguistic Meaning”




Discussion!
Firth

different contexts for same word “meaning”

non-linguistic context, including collocation vs. context,
augmented datasets (e.g. tagging)

emphasis/speech patterns

language vs. dialect

slips of the tongue—semantic or prosodic?

Alice in Wonderland...what else is lost in translation??

learning “online” without first enumerating all the collocations



Discussion!
VMSs

This paper is from 2010—have there been any fundamental advances since?

Matrix: multiple levels of context (words, subwords, phrases)? how are patterns chosen? do they
make sense out of context? how does context size effect meaning captured? can we model longer
phrases and/or morphological roots on the rows? can we put ngrams on the columns?

Frequencies: how should frequent vs. rare events factor into meaning? should/shouldn’t we care
more about rare events? what happens with unknown words in the test set?

Linear Algebraic Assumptions: what to make of the assumptions about vector spaces, e.g.
iInverses/associativity? is it fair to say that dimensionality reduction -> “higher order features™? why
can’t we represent arbitrary FOL statements?

Applications: plagiarism detection? text processing (tokenization/normalization)?

Evaluation/Similarity Metrics: should we model relational similarity directly (pair-pattern) or
implicitly, via vector arithmetic? could we reduce attributional similarity to relational similarity/when
would this help”? do these models only work well on “passive” tasks, or can they work in generation
tasks which require knowledge/state?

Bias/Ethics: how do we prevent these models from encoding biases in the data/evaluations? what
are the ethical implications e.g. “gaming the system” on resume cites, mining personal information?



Discussion!
word2vec

Matrix: word ordering, size of context
Frequency: effect of low frequency words, both on rows and columns +

Representations: what differs between parts of speech”? what do polysemous words look like?
can these capture different senses and more fine-grained “meanings” (e.g. speaker-
dependent, context-dependent)? generalizing to new languages?

Vector Arithmetic: what to make of it? why does France - Paris |= capitol? can this structure be
used to build e.g. ontologies? is the a + b - ¢ order-sensitive, or are they hiding some limitations
by focusing on this one type of operation?

Evaluation/Similarity: can these spaces capture different notions of similarity”? why does
syntax appear to be easier than semantics? why is it “not surprising” that the NN LM does
better than the RNN LM? why is skipgram better than CBOW at semantics? does it have to do
with averaging?

Loss Functions: would more complex loss functions help to learn e.g. transitive verbs? can
analogical reasoning relationships be trained directly/incorporated into loss? can multiple loss
functions be combined?

Efficiency: does computational complexity matter that much? is the point moot as machines
get faster?
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You shall know a word by the company it keeps!
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"landowner remorse”  Q
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Vector Space Models
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Vector Space Models

peace/region
enjoyable/blogk
of/surprise

duties/receivegd | |
to/morakot Relationship to

1942/field Firth’s ideas of
word classes/
abstraction?

Pair-Pattern

returns/golden

g/overtaken raction”
space/second Colligation*
infiltrated/hong | >- _ _
>~ g > X — O
O g w o -, O >: < > X
T X £ & > .9 > > D >
<X o X > > I
L =



Vector Space Models

supern landow palaiolo operativ adminis

chrissie berths pbackup roam PS .
ner gos e trative

markets | 1000 | 40 500 | 700 | 400 3 80 100 15 0




Vector Space Models
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Clarifications/
Procrastinations

* (Neural) Language Modeling:

* The quick brown fox ___ 7
* Stochastic gradient descent (“SGD”)

» Back-propagation (“Backprop”)



INPUT

w(t-2)

\

CBOW

PROJECTION OUTPUT




SkipGram
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Similarity Metrics

Cosine — cares about angle but not length
Dice/Jaccard — for sets/sparse vectors

Metrics with high vs. low frequency biases — What
would Firth say?

Use as features in ML models (“pretraining”)
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Optimizations/
Approximations

 How much should things like efficiency/scalability
matter in a theory of linguistic representation”

 What about computing exactly vs. approximately
vs. heuristically”? Word embeddings vs.

‘representation learning”?



L_Ingquistic Preprocessing

e [ypes vs. tokens

e Tokenization/Phrasal Collocations — what should we
consider to be the “basic units” of the language”

 Punctuation — "okay...” vs. "okay!”
 Normalization — “Trump” vs. “trump”
e Stop words — “pb and jelly” vs. “pb or jelly”

e Tagging — “fish tish tish fish fish”



Mathematical Preprocessing

Counts: one-hot, frequency, tf-idf/PMI
Limiting vocab size — problems?

Subsampling in Skipgram: drop words relative to
their frequency—what would Firth say about this”?

Dimensionality/sparsity — does a “bottle neck”
lead to better representations?



| 0SS Functions

e Softmax: is the predicted distribution (over all
words in the vocabulary) the right one”

e Hierarchical Softmax: represent loss function using

binary tree, so compute loss for log(V) nodes per
word, rather than V words per word.

 NCE/Negative Sampling: can you distinguish the
real word from a randomly drawn word (or actually,
K randomly drawn words)




It it isn't 11:40 or later, then the tact
that | am on this slide means you
didn't interrupt enough.

It 1t 1s 11:40 or later; well done, team!



Announcements

Reading for Thursday...there is less of it
Welcome Jonathan! Office hours TBD ()
Arun’s office hours: 5pm Wednesday

My office hours: 5pm this Friday (or some other
time”), Monday thereafter 4pm



Assignment 1 Is up!

* Quick overview (Arun)

 Due September 25 (in 2 weeks)



