Distributed Sagas for
Microservices

Da Huo, Yaxi Leli

Overview

e Challenges of microservices architectures
e Whatis “Saga” and where does the term come from

e Intro to distributed sagas
o Components
o Characteristics

e |Implementation Approaches
e AWS Step Functions as a Saga Execution Coordinator
e Detailed case study of distributed sagas

The Problem

Benefit of Microservices Architecture:

Scalability
Flexibility
Productivity

Challenges with Microservices Architecture:

It is hard to maintain the correctness & consistency in a distributed transaction

What is a transaction?

A set of operations that need to be performed together

e In monolithic systems:
o Use a single relational database to maintain ACID semantics
o Failure is all-or-nothing

e In microservices based systems:

o Different components/services can falil
o Hard to maintain correctness and consistency

Example of Distributed Transaction

Car
—_— Rental
Svec @
Rent Car
=
T EE— Hotel a0
Tlr\avel —Book Trip—>»{ Agent Book Hotel ——>| Reservation H -
pp Sve — Sve @ EEm EEn
- .
Book Flight
Airine * 3
! ReSErVAtion
Sve
A
S “

What if one of the services has failed?

Travel
App

——Book Trip—>|

Car
—@- o
Svc
? Rent Car
@
Travel | Hotel
Agent Book Hotel Reservation
Svc r— Sve
Book Flight
Aidine
Reservation
Sve

2 Phase Commit

Phase1:

e Coordinator ask all participants to
vote if ready to commit
e Participants vote

PhaseZ2:

e If all participants voted yes — Al
participants commit

e If any voted no — All participants
abort

app commit = req
votes

any abort =, dbort

all commit™® commit

Problems with 2PC

2PC does not scale

O(n”*2) messages required in worst case

Throughput is limited by the slowest node in the cluster
Coordinator is a single point of failure

Distributed Sagas

e A protocol for coordinating microservices
e A way to ensure data consistency in a distributed architecture without having
a single ACID transaction

Where does the term “Saga” come from?

The term Saga was first used in a database systems research paper in 1987

SAGAS

Hector Gareia-Molina
Kenneth Salem

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

Long hived transactions (LLTs) hold on to
database resources for relatively long periods of
time, significantly delaying the termunation of
shorter and more common transactions To
alleviate these problems we propose the notion of
asaga A LLT 1s a saga if 1t can be written as a
sequence of transactions that can be interleaved
with other transactions The database manage-
ment system guarantees that either all the tran-
sactions 1n a saga are successfully completed or
compensating transactions are run to amend a
partial execution Both the concept of saga and

the majority of other transactions either because
1t accesses many database objects, 1t has lengthy
computations, it pauses for inputs from the users,
or a combmation of these factors Examples of
LLTs are transactions to produce monthly
account statements at a bank, transactions to
process claims at an insurance company, and
transactions to collect statistics over an entire
database [Gray8la|

In most cases, LLTs present serious perfor-
mance problems Since they are transactions, the
system must execute them as atomic actions, thus
preserving the consistency of the
Toa.n . ML e

- Ve atl e cmabee o Aeaa

Challenges with DBMS in 1987

e Long lived transactions hold on to database resources for a long period of

time causing the delay of other lighter and more common transactions
o Lock resources for the entire duration of transaction
o Other transactions have to wait until the long lived transactions to finished
e Example of long lived transactions:

o Produce monthly bank statements at a bank
o Collect statistics over the entire database

Solution

e Find and break sagas into a set of sub-transactions
e Execute sub-transactions and lock resources separately
e If any sub-transaction failed, execute compensating transactions for their

corresponding completed sub-transactions
o A compensating transaction semantically undoes its corresponding transactions

o Covered in detail in later slides

What is a Saga”?

e In DBMS:

A saga is a long lived transaction that can be broken up into a collection of
sub-transactions that can be interleaved in any way with other transactions

e |n Distributed Systems / Microservices:
A Saga represents a high-level business process that consists of several

low-level Requests that each update data within a single service

Book Trip is a Saga consists of Book car, Book hotel, and Book flight

Rent Car

Travel
App

——Book Trip—»

Travel
Agent
Sve

Book

Book

Car
Rental

Svc @

Hote| =———>

Hotel
Reservation
Sve

S

Flight

Aidine
Reservation
Sve

S

Distributed Sagas

A distributed saga contains 2 parts:

e A collection of requests
o Example: Book hotel, Book car, Book flight

e Compensating requests for each request
o Semantically undoes it’s corresponding request
o Cancel hotel, Cancel car, Cancel flight

Characteristics of distributed sagas requests

e Requests can abort (service can reject a request at any time)
e Requests must be idempotent

Characteristics of compensating requests

e Compensating requests CANNOT abort
e Compensating requests must be idempotent
e Compensating requests must be commutative

© Book hotel = Cancel hotel
Cancel hotel Book hotel

Guarantees of Distributed Sagas

With distributed sagas, one of the follow two outcomes will happen:

1. All requests are successfully completed
2. Asubset of requests and their compensating requests are executed

Distributed Sagas Implementation Approaches

1. Event-driven choreography
2. Orchestration

Event-driven choreography

No central coordination
Each service will produce
and consume to events of

[
=)
other services and decide ‘
what actions to take Client Request

S

Service A
/ >
D)«

Message broke\

NS

Service C

Benefit of Event-driven choreography

e Does not require additional coordinator logic implementation and
maintenance
e No single point of failure

Drawbacks of Event-driven choreography

e \Workflow can be confusing as the microservice architecture gets increasingly
complex

e Risk of cyclic dependency between services (A consumes events from B, B
consumes events from A)

Orchestration

A centralized coordinator service is responsible for decision making
Coordinator stores and interprets Saga’s current state

Coordinator tells services what requests to execute

Coordinator handles failure recovery by executing compensating requests

& .-g

Orchestrator Service A

Client request \‘
N =
."<: g Ser.vice B

N

Service C

Benefit of Orchestration

e Clear workflow for complex systems with many participants
e Does not introduce cyclic dependencies

Drawbacks of Orchestration

e Additional logic implementation and maintenance for the coordinator
e Coordinator is an additional point of failure

Define a Distributed Saga - AWS States Language

AWS States Language

{

"Comment": "Hello World example", . Start |
"StartAt": "HelloWorld®™, :
"States": {]
"HelloWorld": {
"Type": "Task",the HelloWorld
"Resource": "<lambdaARN>", l
"End": true

} - End
}
}

Define a Distributed Saga - Saga Execution Coordinator

e Saga Execution Coordinator

O

Store & Interprets the Saga’s
state machine
Execute the steps of Saga
m Interact with services
Handles failure recovery
m Executes compensating
actions

e AWS Step function

O

Serverless orchestration
services

Based on state machines and
tasks

Could performs other AWS
Service

Define a Distributed Saga - Case Study

"Comment": "A distributed saga example.",
"StartAt": "BookTrip",
"States": {
"BookTrip": {
"Type'": "Parallel",
"Next": "Trip Booking Successful",
"Branches": [
{
"StartAt": "BookHotel",
"States": {
"BookHotel": {

"Type": "Task",

"Resource":
"arn:aws:lambda: {YOUR AWS REGION}:{YOUR AWS ACCOUNT ID}:fu
nction:serverless-sagas-dev-bookHotel",

"ResultPath": "S$.BookHotelResult",

"End": true

"StartAt": "BookFlight",

Define a Distributed Saga - Case Study

"Catch": [
{
"ErrorEquals": ["States.ALL"],
"ResultPath": "$.BookTripError",
"Next": "Trip Booking Failed"

]
}l
"Trip Booking Failed": {
"Type": "Pass",
"Next": "CancelTrip"
}l
"CancelTrip": {
"Type": "Parallel",
"Next": "Trip Booking Cancelled",
"Branches": [
{
"StartAt": "CancelHotel",
"States": {
"CancelHotel™: {
"Type": "Task",
"Resource":

"arn:aws:lambda: {YOUR AWS REGION}:{YOUR AWS ACCOUNT ID}:fu

nction:serverless-sagas-dev-cancelHotel",

| start

I'

o bt
= _

T

Executing a Distributed Sagas - Case Study

Saga Log

Book Trip Request

{

"Name": "Caitie McCaffrey",
"Destination": "Malaga, Spain",
"Start Date": "2017-05-17",
"End Date": "2017-05-20",
"Payment Token":

"Tm90IG15IHI1YWwgY3J12G10IGNhcmQgawsmbyA6KQ==",

"Price": "2500USD"

|

Start Saga |—

+— | S€C

FJEEEEEERERZ

Start Saga

Car Hotel Flight

End Saga

Executing a Distributed Sagas - Case Study

S'aga, Log

Start Saga

Book Trip Request

{
"Name": "Caitie McCaffrey",
"Destination": "Malaga, Spain",

"Start Date": "2017-05-17",
"End Date": "2017-05-20",
"Payment Token":
"Tm90IG15IHI1YWwgY3J1Z2G10IGNhcmQgaWw5SmbyA6KQ==",
"Price": "2500USD"

}

Done
il

" Start Saga@®

i B B EEERN J |

I\

Hi % ?
Hotel Flight

\l/

Payment

|

End Saga

Executing a Distributed Sagas - Case Study

ﬁ
Start Saga

Start Saga@®

Start Hotel [] T-I-— "
Car Hotel Flight
$
Payment

|

End Saga

S'aga, [,og

Executing a Distributed Sagas - Case Study

Start Saga

Start Hotel

Saga Log

Start Saga@

ek

& *
Car Hotel Flight
$
Payment

|

End Saga

Executing a Distributed Sagas - Case Study

Start Saga
Start Saga@®
Start Hotel \
o - FE I 4t
SeC - -
é ar . . Flight
Book Hotel ' m HOtEl . g
\p)
5 Request \ l /
) {
§\ "Name": "Caitie McCaffrey",
(Vo "Destination": "Malaga, Spain", $
"Start Date": "2017-05-17",
"End Date": "2017-05-20"
} Payment

End Saga

Executing a Distributed Sagas - Case Study

S'a@a, Log

—
Start Saga

Start Hotel

Book Hotel
Response

"Success"

Sec

TO

"true"

Conflrmat ion Number :

}

Start Saga@

/1\

Car . Hotel Fllght
$
Payment

|

End Saga

Executing a Distributed Sagas - Case Study

Start Saga

B Start SagaQ

Start Hotel / \

EndHotel [
= = f e
b

Hotel Fllght

\l/

Payment

}

End Saga

S'aga, [x)g

Executing a Distributed Sagas - Case Study

Saga Log

—
Start Saga

Start Hotel

End Hotel

Done

Start Saga@

/1\

@

\ Hotel Fl'ght
Payment

|

End Saga

Executing a Distributed Sagas - Case Study

—
Start Saga

Start Hotel

End Hotel

Start Car

“Success”

Start Flight

- End Flight

S'xga, [pg

Start Payment
+—

a \"/’)

Start Saga@®

A ke T
A =% 5
H N - f\f"ap
Eng ; :
1 mb “/i‘l 0
—

Car Hotel Flight
Payment

4

End Saga

Executing a Distributed Sagas - Case Study

Start Saga

Start Hotel

End Hotel

firmation Nusber®: “WXY12)

Start Car

End Car

firmation Nusber®: "ADCA56”

Start Flight

End Flight

‘Confirmation Number

S'aga, Log

Start Payment

Start SagaQ

71\

r 111 Q P
Done C R Q _H_ E:’ > b
— 0
‘ Car Hotel Flight
Payment \ l /

Request EEEEEEEES
{ @ g
"Payment Token": m $ -
"Tm90IG15IHI1YWwgY3J12G10IGNhcmQgaWsmbyA6KQ==", o E|
"Amount": "2500USD" ® m
} = Payment »
‘essspunanl

v

TS

End Saga

Executing a Distributed Sagas - Case Study

Saga Log

Start Saga

Start Hotel

End Hotel

firnation Wusber®: “WXY12)

Start Car

End Car

“Contirmation Nusber

ABCA56”

Start Flight

End Flight

Start Payment

End Payment

Payment

Response I

{

"success": tru

"Invoice Number": 12345

}

$

=8

Start Saga@®

Car Hotel Flight
: Payment -

End Saga

Executing a Distributed Sagas - Case Study

Saga Log

Start Saga

Start Hotel

End Hotel

Start Car

End Car

Start Flight

End Flight

firmation Nusber®: “789QPE

Start Payment

End Payment

ess .
ice Number®: 12345

Start Saga@

o]
]

Payment -

End Saga

Executing a Distributed Sagas - Case Study

Start §aga

Start Hotel

End Hotel

Start Car

End Car

Start Flight
E A End Flight
V§; Start Payment

End Payment

success”: 1
nvoice Number®: 12345

End Saga

Start Saga@®

7N

Car Hotel Flight

D A
" @

Payment

|

EEEEEEENm

End Saga ;’?

I E N E RN _J

Executing a Distributed Sagas - Case Study

.Shga,fog

Start Saga

Start Hotel

End Hotel

Start Car

End Car

Start Flight

End Flight

Start Payment

End Payment

ccess”: .
voice Number®: 12345

End Saga

Done

S€ec

S

Start Saga@

/}?\

-
& 4 0 % b
Car Hotel Flight

N VS
@

Payment

|

G I EEEEEENR

“ End Saga e

Femmnmi

Failure of a Distributed Sagas

Distributed Sagas - Failure Rollback Recovery

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

S'aqa, Log

f—
Book Car
Request
{

"Name": "Caitie McCaffrey",

"Destination": "Malaga, Spain",

"Start Date": "2017-05-17",
"End Date": "2017-05-20"

}

b.
3

Start Saga@®
» : g T
Car 1 Hotel Flight

$

Payment

}

End Saga

Distributed Sagas - Failure Rollback Recovery

Saga Log

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Abort Car
:

A
Book Car

Response x

9.
&

Start Saga@®

<N

@ 'J ;0 W/%

\ Hotel Flight
Payment

}

End Saga

Distributed Sagas - Failure Rollback Recovery

Saga Log

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Done

Abort Car

» | S€C

S

9.
&

Start Saga@®

/1\

=]

@ 0 /*\?

\ Hotel Fllght
Payment

|

End Saga

Distributed Sagas - Failure Rollback Recovery

—
Start Saga

== End Comp Saga

Start Hotel
End Hotel / T \

Start Flight e - N %
Start Car 6 H:: %Y
Abort Car i

) Car Hotel Flight

Saga, Log
—

Payment

T

Start Comp Saga

Distributed Sagas - Failure Rollback Recovery

Start Saga
‘ End Comp Saga
Start Hotel
End Hotel / T \
Start Flight Payment Log —] -
Start Car Entries? @ Ha % ﬁ'
Abort Car -
é Car Hotel Flight
Np)
3 \ /
§ g ul Tﬁ
A -
?Payrn_ent .

Start Comp Sag{®)

Distributed Sagas - Failure Rollback Recovery

S’aqa, Log

—
Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Abort Car

{} >

End Comp Saga

/1\

@ i
Hotel Fllght
. o
Paymenfc

7

Start Comp Sag@®)

Distributed Sagas - Failure Rollback Recovery

S'aga, Log

Start Saga

Start Hotel

End Hotel

firmation Wusbar™: "WXY12

Start Flight

Start Car

Abort Car

Car Log Co—

Entries?
e

End Comp Saga

/r\

db » H|iE <t

Hotel Fllght

\r/
/)

Payment

T

Start Comp Sag{)

Distributed Sagas - Failure Rollback Recovery

S'aga, Log

Start §aga

Start Hotel

End Hotel

Start Flight

Start Car

{Start, Abort } r—

Abort Car

> e A

End Comp Saga

Payment

T

Start Comp Sag#{®)

Distributed Sagas - Failure Rollback Recovery

Start Saga
PR End Comp Saga
Start Hotel

End Hotel / T \

Start Flight Hotel Log — il " -’
Start Car EnfriesD Q . - A |
— == 3

Abort Car »
é Car [Hotel : Flight

S'a@a, Log
—

Payment

T

Start Comp Sag#{®)

Distributed Sagas - Failure Rollback Recovery

Start Saga

— End Comp Saga

Start Hotel

End Hotel / T \
Start Flight 'S AR W -

_ . r___Li1 : i
startcar | {5tart End) iy @ Ei <t
Abort Car > : - .
‘ Car : Hotel I Fllght

t
"o

Payment

T

Start Comp Sag@)

Saga. [,og

Distributed Sagas - Failure Rollback Recovery

Start Saga
s — End Comp Saga

Start Hotel

End Hotel / T \
Start Fl|ght L, HENR A\J] LLJ <

C — - =%
Start Car {Start, End } Q E H:: _J % ?
Abort Car > T T .
'\ Car | Hotel - Flight

Cancel Hotel SsaREEEnm
Request \ T /V
{

"Name": "Caitie McCaffrey",

"Confirmation Number": "WXY123" $
> v

S'aqa, Log

Payment

T

Start Comp Sag{®)

Distributed Sagas - Failure Rollback Recovery

Start Saga

End Comp Saga
Start Hotel
End Hotel / T \

Start Flight FEEEgEEE, S
sartcar | _Comp Hotel oy ¢ HE oo«
ol Car E Hotel 2 Fllght

Cancel Hotel SaaEmEmm
Response T \ T /

{

"success": "true",

"Confirmation Number": "WXy123" $ 0

Saga. Log

}
Payment

T

Start Comp Sag#{®)

Distributed Sagas - Failure Rollback Recovery

.Shga,fog

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Abort Car

Comp Hotel

Done
1>
&

End Comp Saga

P Hotel Flight
0
Payment

TA

Start Comp Sag{®)

Distributed Sagas - Failure Rollback Recovery

Start Saga

e End Comp Saga
Start Hotel
End Hotel / T \

Start Flight Flight Log [— —nn] -l
Start Car Entries? Q H 0 "%t 5
Abort Car : .

— o Car Hotel I Flight -

Nt LS
@

Payment

T

Start Comp Sag{®)

S’aga, [ﬁg

Distributed Sagas - Failure Rollback Recovery

—
Start Saga

i End Comp Saga

Start Hotel

End Hotel / T \

Start Flight — g il
C R ammunn == ‘

Start Car { Start} Q .I.-! Ei s % @

Abort Car > B 0 v

é Car Hotel = Flight .
Comp Hotel ote = - RN}

NNt S
" @

Payment

T

Start Comp Sag{®)

Saga Log

Distributed Sagas - Failure Rollback Recovery

Start Saga
"""" End Comp Saga
Start Hotel
End Hotel
Start Flight
CR
Start Car { Start }
Comp Hotel Book Flight
S
=3 Request
) {
sﬁ "Name": "Caitie McCaffrey",
Vs "Destination": "Malaga, Spain",
"Start Date": "2017-05-17",
"End Date": "2017-05-20"
} Payment
S
=N Start Comp Sag®)

Distributed Sagas - Failure Rollback Recovery

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Abort Car

Comp Hotel

.Shga,fng

End Flight
¢ —

Book Flight
Response

"Success

"Confirmation Number H

}

T

*s "true™

~&

ERLS

"789QPZ"

End Comp Saga

71N\
- ® o wj

Car Hotel - f.l!g,hg
T
" @

Payment

T‘

Start Comp Sag{®)

Distributed Sagas - Failure Rollback Recovery

Shga,[og

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Done

Abort Car

Comp Hotel

» | S€C

Cancel Flight
Request

{

}

"Name": "Caitie McCaffrey",

"Confirmation Number": "789QPzZ"

v

38
A

End Comp Saga

Payment

AT

Start Comp Sag{®)

Distributed Sagas - Failure Rollback Recovery

Skga,fog

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Abort Car

Comp Hotel

End Flight

Comp Flight :
— e,
Cancel Flight
Response
"Success": "true"
"Confi rmat ion Num.ber : "789QPZ"

}

&

ERIS

End Comp Saga

7N
&y fg i?f’t

Car Hotel - Fllght -

Nt
/)

Payment

T

Start Comp Sag®)

I

il
i
a

@

Distributed Sagas - Failure Rollback Recovery

Saga Log

Start Saga

Start Hotel

End Hotel

Start Flight

Start Car

Abort Car

Comp Hotel

End Flight

Comp Flight

Done
- e,
&

S
A

End Comp Saga
Q mm 2b s % 7‘
Car Hotel . Flight -

. fF
@

Payment

T

Start Comp Sag{)

Distributed Sagas - Failure Rollback Recovery

[~ Start Saga | - e e
Rt End Comp Saga
Start Hotel I EEEEEEEN
End Hotel / T \
Start Flight — - N %
Start Car End Saga Q E: % b
Abort Car 0 .
Comp Hotel ‘ Car Hotel Fllght
) =
S End Flight \ /
§ 2 it S T
5 Comp Flight $ 0
Payment
Start Comp Sag®)

Distributed Sagas - Failure Rollback Recovery

Start Saga - o .
- End Comp Sagae
Start Hotel 3 Th‘frﬁzﬁfr 3
End Hotel / T
Start Flight e <&
Start Car Done Q H E& % b
Abort Car > C]
Comp Hotel ‘ ar Hotel Fllght
E‘ End Flight \ T /V
) »fﬁ:ff:;.'t,ui,’;l.m‘ wsorz
A ' @
Payment
Start Comp Sag{)

Future direction

e Provide isolation

e Handle the failure of compensating request
e Provide debugging tool for saga pattern

Q&A

How is isolation achieved in Saga?

How does distributed saga implement compensating request?
How does distributed saga handle coordinator failing?

What if compensating transaction failed?

Reference

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microser
vices-architecture/

https://medium.com/@ijayakantha/microservices-the-saga-pattern-for-distributed-transactions-c489d0
ac0247

https://yos.i0/2017/10/30/distributed-sagas/

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture/
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture/
https://medium.com/@ijayakantha/microservices-the-saga-pattern-for-distributed-transactions-c489d0ac0247
https://medium.com/@ijayakantha/microservices-the-saga-pattern-for-distributed-transactions-c489d0ac0247
https://yos.io/2017/10/30/distributed-sagas/
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

