Distributed Sagas for
Microservices

Da Huo, Yaxi Leli



Overview

e Challenges of microservices architectures
e Whatis “Saga” and where does the term come from

e Intro to distributed sagas
o Components
o Characteristics

e |Implementation Approaches
e AWS Step Functions as a Saga Execution Coordinator
e Detailed case study of distributed sagas



The Problem

Benefit of Microservices Architecture:

Scalability
Flexibility
Productivity

Challenges with Microservices Architecture:

It is hard to maintain the correctness & consistency in a distributed transaction



What is a transaction?

A set of operations that need to be performed together

e In monolithic systems:
o Use a single relational database to maintain ACID semantics
o Failure is all-or-nothing

e In microservices based systems:

o Different components/services can falil
o Hard to maintain correctness and consistency
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What if one of the services has failed?
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2 Phase Commit

Phase1:

e Coordinator ask all participants to
vote if ready to commit
e Participants vote

PhaseZ2:

e If all participants voted yes — Al
participants commit

e If any voted no — All participants
abort

app commit = req
votes

any abort =, dbort

all commit™® commit



Problems with 2PC

2PC does not scale

O(n”*2) messages required in worst case

Throughput is limited by the slowest node in the cluster
Coordinator is a single point of failure



Distributed Sagas

e A protocol for coordinating microservices
e A way to ensure data consistency in a distributed architecture without having
a single ACID transaction



Where does the term “Saga” come from?

The term Saga was first used in a database systems research paper in 1987
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Hector Gareia-Molina
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Abstract

Long hived transactions (LLTs) hold on to
database resources for relatively long periods of
time, significantly delaying the termunation of
shorter and more common transactions To
alleviate these problems we propose the notion of
asaga A LLT 1s a saga if 1t can be written as a
sequence of transactions that can be interleaved
with other transactions The database manage-
ment system guarantees that either all the tran-
sactions 1n a saga are successfully completed or
compensating transactions are run to amend a
partial execution Both the concept of saga and

the majority of other transactions either because
1t accesses many database objects, 1t has lengthy
computations, it pauses for inputs from the users,
or a combmation of these factors Examples of
LLTs are transactions to produce monthly
account statements at a bank, transactions to
process claims at an insurance company, and
transactions to collect statistics over an entire
database [Gray8la|

In most cases, LLTs present serious perfor-
mance problems Since they are transactions, the
system must execute them as atomic actions, thus
preserving the consistency of the
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Challenges with DBMS in 1987

e Long lived transactions hold on to database resources for a long period of

time causing the delay of other lighter and more common transactions
o Lock resources for the entire duration of transaction
o  Other transactions have to wait until the long lived transactions to finished
e Example of long lived transactions:

o  Produce monthly bank statements at a bank
o Collect statistics over the entire database



Solution

e Find and break sagas into a set of sub-transactions
e Execute sub-transactions and lock resources separately
e If any sub-transaction failed, execute compensating transactions for their

corresponding completed sub-transactions
o A compensating transaction semantically undoes its corresponding transactions

o Covered in detail in later slides



What is a Saga”?

e In DBMS:

A saga is a long lived transaction that can be broken up into a collection of
sub-transactions that can be interleaved in any way with other transactions

e |n Distributed Systems / Microservices:
A Saga represents a high-level business process that consists of several

low-level Requests that each update data within a single service



Book Trip is a Saga consists of Book car, Book hotel, and Book flight
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Distributed Sagas

A distributed saga contains 2 parts:

e A collection of requests
o Example: Book hotel, Book car, Book flight

e Compensating requests for each request
o Semantically undoes it’s corresponding request
o Cancel hotel, Cancel car, Cancel flight



Characteristics of distributed sagas requests

e Requests can abort (service can reject a request at any time)
e Requests must be idempotent

Characteristics of compensating requests

e Compensating requests CANNOT abort
e Compensating requests must be idempotent
e Compensating requests must be commutative

© Book hotel = Cancel hotel
Cancel hotel Book hotel



Guarantees of Distributed Sagas

With distributed sagas, one of the follow two outcomes will happen:

1. All requests are successfully completed
2. Asubset of requests and their compensating requests are executed



Distributed Sagas Implementation Approaches

1. Event-driven choreography
2. Orchestration



Event-driven choreography

No central coordination
Each service will produce
and consume to events of

[
=)
other services and decide ‘
what actions to take Client Request

S

Service A
/ >
D)«

Message broke\

NS

Service C



Benefit of Event-driven choreography

e Does not require additional coordinator logic implementation and
maintenance
e No single point of failure

Drawbacks of Event-driven choreography

e \Workflow can be confusing as the microservice architecture gets increasingly
complex

e Risk of cyclic dependency between services (A consumes events from B, B
consumes events from A)



Orchestration

A centralized coordinator service is responsible for decision making
Coordinator stores and interprets Saga’s current state

Coordinator tells services what requests to execute

Coordinator handles failure recovery by executing compensating requests
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Benefit of Orchestration

e Clear workflow for complex systems with many participants
e Does not introduce cyclic dependencies

Drawbacks of Orchestration

e Additional logic implementation and maintenance for the coordinator
e Coordinator is an additional point of failure



Define a Distributed Saga - AWS States Language

AWS States Language

{

"Comment": "Hello World example", . Start |
"StartAt": "HelloWorld®™, :
"States": { ]
"HelloWorld": {
"Type": "Task",the HelloWorld
"Resource": "<lambdaARN>", l
"End": true

} - End
}
}



Define a Distributed Saga - Saga Execution Coordinator

e Saga Execution Coordinator

O

Store & Interprets the Saga’s
state machine
Execute the steps of Saga
m Interact with services
Handles failure recovery
m Executes compensating
actions

e AWS Step function

O

Serverless orchestration
services

Based on state machines and
tasks

Could performs other AWS
Service



Define a Distributed Saga - Case Study

"Comment": "A distributed saga example.",
"StartAt": "BookTrip",
"States": {
"BookTrip": {
"Type'": "Parallel",
"Next": "Trip Booking Successful",
"Branches": [
{
"StartAt": "BookHotel",
"States": {
"BookHotel": {

"Type": "Task",

"Resource":
"arn:aws:lambda: {YOUR AWS REGION}:{YOUR AWS ACCOUNT ID}:fu
nction:serverless-sagas-dev-bookHotel",

"ResultPath": "S$.BookHotelResult",

"End": true

"StartAt": "BookFlight",



Define a Distributed Saga - Case Study

"Catch": [
{
"ErrorEquals": ["States.ALL"],
"ResultPath": "$.BookTripError",
"Next": "Trip Booking Failed"

]
}l
"Trip Booking Failed": {
"Type": "Pass",
"Next": "CancelTrip"
}l
"CancelTrip": {
"Type": "Parallel",
"Next": "Trip Booking Cancelled",
"Branches": [
{
"StartAt": "CancelHotel",
"States": {
"CancelHotel™: {
"Type": "Task",
"Resource":

"arn:aws:lambda: {YOUR AWS REGION}:{YOUR AWS ACCOUNT ID}:fu

nction:serverless-sagas-dev-cancelHotel",
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Executing a Distributed Sagas - Case Study

Saga Log

Book Trip Request

{

"Name": "Caitie McCaffrey",
"Destination": "Malaga, Spain",
"Start Date": "2017-05-17",
"End Date": "2017-05-20",
"Payment Token":

"Tm90IG15IHI1YWwgY3J12G10IGNhcmQgawsmbyA6KQ==",

"Price": "2500USD"

|

Start Saga  |—
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Start Saga

Car Hotel Flight

End Saga



Executing a Distributed Sagas - Case Study

S'aga, Log

Start Saga

Book Trip Request

{
"Name": "Caitie McCaffrey",
"Destination": "Malaga, Spain",

"Start Date": "2017-05-17",
"End Date": "2017-05-20",
"Payment Token":
"Tm90IG15IHI1YWwgY3J1Z2G10IGNhcmQgaWw5SmbyA6KQ==",
"Price": "2500USD"

}

Done
il
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Executing a Distributed Sagas - Case Study

ﬁ
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Executing a Distributed Sagas - Case Study
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Executing a Distributed Sagas - Case Study

Start Saga
Start Saga@®
Start Hotel \
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\p)
5 Request \ l /
) {
§\ "Name": "Caitie McCaffrey",
(Vo "Destination": "Malaga, Spain", $
"Start Date": "2017-05-17",
"End Date": "2017-05-20"
} Payment

End Saga



Executing a Distributed Sagas - Case Study

S'a@a, Log
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Response
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Executing a Distributed Sagas - Case Study
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Executing a Distributed Sagas - Case Study

Saga Log
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Executing a Distributed Sagas - Case Study
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Executing a Distributed Sagas - Case Study

Start Saga

Start Hotel

End Hotel

firmation Nusber®: “WXY12)

Start Car

End Car
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Start Flight
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Executing a Distributed Sagas - Case Study

Saga Log

Start Saga

Start Hotel

End Hotel

firnation Wusber®: “WXY12)

Start Car

End Car

“Contirmation Nusber

ABCA56”

Start Flight

End Flight

Start Payment

End Payment

Payment

Response I

{

"success": tru

"Invoice Number": 12345

}
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Executing a Distributed Sagas - Case Study

Saga Log
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Start Hotel
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Executing a Distributed Sagas - Case Study
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Executing a Distributed Sagas - Case Study
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Failure of a Distributed Sagas



Distributed Sagas - Failure Rollback Recovery

Start Saga

Start Hotel
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Distributed Sagas - Failure Rollback Recovery

Saga Log
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Distributed Sagas - Failure Rollback Recovery

Saga Log

Start Saga
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery

Saga Log
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Distributed Sagas - Failure Rollback Recovery
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Distributed Sagas - Failure Rollback Recovery
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Future direction

e Provide isolation

e Handle the failure of compensating request
e Provide debugging tool for saga pattern



Q&A

How is isolation achieved in Saga?

How does distributed saga implement compensating request?
How does distributed saga handle coordinator failing?

What if compensating transaction failed?
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