
Distributed Sagas for
Microservices

Da Huo, Yaxi Lei

Overview

● Challenges of microservices architectures
● What is “Saga” and where does the term come from
● Intro to distributed sagas

○ Components
○ Characteristics

● Implementation Approaches
● AWS Step Functions as a Saga Execution Coordinator
● Detailed case study of distributed sagas

The Problem
Benefit of Microservices Architecture:

● Scalability
● Flexibility
● Productivity
● ...

Challenges with Microservices Architecture:

It is hard to maintain the correctness & consistency in a distributed transaction

What is a transaction?

A set of operations that need to be performed together

● In monolithic systems:
○ Use a single relational database to maintain ACID semantics
○ Failure is all-or-nothing

● In microservices based systems:
○ Different components/services can fail
○ Hard to maintain correctness and consistency

Example of Distributed Transaction

What if one of the services has failed?

2 Phase Commit
Phase1:

● Coordinator ask all participants to
vote if ready to commit

● Participants vote

Phase2:

● If all participants voted yes → All
participants commit

● If any voted no → All participants
abort

Problems with 2PC
● 2PC does not scale
● O(n^2) messages required in worst case
● Throughput is limited by the slowest node in the cluster
● Coordinator is a single point of failure

Distributed Sagas
● A protocol for coordinating microservices
● A way to ensure data consistency in a distributed architecture without having

a single ACID transaction

Where does the term “Saga” come from?
● The term Saga was first used in a database systems research paper in 1987

Challenges with DBMS in 1987
● Long lived transactions hold on to database resources for a long period of

time causing the delay of other lighter and more common transactions
○ Lock resources for the entire duration of transaction
○ Other transactions have to wait until the long lived transactions to finished

● Example of long lived transactions:
○ Produce monthly bank statements at a bank
○ Collect statistics over the entire database

Solution
● Find and break sagas into a set of sub-transactions
● Execute sub-transactions and lock resources separately
● If any sub-transaction failed, execute compensating transactions for their

corresponding completed sub-transactions
○ A compensating transaction semantically undoes its corresponding transactions
○ Covered in detail in later slides

What is a Saga?
● In DBMS:

A saga is a long lived transaction that can be broken up into a collection of
sub-transactions that can be interleaved in any way with other transactions

● In Distributed Systems / Microservices:

A Saga represents a high-level business process that consists of several

 low-level Requests that each update data within a single service

Book Trip is a Saga consists of Book car, Book hotel, and Book flight

Distributed Sagas
A distributed saga contains 2 parts:

● A collection of requests
○ Example: Book hotel, Book car, Book flight

● Compensating requests for each request
○ Semantically undoes it’s corresponding request
○ Cancel hotel, Cancel car, Cancel flight

Characteristics of distributed sagas requests
● Requests can abort (service can reject a request at any time)
● Requests must be idempotent

Characteristics of compensating requests
● Compensating requests CANNOT abort
● Compensating requests must be idempotent
● Compensating requests must be commutative

○ Book hotel
Cancel hotel

= Cancel hotel
Book hotel

Guarantees of Distributed Sagas
With distributed sagas, one of the follow two outcomes will happen:

1. All requests are successfully completed
2. A subset of requests and their compensating requests are executed

Distributed Sagas Implementation Approaches
1. Event-driven choreography
2. Orchestration

Event-driven choreography
● No central coordination
● Each service will produce

and consume to events of
other services and decide
what actions to take

Benefit of Event-driven choreography
● Does not require additional coordinator logic implementation and

maintenance
● No single point of failure

Drawbacks of Event-driven choreography
● Workflow can be confusing as the microservice architecture gets increasingly

complex
● Risk of cyclic dependency between services (A consumes events from B, B

consumes events from A)

Orchestration
● A centralized coordinator service is responsible for decision making
● Coordinator stores and interprets Saga’s current state
● Coordinator tells services what requests to execute
● Coordinator handles failure recovery by executing compensating requests

Benefit of Orchestration
● Clear workflow for complex systems with many participants
● Does not introduce cyclic dependencies

Drawbacks of Orchestration
● Additional logic implementation and maintenance for the coordinator
● Coordinator is an additional point of failure

Define a Distributed Saga - AWS States Language

Define a Distributed Saga - Saga Execution Coordinator

● Saga Execution Coordinator
○ Store & Interprets the Saga’s

state machine
○ Execute the steps of Saga

■ Interact with services
○ Handles failure recovery

■ Executes compensating
actions

● AWS Step function
○ Serverless orchestration

services
○ Based on state machines and

tasks
○ Could performs other AWS

Service

Define a Distributed Saga - Case Study
{
 "Comment": "A distributed saga example.",
 "StartAt": "BookTrip",
 "States": {
 "BookTrip": {
 "Type": "Parallel",
 "Next": "Trip Booking Successful",
 "Branches": [
 {
 "StartAt": "BookHotel",
 "States": {
 "BookHotel": {
 "Type": "Task",
 "Resource":
"arn:aws:lambda:{YOUR_AWS_REGION}:{YOUR_AWS_ACCOUNT_ID}:fu
nction:serverless-sagas-dev-bookHotel",
 "ResultPath": "$.BookHotelResult",
 "End": true
 }
 }
 },
 {
 "StartAt": "BookFlight",
 ……………,

Define a Distributed Saga - Case Study
"Catch": [
 {
 "ErrorEquals": ["States.ALL"],
 "ResultPath": "$.BookTripError",
 "Next": "Trip Booking Failed"
 }
]
 },
 "Trip Booking Failed": {
 "Type": "Pass",
 "Next": "CancelTrip"
 },
 "CancelTrip": {
 "Type": "Parallel",
 "Next": "Trip Booking Cancelled",
 "Branches": [
 {
 "StartAt": "CancelHotel",
 "States": {
 "CancelHotel": {
 "Type": "Task",
 "Resource":
"arn:aws:lambda:{YOUR_AWS_REGION}:{YOUR_AWS_ACCOUNT_ID}:fu
nction:serverless-sagas-dev-cancelHotel",

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Executing a Distributed Sagas - Case Study

Failure of a Distributed Sagas

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Distributed Sagas - Failure Rollback Recovery

Future direction
● Provide isolation
● Handle the failure of compensating request
● Provide debugging tool for saga pattern

Q&A
● How is isolation achieved in Saga?
● How does distributed saga implement compensating request?
● How does distributed saga handle coordinator failing?
● What if compensating transaction failed?

Reference
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga

https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microser
vices-architecture/

https://medium.com/@ijayakantha/microservices-the-saga-pattern-for-distributed-transactions-c489d0
ac0247

https://yos.io/2017/10/30/distributed-sagas/

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture/
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture/
https://medium.com/@ijayakantha/microservices-the-saga-pattern-for-distributed-transactions-c489d0ac0247
https://medium.com/@ijayakantha/microservices-the-saga-pattern-for-distributed-transactions-c489d0ac0247
https://yos.io/2017/10/30/distributed-sagas/
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

