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Outline

e Problem: Track state over time

— State = position, orientation of robot (condition of
patient, position of airplane, status of factory, etc.)

e Challenge: State is not observed directly
e Solution: Tracking using a model

— Exact tracking (previous lecture) not always possible
for large or continuous state spaces

— Approximate tracking using sampling (this lecture)




Applications

e Activity recognition by mobile devices
(hidden state is the activity)

e Robot self localization
(hidden state is robot position, orientation)

e Tracking objects with limited observations
(tracking pedestrians with/cars with surveillance
cameras)

Toy Sampling Example

(no observations)

Robot is monitoring door to the robotics lab

D = variable for status of door (True = open)

Initially we will ignore observations

Define Markov model for behavior of door:

| P(d_ 1d)=038
P(d_ 1d)=0.3




Exact Solution

Suppose we believe the door was open with prob. 0.7 at time t.

What is the prob. that it will be open at time t+17?

P(d, |d)=0.8
P(d |d)=0.3

Staying open Switching from closed to open

SO

P(d,,)=P(d,., |d)P(d,)+P(d,,, |d)P(d,)
~0.8%0.7+0.3*0.3=0.65

Trivial, but in general:

e Suppose states are not binary:
P(Seay) = D P(S,.y 1S,)P(S,)
St
e Suppose states are continuous

p(S..1) = [ P(S,.. 15,)p(S,)dS,

t

e Issue: For large or continuous states spaces this
may be hard to deal with exactly




Sampling Approximates the
Integral/Sum

e We can approximate a nasty integral by sampling
and counting:

p(Si) = f P(S,.. 15,)p(S,)dS,
St
e Repeat n times:
— Draw sample from p(S;)
— Simulate transition to Si.1

e Count proportion of states for each value of S,,,

Sampling For Our Door Example

P(d |d)=0.8
Pick n=1000 ( “1| f)

— 700 door open samples 'D(du1 |dt) =03
— 300 door closed samples
For each sample generate a next state
— For open samples use prob. 0.8 for next state open
— For closed samples use prob. 0.3 for next state open
Count no. of open and closed next states

Can prove that in limit of large n, our count will equal true
probability (0.65)




Door Example With Observations

e D = Door status
e O = Robot’s observation of door status
e Observations may not be completely reliable!

P(d_ |d)=0.8
P(d_ 1d)=03
P(o|d)=0.6
P(o|d)=0.2

Rejection Sampling

P(d_ 1d)=08
P(d  |d)=03
Suppose we observe door closed (O=false) att+1 P(o|d)=0.6
Pick n=1000 P(o]d)=0.2

— 700 door open samples
— 300 door closed samples

For each sample generate a next state
— For open samples use prob. 0.8 for next state open
— For closed samples use prob. 0.3 for next state open

For each next state sample an observation
Discard samples where sampled observe !=real observation

Count proportion of remain states with door open/closed




Problems with Rejection Sampling

Discarding samples is inefficient!
Suppose a rare event occurs:
-> most samples inconsistent with observation

In continuous observation spaces, samples will
have probability 0 of matching observation

Modified Sampling

Problem: How do we adjust sampling to
handle evidence?

Solution: Weight each sample by the
probability of the observations

Called importance sampling (IS), or
likelihood weighting (LW)

Does the right thing for large n




Example with evidence

P(d, |d,)=0.8
P(d, 1d)=03
Suppose we observe door closed (O=false) att+1 P(o|d)=0.6
Pick n=1000 P(o|d)=0.2
— 700 door open samples
— 300 door closed samples

For each sample generate a next state
— For open samples use prob. 0.8 for next state open

For closed samples use prob. 0.3 for next state open

If next state is open, weight by 0.4

If next state is closed, weight by 0.8

Compute weighted sum of no. of open and closed states to
estimate state probabilities at time t+1

Problems with IS (LW)

What happens when we repeat this for many time steps?

Sequential importance sampling (SIS) does the right thing for the
limit of large numbers of samples

Problems for finite numbers of samples:
— Effective sample size (total weight of samples) drops
— Eventually
e Something unlikely happens, or

¢ A sequence of individually somewhat likely events has the effect of a single
unlikely event, and

¢ Population of samples drifts away from reality

Over time: Estimates become unreliable




Example of “Drift”

Suppose you’re tracking an aircraft
Each sample corresponds to a possible aircraft position

You have a physics based simulation model that predicts:
next_pos = current_pos + velocity*time + noise

Over time, samples can drift from reality

X
. Motion model N Motion model
g _Puls) T P(SualS:) *

>t/ N/
\1/

Likelihood weighting tell us which samples are more credible

But doesn’t fix underlying drift problem, i.e., that most
become not very credible over time

Solution: SISR (PF)

Sequential Importance Sampling with Resampling = Particle Filter

Maintain n samples for each time step

Repeat n times:

— Draw sample from p(S;)
(according to current weights)

— Simulate transition to S;4
— Weight samples by evidence & normalize

Note: Works for continuous as well as discrete vars!
AKA: Condensation, Monte Carlo Localization




Particle Filter for Trajectory Tracking
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Particle Filter for Trajectory Tracking

Motion model
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Particle Filter for Trajectory Tracking

Motion model

P(Ses11St) x Kk *

Measurement
Multiply by P(0|St.1)

Q

Particle Filter for Trajectory Tracking

Motion model

* % P(St+1 | St) * *
* —
t=0 / t=1

These samples are diverging
from reality and will become
increasingly useless

Q
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Particle Filter for Trajectory Tracking

Shifted to show
multiplicity.

Same state
may be resampled
. Multiple times.
Motion model
* P(SuaS:) Xow
£ resample
* Gox * % P
*

t=1
Updated state

Measurement
Multiply by P(0|St.1)

Q

Key Points About Particle Filters

e Given a finite budget of samples:

* PF reallocates resources to samples that
better match reality

e Leads to more relevant samples
e Less concern about drift
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Example: Robot Localization

Particle filters combine:

— A model of state change
— A model of sensor readings

To track objects with hidden state over time

Robot application:

— Hidden state: Robot position, orientation

— State change model: Robot motion model &4 ‘

— Sensor model: Sonar/LiDAR error model

Note: Robot is tracking itself!

Main Loop

e Sample n robot states

e For each state

— Simulate next state (action model)

— Weight states (observation model)

— Normalize

e Repeat

Details included
for completeness
Not emphasized
this semester
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Robot States

e Robot has X,Y,Z,0
e Usually ignore z

— assume floors are flat

— assume robot stays on one floor
e Form of samples

— (X, Y3,0,p)

- p-1

Main Loop

e Sample n robot states

e For each state
— Simulate next state (action model)
— Weight states (observation model)
— Normalize

e Repeat
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Motion Model

e How far has the robot traveled?
e Robots have (noisy) odometers:
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Actual path was a closed loop on the second floor of Duke CS dept!

Odometer Model

e Odometer is:
— Relatively accurate model of wheel turn

— Very inaccurate model of actual movement

e Actual position = odometer X,Y,0 + random noise

(1270 * expl-(x**2)/2)

Classic,

Bell-shaped
Curve
(normal distribution) .
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Simulation Implementation

e Start with odometer readings
e Add linear correction factor

— X=a,*X+by
- Y=a,*Y+b, Linear correction
— 0 =ay"0+by (determined experimentally)

¢ Add noise from the normal distribution

— Y=Y+ N(Os) from normal distribution with
— 6=0+N(0,50) mean p and standard deviation s
(standard deviation determined experimentally)

= X=X+N(0,s,) } N(p,s) returns random noise

Internal Map Representation

Printer
Closet
Recycling
bins
T tf Table,
-y chair
' legs
Printer
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Laser Error Model

e Laser measures distance in ~1 degree increments in front
of the robot (height is fixed)

e Laser rangefinder errors also have a normal distribution

(1/2%pi) * expl-{x**2)/2)

Prob. of
measurement

Distance from
closest occupied
square to endpoint
of laser cast

Laser Error Model Contd.

* Probability of error in measurement k for sample i (normal)

2
—X

1 ;
(x,)=——e?2°
Pi(X) o\ 27

e X is distance of laser endpoint to closest obstacle

e o is standard deviation in this measurement (estimated
experimentally), usually a few cm.
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Laser Error Model Contd.

Laser measurements are independent
Weight of sample is product of errors:

P; = Hpik
k

Note: Good to bound x to prevent a single bad
measurement from making p, too small

Summary
HMMs provide mathematical basis for tracking

Exact solution intractable for large state spaces

Particle filters approximate the exact HMM solution
using sampling, simulation, weighting
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