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One-armed bandits
• Rrepeatable (iid) processes w/constant payoff amount, unknown prob 

(can usually generalize to unknown payoff amounts)
• Examples (some w/variable payoff):
• Trials of different drugs
• Products to suggest to users
• Routing paths for data
• Financial portfolios

• Goal: Pick arms in a “smart” way

• Note: entire books & classes on bandit algorithms and extensions 
thereof (we just scratch the surface here)
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Different goals

• Figure out the optimal are in the limit
• Figure out the optimal arm in a finite time (no guaranteed method)
• Some PAC criterion (identify nearly optimal arm WHP)
• Maximize expected reward over a finite horizon
• Maximize expected discounted reward in the limit
• Minimize regret

Methods for updating payoff estimates

• Maximum likelihood

• Bayesian
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Maximum likelihood

• Think of arm “a” as a Bernouli random variable w/unknown pa

• Count number of payoffs: wa

• Count number of pulls: la

• ML estimate of payoff: pa= wa/(wa+ la)
• Pros: Easy to compute
• Cons:
• Behavior for small/no pulls
• No incorporation of prior knowledge

Bayesian approach
• Prior distribution on possible payoff probs for each arm
• beta(a,b) is conjugate for binomial distribution
• Expectation is: a/a+b
• Posterior given a positive example is beta(a+1,b) 
• Posterior given a negative example is beta(a,b+1)

• Interpretation: 
• a and b can be thought of as the number of previous positive/negative 

(heads/tails) examples we have seen
• Used as a prior, it reflects a bias towards a particular value, and encodes the 

strength of this bias
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Visualizing the Beta distribution

By Horas based on the work of Krishnavedala - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=15404515

Bayesian approach summary

• Advantages:
• No harder to work with than maximum likelihood
• Reasonable behavior for low sample size
• Incorporates prior knowledge
• Converges to ML estimate in the limit

• Cons: Where does prior knowledge come from?

• Extension to multiple outcomes:
• Binomial -> multinomial
• Beta -> dirichlet



2/27/24

5

Simple strategies

• e greedy

• Softmax

e-greedy

• Choose greedy action w.p. 1-e
• Choose random action w.p. e

• Advantage: Simple, widely used in RL
• Disadvantages:
• Not very smart
• How to pick e
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Softmax

• Given values X1…Xk
• Choose index i with probability:

• Uniform random for l = 0
• Hard max as l→ ∞

𝑒!"!
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Softmax pro/con

• Advantages:
• Random choices favor (seemingly) better actions
• Tunable between uniform and hard max

• Disadvantages:
• Somewhat more expensive/complicated than e-greedy
• How to pick l?



2/27/24

7

Limiting properties of simple approaches

• So long as every arm is tried infinitely often (e>0,l< ∞)
• Estimates of payoff probabilities will converge to true estimates

• Comments:
• Very weak statement
• Doesn’t say anything about how much time is spend suboptimally

PAC approaches

• Goal: Choose an e optimal arm w/prob 1-d
• Main tool: Hoeffding inequality
• Given iid X1…Xm with empirical mean p, true mean q
• True mean t is in inside: [p-z/! 𝑚, p+z/! 𝑚] w.p. 1-d
• z = ! 1/2ln(2/𝛿)

• Take c samples of each arm 𝑐 = 2𝜖!ln(!"
#
)

• Use union bound to show that this suffices
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PAC approach summary

• Similar arguments can be used for strategies for
• Choosing suboptimal arm bounded number of times WHP
• Achieve average reward that is close to optimal WHP

• Nice approach overall – simple to execute
• Cost of achieving guarantees can still be high
• Some probability of making lots of costly mistakes remains

Dynamic programming/MDP approach

• Consider some finite horizon
• Number of possible outcomes is determined by number of steps 

(but exponential in number of steps)
• Define a state as counts of each outcome
• Define reward as payoff

• Policy that maximizes expected (discounted) reward is solution to 
the finite horizon MDP
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MDP Approach Pros/Cons

• Pro: Solution is optimal for finite horizon

• Con: Exponential size makes it impractical for long horizons 
and/or large numbers of arms

Gittins indices

• Surprising result:
• Finite horizon MDP formulation is intractable for long horizons
• Infinite horizon discounted approach has a quirky, but efficient

• Idea behind Gittins indices
• Compute an index (Gittins index) for each arm
• Function of discount and distribution over possible payoffs given current 

knowledge
• Computation of Gittens index also gives an optimal time to stick with each 

arm
• Pick arm with highest Gittens index, and stick with it for recommended time
• After time is up, recompute indices and pick a new arm
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Gittins index comments

• Viewed as a very complicated and cool result
• Computation is Gittens indices is not trivial

• Considered brittle: Works for maximizing discounted sum of 
rewards, but technique does not generalize to slight changes in 
problem setting or optimality criterion

Regret Minimization

• Regret is the difference between actual returns and what you 
could have gotten if you picked the best arm from the beginning

• Methods discussed so far do not provide bounds on regret
• Choosing an epsilon optimal arm could have regret that grows 

linearly with the number of time steps
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UCB1

From Auer et al., who show that UCB1 has regret logarithmic in n

Exploration bonus

Thompson sampling

• For each arm, compute the probability that it is optimal given your 
current distribution over payoffs
• Pick an arm to play by sampling from this distribution

• Regret is logarithmic in sqrt(KT log T)
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Extensions of the bandit framework

• Many!

• Arguably most relevant to us is a contextual bandit:
• Each bandit has a payoff that is dependent upon a context vector
• Example: Customer profile
• Context does not change as a function of choices (not an MDP)

Conclusions

• Bandits are the gateway drug to MDPs
• Simplest case is essentially a single state

• Different views of optimality criteria lead to different algorithms


