3/14/24

Policy Gradient In Practice

CSCI5951-F
Ron Parr
Brown University

Recap

* Policy gradient allows to search directly in policy space ©
* Variance is high ®

* Baseline subtraction (via an advantage function, which can be
computed from Q-functions) helps
* Trades some bias for variance
* Can still have noisy gradients

3/14/24

More about gradients

* Gradient descent/ascent is our most basic tool in modern ML
* Recall: First order approximation to complicated function

* Things that affect quality of first order approximation:
* Noise
* Smoothness of function
* Size of region around the approximation (step size)

Policy value often is not very smooth

* Think about value of policy is through distribution over states

* Let p® be your initial state distribution, p{) be distribution at time i
. p(i+1) = p(i)Tpn

« p = p(O)Tpni

cUO) =320p®" R

* P, is parameterized by 0

* Effect is quadratic in 2 time steps, cubic in 3, etc.

* Function is very curvy, so gradient quickly becomes inaccurate

3/14/24

Goal steepest descent (or ascent)

* Get the most out of each step for a constant step size
* Want: Direction of descent that maximizes progress on objective fn.

* Can we be smarter about disentangling correlated effects on gradient?

What if we redefine distance?

* Idea: Warp space to compensate for interactions between parameters
as well as scaling issues

* Define G to be some positive definite matrix
* Redefine distance: |df|* = Y, Gy;(0)d6;db; = do" G(6)do
» Steepest descent direction is then:

G-lvu ()

3/14/24

But what is a good choice of G?

* Fisher information matrix at any state tells use how parameters interact:

Odlogm(a;s,d) dlogm(a;s,H)]
00; 06;

* Total correction is weighted by visitation frequencies:

Fs(g) = En’(a;sﬂ)[

Avoiding overstepping

* Natural gradient helps adjust the direction

» Step size is still a problem

* Want to take the largest possible step without overshooting

* Multiple approaches
* TRPO: Uses line search and various approximations to maximize step size
* PPO: Uses a “clamped” objective to avoid overshooting

3/14/24

Digression: Reproducibility

* TRO vs PPO
* PPO originally introduced as a simpler alternative to TRPO
* Was also shown to perform better in many cases

° Engstrom €t al. (IMPLEMENTATION MATTERS IN DEEP POLICY GRADIENTS: A CASE STUDY ON PPO AND TRPO)
investigate this:

* Find 9 optimizations in PPO not (clearly) documented as main improvements

* “We find that much of the PPO’s observed improvement in performance comes
from seemingly small modifications to the core algorithm that either can be
found only in a paper’s original implementation, or are described as auxiliary
details and are not present in the corresponding TRPO baselines.”

* “Ultimately, we discover that the PPO code-optimizations are more importantin
terms of final reward achieved than the choice of general training algorithm
(TRPO vs. PPO). “

Performance comparison

MuJoCo TASK
STEP WALKER2D-V?2 HOPPER-V2 HUMANOID-V2

PPO 3292 [3157,3426] 2513 [2391, 2632] 806 [785, 827]
PPO-M 2735 [2602, 2866] 2142 [2008, 2279] 674 [656, 695]
TRPO 2791 [2709, 2873] 2043 [1948, 2136] 586 [576, 596]
TRPO+ 3050([2976,3126] 2466 [2381,2549] 1030 [979, 1083]

[Engstrom et al., ICLR 19]

* PPO = full PPO algorithm

* PPO-M =PPO w/o 9 (seemingly secondary) optimizations
* TRPO = original TRPO algorithm

* TRPO+ =TRPO with PPO optimizations

* [,]=95% confidence interval

3/14/24

Sample Efficiency

* Datareuse:
* Algorithms like DQN use a “replay buffer” to maximize data efficiency
* Works because Q-learning is off-policy

* Policy gradient is not inherently off-policy
* Rewards “must” be from the policy you are updating

* |s there a workaround?

Importance weights

* Simple case: Policy goes right w.p. p, left w.p. 1-p
* Adjust p using policy gradient

R1 R2

3/14/24

Re-weighting

* Suppose we have generated 100 samples using different values of p
* Need to keep sampling, or can we re-use previous experiences?

* Suppose sample was generated using policy g
* Replace p with p/qg when using this sample

* Intuition: Sample was generated w.p. g, so is implicitly weighted by q, p/q
re-weights to effectively sample by p

* TRPO and PPO use reweighting

Issues with importance weights
* When p = q, everything is great
* As p and g get further apart, importance weights (p/q) get weird

* Combining with baseline updates also gets weird since baseline
can be from an outdated policy function

3/14/24

Generalized Advantage Estimation

* As presented, baseline is subtracted at every step:

d
VU(8) =E;| Y Velogme(a®) | sk 14 (s(k),a(k))]
k=1

N

A(s,a) = Q(s,a) — U(s)
* What if baseline is stale?
* Interpolate between samples and baseline

* Using n steps of samples
* Use baseline at end of n steps

Brief comments about DDPG

* Many control problems do not inherently require stochastic policies

* Variance reduction tricks required in policy gradient/actor-critic
methods can in some ways be viewed as mending a self-inflicted
wound — using a stochastic policy unnecessarily introduces additional
variance into the gradient estimate

* But how do we estimate the gradient for an arbitrary policy function?

* Silver et al. (2014) showed decomposition of gradient mirrors
stochastic policy gradient if we have a differentiable action function
asin, e.g., a deterministic action function defined over a
continuous action space

3/14/24

Summary

* Large family of modern RL methods that combine aspects of policy
gradient and value function approximation: Actor Critic Methods

* Simultaneously learn:
* Continuous policy function
* Q/Advantage functions for baseline
* Sometimes with multiple heads on a single NN

* Originally viewed a best suited to continuous control problems
* Increasingly applied to general RL problems, even Atari

