2/22/24

DQN and Atari Games
(Intro to Deep RL)

Ron Parr
CSCI 2951-F i o e
Brown University o m
o Ei/e
Broen-0 i
o] @\e
>£] EE

Illustration from Mnih et al. (2015)

How It Started: Learning to play Backgammon

* Neurogammon developed in 1989 using supervised learning
* Trained NN on expert human moves
* Played at level of intermediate human player

* TD-gammon developed in 1992 using RL
* Neural network value function approximation
* TD sufficient (known model)
* Using raw board positions, learned to play as well as neurogammon
* Tesauro added carefully selected features to the network
* Then had it play 1 million games played against self
* Comparable performance to best human players

2/22/24

About Atari Games

* Atari 2600 was an early generation video game that accepted ROM cartridges
enabling a variety of games on the same hardware — arguably the first widely
successful system of this type

* Had very limited storage, graphics, sound, computation
* 160x192 resolution
* 128 bytes of RAM
* 4K ROM cartridges
* 1.2 Mhz processor (MOS 6507)

* Simple controller with 1 button, 8-directional joystick

* In short, it was the equivalent of an Xbox, Playstation or Switch in RP’s youth

How awful is 6807 programming?

10 MPR=$CO ;MULTIPLIER

20 MPD1=$C1 ;MULTIPLICAND

30 MPD2=$C2 ;NEW MULTIPLICAND AFTER 8 SHIFTS
40 PRODL=$C3 ;LOW BYTE OF PRODUCT

50 PRODH=$C4 ;HIGH BYTE OF PRODUCT

70 *=$0600

85 ;THESE ARE THE NUMBERS WE WILL MULTIPLY

&
90 LDA #250

100 STA MPR

11 #2 . . .

120 A weo1 This is the assembly code for multiply two numbers

150 ‘e (not a primitive operation in 6502/6507 assembler)

160 LDA #0 ;CLEAR ACCUMULATOR

170 STA MPD2 ;CLEAR ADDRESS FOR SHIFTED MULTIPLICAND

180 STA PRODL ;CLEAR LOW BYTE OF PRODUCT ADDRESS

190 STA PRODH ;CLEAR HIGH BYTE OF PRODUCT ADDRESS . .

200 DX #8 ;WE WILL USE THE X REGISTER AS A COUNTER Source: https://www.atariarchives.org/roots/chapter_10.php
210 LOOP LSR MPR ;SHIFT MULTIPLIER RIGHT; LSB DROPS INTO CARRY BIT -
220 BCC NOADD ;TEST CARRY BIT; IF ZERO, BRANCH TO NOADD

230 CLC

240 LDA PRODL

250 ADC MPD1 ;ADD LOW BYTE OF PRODUCT TO MULTIPLICAND

260 STA PRODL ;RESULT IS NEW LOW BYTE OF PRODUCT

270 LDA PRODH ;LOAD ACCUMULATOR WITH HIGH BYTE OF PRODUCT

280 ADC MPD2 ;ADD HIGH PART OF MULTIPLICAND

290 STA PRODH ;RESULT IS NEW HIGH BYTE OF PRODUCT

300 NOADD ASL MPD1 ;SHIFT MULIPLICAND LEFT; BIT 7 DROPS INTO CARRY

310 ROL MPD2 ;ROTATE CARRY BIT INTO BIT 7 OF MPD2

320 DEX ;DECREMENT CONTENTS OF X REGISTER

330 BNE LOOP ;IF RESULT ISN'T ZERO, JUMP BACK TO LOOP

340 RTS

350 .END

2/22/24

Why Atari as an RL Benchmark?

* Easy(ish) to simulate (See MinAtar for another approach)
* Widely available

* Small(ish) discrete action space

* Large number of games possible in a common platform

* Diversity in types of games, including many that required somewhat
long term behavior

* No difficult object recognition problems involved (graphics too crude)
* Not obviously easy

Some challenges

* Single frame is not a Markovian state (partial solution: stack frames)

* Games designed for human time scale responses, not for changing
actions every 1/60 second (solution: make actions sticky)

* Flicker — some objects appeared only in odd or even frames
* See, e.g., the ghosts in Pac-Man
* Partial solution: input is max over two adjacent frames

2/22/24

Some games

Breakout (Wikipedia) Space Invaders Pac-Man
(thegameroom.fandom.com) (retrogames.cz)

DQN Architecture

32 4x4 fileers 256 hidden units Fully-connected linear
output layer

16 8x8 filters

4xB4xB84

i &

Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear unics of rectified linear units

From: https://www.davidsilver.uk/wp-content/uploads/2020/03/deep_rl_compressed.pdf

2/22/24

Changes in training

* Used experience replay (replay buffer)

* Old technique

* Slightly closer to batch/fitted Q-iteration

* Used a “Target Q-network”
* Two copies of neural network

* Use "target” network on RHS of Bellman equation

* After a batch of training, copy over newly learned network to target
(another step towards fitted Q-iteration)

* Clip rewards to keep NN gradients from having a wide range

Video Pinball
Boxing

Breakout

Star Gunner

Robotank
Atlantis
Results "
Gopher

Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond

Tennis

Pong

Space Invaders.

Beam Rider
Tutankham

Kung-Fu Master

Freeway

Tir Pilot
From DQN paper: - o
Fishing Derby

Up and Down
Ice Hockey
Qbert
H.ER.O.
Asterix

Battle Zone
Wizard of Wor
Chopper Command
Centipede
Bank Heist
River Raid

Venture

Seaquest

Double Dunk

Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
Montezuma's Revenge

At human-level or above

o

Below human-level

Best linear learner

T T T T T T 1
200 300 400 500 600 1,000 4,500%

2/22/24

Lessons learned

* From TD-Gammon to DQN surprisingly little as changed
* Still no stability or performance guarantees despite changes
* Training still requires massive amounts of data
* Convnets, small changes in training make a big difference (as in deep nets)

* Yet everything has changed

* After years of frustration in applying RL to hard problems, now people want
to apply RL to everything

* Harder games
* Power management in data centers
* Robotic control

Unsatisfying aspects of DQN/Atari success
* No high level knowledge (all new games learned from scratch)
* Training time is quite large (50M frames)

* Solutions lack robustness
(adding irrelevant “distractor” graphics can cause strange behavior)

* Some evidence that solutions may be partly memorized
(poor generalization)

