
2/22/24

1

DQN and Atari Games
(Intro to Deep RL)

Ron Parr
CSCI 2951-F

Brown University

Illustration from Mnih et al. (2015)

How It Started: Learning to play Backgammon

• Neurogammon developed in 1989 using supervised learning
• Trained NN on expert human moves
• Played at level of intermediate human player

• TD-gammon developed in 1992 using RL
• Neural network value function approximation
• TD sufficient (known model)
• Using raw board positions, learned to play as well as neurogammon
• Tesauro added carefully selected features to the network
• Then had it play 1 million games played against self
• Comparable performance to best human players

2/22/24

2

About Atari Games

• Atari 2600 was an early generation video game that accepted ROM cartridges
enabling a variety of games on the same hardware – arguably the first widely
successful system of this type
• Had very limited storage, graphics, sound, computation

• 160x192 resolution
• 128 bytes of RAM
• 4K ROM cartridges
• 1.2 Mhz processor (MOS 6507)

• Simple controller with 1 button, 8-directional joystick

• In short, it was the equivalent of an Xbox, Playstation or Switch in RP’s youth

How awful is 6807 programming?

This is the assembly code for multiply two numbers 😱
 (not a primitive operation in 6502/6507 assembler)

Source: https://www.atariarchives.org/roots/chapter_10.php

2/22/24

3

Why Atari as an RL Benchmark?

• Easy(ish) to simulate (See MinAtar for another approach)
• Widely available
• Small(ish) discrete action space
• Large number of games possible in a common platform
• Diversity in types of games, including many that required somewhat

long term behavior
• No difficult object recognition problems involved (graphics too crude)
• Not obviously easy

Some challenges

• Single frame is not a Markovian state (partial solution: stack frames)

• Games designed for human time scale responses, not for changing
actions every 1/60 second (solution: make actions sticky)

• Flicker – some objects appeared only in odd or even frames
• See, e.g., the ghosts in Pac-Man
• Partial solution: input is max over two adjacent frames

2/22/24

4

Some games

Breakout (Wikipedia) Space Invaders
(thegameroom.fandom.com)

Pac-Man
(retrogames.cz)

DQN Architecture

DQN in Atari

! End-to-end learning of values Q(s, a) from pixels s

! Input state s is stack of raw pixels from last 4 frames

! Output is Q(s, a) for 18 joystick/button positions

! Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

From: https://www.davidsilver.uk/wp-content/uploads/2020/03/deep_rl_compressed.pdf

2/22/24

5

Changes in training

• Used experience replay (replay buffer)
• Old technique
• Slightly closer to batch/fitted Q-iteration

• Used a “Target Q-network”
• Two copies of neural network
• Use ”target” network on RHS of Bellman equation
• After a batch of training, copy over newly learned network to target

(another step towards fitted Q-iteration)

• Clip rewards to keep NN gradients from having a wide range

Results

From DQN paper:

2/22/24

6

Lessons learned

• From TD-Gammon to DQN surprisingly little as changed
• Still no stability or performance guarantees despite changes
• Training still requires massive amounts of data
• Convnets, small changes in training make a big difference (as in deep nets)

• Yet everything has changed
• After years of frustration in applying RL to hard problems, now people want

to apply RL to everything
• Harder games
• Power management in data centers
• Robotic control

Unsatisfying aspects of DQN/Atari success

• No high level knowledge (all new games learned from scratch)

• Training time is quite large (50M frames)

• Solutions lack robustness
(adding irrelevant “distractor” graphics can cause strange behavior)

• Some evidence that solutions may be partly memorized
 (poor generalization)

