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Linear State Space Models
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Yyt = Cxy + vy vy ~ N (0, R)

e States & observations jointly Gaussian:

» All marginals & conditionals Gaussian
> Linear transformations remain Gaussian



Simple Linear Dynamics
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Kalman Filter

Tip1 = Az + wy we ~ N(0,Q)

yr = Cxy + vy v ~ N(0, R)

 Represent Gaussians by mean & covariance:

p(xe | Y1, yi—1) = N(x; fig, \e)

p(xe | y1, -5 yt) = N (@5 e, Ae)

Prediction: g = App_1q

At AN 1A 4+ Q

Kalman Gain: K, = A, (CA, 0t + R)~1

Update: pe = it + Ki(ye — Clit)
A = Ay — KON
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Nonlinear State Space Models
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Ti41 = f(x¢, wi) wy ~ F
yr = g(x¢, vt) v~ G

e State dynamics and measurements given by
potentially complex nonlinear functions

* Noise sampled from non-Gaussian distributions



Examples of Nonlinear Models

Observed image is a complex
function of the 3D pose, other
nearby objects & clutter, lighting
conditions, camera calibration, etc.

Dynamics implicitly determined
by geophysical simulations



Nonlinear Filtering

p(CUt | Yi, - - - 7yt—1) — Ejt(ajt)

p(xe | y1,---,9t) = qi(xy)
Prediction:

qr(xt) = /P(It | xe—1)qr—1(x4—1) dap_1

Update:
P 1

qi(x) = Z@t(ﬂft)p(yt | z¢)



Approximate Nonlinear Filters

(@) o< p(ye | @) - [ p(ae | 1)1 (wi-1) day s

No direct represention of continuous functions,
or closed form for the prediction integral

e Big literature on approximate filtering:
» Histogram filters
» Extended & unscented Kalman filters

> Particle filters
> ...




Nonlinear Filtering Taxonomy

Histogram Filter: X

» Evaluate on fixed discretization grid
»Only feasible in low dimensionsM
»EXxpensive or inaccurate T T

Extended/Unscented Kalman Filter:

»Approximate posterior as Gaussian
via linearization, quadrature, ...

> Inaccurate for multimodal

posterior distributions

Particle Filter:

»Dynamically evaluate states
with highest probability MA}\
»Monte Carlo approximation




Particle Filters

Condensation, Sequential Monte Carlo, Survival of the Fittest, ...

* Represent state estimates
using a set of samples

* Propagate over time using
Importance sampling
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Sample-based density estimate
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Weight by observation likelihood
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Particle Filtering Movie

(M. Isard, 1996)



Dynamic Bayesian Networks

Specify and exploit internal structure in the
hidden states underlying a time series
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DBN Hand Tracking Video
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Particle Filtering Caveats

« Particle filters are easy to implement, and
effective In many applications, BUT

» It can be difficult to know how many samples to
use, or to tell when the approximation is poor

» Sometimes suffer catastrophic failures, where NO
particles have significant posterior probability

» This is particularly true with “peaky” observations
In high-dimensional spaces: ikelihood

dynamics




