Learning and Inference in Probabilistic Graphical Models

CSCI 2950-P: Special Topics in Machine Learning
Spring 2010
Prof. Erik Sudderth
Learning from Structured Data
Hidden Markov Models (HMMs)

Visual Tracking

\[p(x, y) = p(x_0) \prod_{t=1}^{T} p(x_t \mid x_{t-1})p(y_t \mid x_t) \]

“Conditioned on the present, the past and future are statistically independent”
Kinematic Hand Tracking

Kinematic Prior

Structural Prior

Dynamic Prior
Nearest-Neighbor Grids

Low Level Vision
- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation

x_s → unobserved or hidden variable
y_s → local observation of x_s
Wavelet Decompositions

- Bandpass decomposition of images into multiple scales & orientations
- Dense features which simplify statistics of natural images
• Hidden states model evolution of image patterns across scale and location
Validation: Image Denoising

Original Image: *Barbara*

Corrupted by Additive White Gaussian Noise

PSNR = 24.61 dB
Denoising Results: Barbara

Noisy Input \((24.61 \text{ dB}) \)

HDP-HMT \((32.10 \text{ dB}) \)

- Posterior mean of wavelet coefficients averages samples with varying numbers of states (model \textit{averaging})
Denoising: Input

24.61 dB
Denoising: Binary HMT

29.35 dB

Crouse, Nowak, & Baraniuk, 1998
Denoising: HDP-HMT

32.10 dB
Visual Object Recognition

Can we transfer knowledge from one object category to another?
Describing Objects with Parts

Pictorial Structures
Fischler & Elschlager, 1973

Generalized Cylinders
Marr & Nishihara, 1978

Recognition by Components
Biederman, 1987

Constellation Model
Perona et. al., 2000 to present
A Graphical Model for Object Parts
3D Scenes

Global Density
Object category
Part size & shape
Transformation prior

Transformed Densities
Object category
Part size & shape
Transformed locations

3D Scene Features
Object category
3D Location

2D Image Features
Appearance Descriptors
2D Pixel Coordinates
Stereo Test Image
Many Other Applications

• Speech recognition & speaker diarization
• Natural language processing: parsing, topic models, …
• Robotics: mapping, navigation & control, …
• Error correcting codes & wireless communications
• Bioinformatics
• Nuclear test monitoring
• ………
Undirected Graphical Models

An undirected graph \mathcal{G} is defined by

\[\mathcal{V} \rightarrow \text{set of } N \text{ nodes } \{1, 2, \ldots, N\}\]

\[\mathcal{E} \rightarrow \text{set of edges } (s, t) \text{ connecting nodes } s, t \in \mathcal{V}\]

Nodes $s \in \mathcal{V}$ are associated with random variables x_s

Graph Separation

Conditional Independence

\[p(x_A, x_C|x_B) = p(x_A|x_B)p(x_C|x_B)\]
Inference in Graphical Models

\[p(x \mid y) = \frac{1}{Z} \prod_{s \in V} \psi_s(x_s) \prod_{(s,t) \in E} \psi_{st}(x_s, x_t) \]

\(y \rightarrow \) observations (implicitly encoded via compatibilities)

Maximum a Posteriori (MAP) Estimates

\[\hat{x} = \arg \max_x p(x \mid y) \]

Posterior Marginal Densities

\[p_t(x_t \mid y) = \sum_{x \setminus x \setminus t} p(x \mid y) \]

- Provide both estimators and confidence measures
- Sufficient statistics for iterative parameter estimation
Why the Partition Function?

\[
Z = \sum_x \prod_{s \in V} \psi_s(x_s) \prod_{(s,t) \in E} \psi_{st}(x_s, x_t)
\]

Statistical Physics
- Sensitivity of physical systems to external stimuli

Hierarchical Bayesian Models
- Marginal likelihood of observed data
- Fundamental in hypothesis testing & model selection

Cumulant Generating Function
- For exponential families, derivatives with respect to parameters provide marginal statistics

PROBLEM: Computing \(Z \) in general graphs is NP-complete
What do you want to learn about?
Graphical Models

Directed Bayesian Network

Factor Graph

Undirected Graphical Model
Exact Inference

MESSAGES: Sum-product or belief propagation algorithm

\[m_{ts}(x_s) = \alpha \sum_{x_t} \psi_{st}(x_s, x_t) \psi_t(x_t, y) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t) \]

Computational cost:

\[N \longrightarrow \text{number of nodes} \]
\[M \longrightarrow \text{discrete states for each node} \]

Belief Prop: \(\mathcal{O}(NM^2) \)
Brute Force: \(\mathcal{O}(M^N) \)
Continuous Variables

\[m_{ij}(x_j) \propto \int_{x_i} \psi_{j,i}(x_j, x_i) \psi_i(x_i, y) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(x_i) \, dx_i \]

Discrete State Variables

- Messages are \textit{finite vectors}
- Updated via matrix-vector products

Gaussian State Variables

- Messages are \textit{mean & covariance}
- Updated via information Kalman filter

Continuous Non-Gaussian State Variables

- Closed parametric forms unavailable
- Discretization can be \textit{intractable} even with 2 or 3 dimensional states
Variational Inference: An Example

\[p(x \mid y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y) \]

• Choose a family of approximating distributions which is tractable. The simplest example:

\[q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \]

• Define a distance to measure the quality of different approximations. One possibility:

\[D(q \mid\mid p) = \sum_x q(x) \log \frac{q(x)}{p(x \mid y)} \]

• Find the approximation minimizing this distance
Advanced Variational Methods

- Exponential families
- Mean field methods: naïve and structured
- Variational EM for parameter estimation
- Loopy belief propagation (BP)
- Bethe and Kikuchi entropies
- Generalized BP, fractional BP
- Convex relaxations and bounds
- MAP estimation and linear programming
-
Markov Chain Monte Carlo

Metropolis-Hastings, Gibbs sampling, Rao-Blackwellization, ...
Sequential Monte Carlo

Particle Filters, Condensation, Survival of the Fittest,…

- Nonparametric approximation to optimal BP estimates
- Represent messages and posteriors using a set of samples, found by simulation

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

\[x_{t-1} \quad x_t \quad x_{t+1} \]
Nonparametric Belief Propagation

Belief Propagation
- General graphs
- Discrete or Gaussian

Particle Filters
- Markov chains
- General potentials

Nonparametric BP
- General graphs
- General potentials
Nonparametric Bayes

\[p(x) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(x \mid 0, \Lambda_k) \]

Dirichlet process mixture model

Nonparametric \neq No Parameters

- Model complexity grows as data observed:
 - Small training sets give simple, robust predictions
 - Reduced sensitivity to prior assumptions

Flexible but Tractable

- Literature showing attractive asymptotic properties
- Leads to simple, effective computational methods
 - Avoids challenging model selection issues
Prereq: Intro Machine Learning

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>Unsupervised Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
<td>Clustering</td>
</tr>
<tr>
<td>Classification or Categorization</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>Dimensionality Reduction</td>
</tr>
<tr>
<td>Regression</td>
<td></td>
</tr>
</tbody>
</table>

- Bayesian and frequentist estimation
- Model selection, cross-validation, overfitting
- Expectation-Maximization (EM) algorithm
Textbook & Readings

• Variational tutorial by Wainwright and Jordan (2008)
• Background chapter of Prof. Sudderth’s thesis
• Many classic and contemporary research articles…
Grading

Class Participation: 30%

- Attend class and participate in discussions
- Prepare summary overview presentation, and lead class discussion, for ~2 papers
 - Prof. Sudderth will lecture 50% of the time
- Upload comments about the assigned reading before each lecture (due at 9am)

Final Project: 70%

- Proposal: 1-2 pages, due in March (10%)
- Presentation: ~10 minutes, during finals week (10%)
- Conference-style technical report (50%)
Reading Comments

The Good: 1-2 sentences

- What is the most exciting or interesting model, idea, or technique described here? Why is it important?
- Don’t just copy the abstract - what do you think?

The Bad: 1-2 sentences

- No method is perfect, and many are far from it!
- What is the biggest weakness of this model or approach?
- Problems could be a lack of empirical validation, missing theory, unacknowledged assumptions, …

The Ugly: 1-2 sentences

- Poorly written or unclear sections of the paper: terse explanations, steps you didn’t follow, etc.
- What would you like to have explained in class?
Final Projects

Best case: Application of course material to your own area of research

Key Requirements: Novelty, use of graphical models

- Propose a new family of graphical models suitable for a particular application, try baseline learning algorithms
- Propose, develop, and experimentally test an extension of some existing learning or inference algorithm
- Experimentally compare different models or algorithms on an interesting, novel dataset
- Survey the latest advances in a particular application area, or for a particular type of learning algorithm
- …
Administration

Mailing List: E-mail sudderth@cs.brown.edu with

• Your name
• Your CS account username
• Your department, major, and year
• Your experience in machine learning
 ➢ If you took CS195-F in Fall 2009, just say so
 ➢ Otherwise, 1-2 sentences about previous exposure

Readings for Monday:

• Introductory chapters of Koller & Friedman; specific sections announced via e-mail
• No comments required for Monday’s lecture