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Max Marginals 
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•  A max-marginal gives the probability of the most likely state in 
which some variables are constrained to take specified values: 
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•  For a pairwise MRF, a solution      is guaranteed to be one 
(of possibly many) global MAP estimates if and only if: 

x̂

x̂

s

2 argmax

xs

⌫

s

(x

s

)

(x̂

s

, x̂

t

) 2 argmax

xs,xt

⌫

st

(x

s

, x

t

)

s 2 V

(s, t) 2 E



Belief Propagation (Max-Product) 
Max-Marginals:  
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Belief Propagation (Min-Sum) 
Negative Log-Max-Marginals:  
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The Generalized Distributive Law 
•  A commutative semiring is a pair of generalized 

“multiplication” and “addition” operations which satisfy: 
Commutative: 
Associative: 
Distributive: 
(Why not a ring?  May be no additive/multiplicative inverses.) 

•  Examples: 

a · b = b · aa+ b = b+ a
a+ (b+ c) = (a+ b) + c a · (b · c) = (a · b) · c

a · (b+ c) = a · b+ a · c

Multiplication Addition 
sum product 
max product 
max sum 

sum min 
•  For each of these cases, our factorization-based dynamic 

programming derivation of belief propagation is still valid 
•  Leads to max-product and min-sum belief propagation 

algorithms for exact MAP estimation in trees  



Max-Product to MAP Estimates 
Global Directed Factorization:   
•  Choose some node as the root 

of the tree, order by depth 
•  Define directed factorization 

from root to leaves: 

xs
xPa(s)

p(x) = p(x
Root

)
Y

s

p(xs | x
Pa(s))

p(x) =
1

Z

Y

(s,t)2E

 st(xs, xt)
Y

s2V
 s(xs)

Bottom-Up Message Passing: 
•  Pass max-product messages 

recursively from leaves to root 
•  Find max-marginal of root node: 
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Top-Down Recursive Selection: 
•  Take maximizing root, then maximize by depth given parent: 
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Discriminative Graphical Models 

286 Modeling

Because a generative model takes the form p(y,x) = p(y)p(x|y), it
is often natural to represent a generative model by a directed graph
in which in outputs y topologically precede the inputs. Similarly, we
will see that it is often natural to represent a discriminative model
by a undirected graph. However, this need not always be the case,
and both undirected generative models, such as the Markov random
field (2.32), and directed discriminative models, such as the MEMM
(6.2), are sometimes used. It can also be useful to depict discriminative
models by directed graphs in which the x precede the y.

The relationship between naive Bayes and logistic regression mirrors
the relationship between HMMs and linear-chain CRFs. Just as naive
Bayes and logistic regression are a generative-discriminative pair, there
is a discriminative analogue to the HMM, and this analogue is a partic-
ular special case of CRF, as we explain in the next section. This analogy
between naive Bayes, logistic regression, generative models, and CRFs
is depicted in Figure 2.4.

Fig. 2.4 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

2.3 Linear-chain CRFs

To motivate our introduction of linear-chain CRFs, we begin by
considering the conditional distribution p(y|x) that follows from the
joint distribution p(y,x) of an HMM. The key point is that this
conditional distribution is in fact a CRF with a particular choice of
feature functions.
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•  A CRF is trained to match marginals: 

•  A max-margin Markov network or 
structural SVM adapts hinge loss, 
and is trained via MAP estimation 



Approximate MAP Estimation Sec. 2.3. Variational Methods and Message Passing Algorithms 67
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Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
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∫
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φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on
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•  Greedy coordinate ascent: Iterative Conditional Modes (ICM) 
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•  Limit of both Gibbs sampling and mean field in limit 
•  Physical interpretation:  Temperature 
•  The simulated annealing method applies Gibbs sampling as 

temperature is (very, very slowly) decreased 
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Marginalization as Convex Optimization 3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate
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•  Express log-partition as optimization over all distributions 
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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate
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•  This is a linear program:  Maximization of a linear function 
over a convex polytope, with one vertex for each x 2 X

•  No need to directly consider entropy for MAP estimation 
•  MAP also arises as limit of standard variational objective: 
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Tree-Based Outer Approximations 

•  Associate marginals with nodes and edges, and impose 
the following local consistency constraints 
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•  For some graph G, denote true marginal polytope by M(G)

L(G)

90 Sum-Product, Bethe–Kikuchi, and Expectation-Propagation

Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

•  For any graph, this is a convex outer bound: 
•  For any tree-structured graph T, we have 

M(G) ✓ L(G)
M(T ) = L(T )
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Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

•  Spanning tree polytope has linear number of constraints, so 
we can solve linear program in polynomial time 

•  If we find “integral” vertex of original polytope, we have 
certificate guaranteeing solution of original MAP problem 

•  Otherwise, “round” solution to find approximate MAP estimate 
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When Does BP Solve LP Relaxation? 

Tree-reweighted free energies [21] use entropy terms of
the form:

HTRBP (µ) =
∑

T

µT HT (7)

where T is a spanning tree in the graph, µT defines a
distribution over spanning trees and HT is the entropy
of that tree. Since HT is convex, so is HTRBP . But not
every convex free energy can be written in this way.
To see this, note that any tree reweighted entropy can
be rewritten:

HTRBP (µ) =
∑

<ij>

ρijHij +
∑

i

(1 −
∑

j

ρij)Hi

where ρij is the edge appearance probability defined
by µ. In comparing this to the general entropy ap-
proximation (equation 6) we see that tree reweighted
entropies are missing a degree of freedom (with ci).
In fact, for any TRBP entropy we can add an infi-
nite number of possible positive combination of sin-
gle node entropies and still maintain convexity. Thus,
TRBP entropies are a measure zero set of all convex
entropies.

In some cases, we can even subtract single node en-
tropies from a TRBP entropy and still maintain con-
vexity. For example, the Bethe free energy for a sin-
gle cycle can be shown to be convex but it cannot be
represented as tree-reweighted free energy [21]. In par-
ticular, it does not give rise to a bound on the free
energy.

This shows that the family of BP algorithms that pro-
vide a bound on the free energy is a strict subset of
the family of convex BP algorithms.

3 When does sum-product BP solve
the LP relaxation?

Claim: Convex BP=LP Let bα, bi be fixed-point
beliefs from running belief propagation with a convex
entropy approximation at temperature T . As T → 0
these beliefs approach the solution to the linear pro-
gram.

Proof: We know that the BP beliefs are constrained
stationary points of the free energy (equation 1). The
minimization of F is done subject to the following con-
straints:

bα(xα) ∈ [0, 1]
∑

xα

bα(xα) = 1

∑

xα\i

bα(xα) = bi(xi)

The energy term is exactly the LP problem. As we
decrease the temperature, the approximate free energy

T = 5 T = 2 T = 0.1

Figure 1: Contour plots of the Bethe free energy (top)
and a convex free energy (bottom) for a 2D Ising model
with uniform external field at different temperatures.
The stars indicate local stationary points. Both free
energies approach the LP as temperature is decreased,
but for the Bethe free energy, a local minimum is
present even for arbitrarily small temperatures.

approaches the LP cost (note that the entropy term
is bounded). If we assume the entropy function to
be convex then the approximate free energy is convex
and hence any fixed-point corresponds to the global
minimum.

Note that for any BP algorithm, it is true that the
approximate free energy minimization problem ap-
proaches the LP problem. In particular, this is true for
ordinary BP which minimizes the Bethe free energy.
However, when the entropy function is non-convex,
there is no guarantee that fixed-points will correspond
to the global optimum.

Figure 1 illustrates the difference. We consider a
graphical model corresponding to a toroidal grid. The
nodes are binary and all the pairwise potentials are of
the form:

Ψ =

(

3 1
1 2

)

These potentials correspond to an Ising model with a
uniform external field – nodes prefer to be similar to
their neighbors and there is a preference for one state
over the other. In order to visualize the approximate
free energies, we consider beliefs that are symmetric
and identical for all pairs of nodes:

bα =

(

x y
y 1 − (x + 2y)

)

Note that the MAP (and the optimum of the LP) oc-
cur at x = 1, y = 0 in which case all nodes are in their
preferred state. Figure 1 shows the Bethe free energy
(top) and a convex free energy (bottom) for this prob-
lem for different temperatures. The stars indicate local
stationary points. Both free energies approach the LP
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Informal summary of results of Wainwright et al., Weiss et al.: 
•  Zero-temperature limit of “convexified” sum-product 

algorithms are guaranteed to solve MAP LP relaxation 
•  Reweighted max-product closely related, but not identical 
•  Standard max-product only approximates LP relaxation 



Current Research: Structure Learning 
Unknown Graphs for Known Variables  
•  Objective:  Likelihood with MDL or Bayesian penalty 
•  Classic approach:  Stochastic search in space of graphs 
•  Modern approach:  Convex optimization with sparsity priors, 

which encourage some parameters to be set to zero 
Deep Learning 
•  Hierarchical models, with observations at finest scale, and 

many layers of hidden variables 
•  Classic neural networks:  Directed graphical models 
•  Modern restricted Boltzmann machines:  Undirected models 
•  Challenge:  Extraordinarily non-convex, extensive heuristics 

(partially understood) required to avoid local optima  
Bayesian Nonparametrics 
•  Allow model complexity to grow as observations observed 
•  “Infinite” models via stochastic process priors on distributions 


