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Max Marginals
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* A max-marginal gives the probability of the most likely state in
which some variables are constrained to take specified values:
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* For a pairwise MRF, a solution Z is guaranteed to be one
(of possibly many) global MAP estimates if and only if:
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Belief Propagation (Max-Product)

Max-Marginals:
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Belief Propagation (Min-Sum)

Negative Log-Max-Marginals:

// Ui(xe) = () + Z Mt (T4)
O S— O uel'(t)

tt AN ¢t(x¢) = —log Py ()

Messages: Dst (5135, xt) — log st (5’387 xt)

Mis(Ts) = H;iﬂ Gst(Ts, Tt) + Pe(xe) + Z Mt (Tt)

t




The Generalized Distributive Law

A commutative semiring is a pair of generalized
“‘multiplication” and “addition” operations which satisfy:
Commutative: a+b=0b+a a-b=>b-a
Associative: a+ (b+¢)=(a+b)+c¢ a-(b-c)=(a-b)-c
Distributive: a-(b+c)=a-b+a-c

(Why not a ring? May be no additive/multiplicative inverses.)

Examples: Addition Multiplication
sum product
max product
max sum
min sum

For each of these cases, our factorization-based dynamic
programming derivation of belief propagation is still valid
Leads to max-product and min-sum belief propagation
algorithms for exact MAP estimation in trees



Max-Product to MAP Estimates

Global Directed Factorization: P(*) = 5 || EMICHEN] | KNES

« Choose some node as the root
of the tree, order by depth

« Define directed factorization
from root to leaves:

recursively from leaves to root
+ Find max-marginal of root node: ~ “#{%#)  ¥#(wt) II 7o)

Top-Down Recursive Selection:
« Take maximizing root, then maximize by depth given parent:

Vs(ajs ‘ Xt — itat — Pa(s)) X Qpts(a?ta*Cljs)ws(ajs) H mus(xs)



Discriminative Graphical Models
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Logistic Regression

—

SEQUENCE

~
-~
§~

33,(9) = exp{ Z Q?QSf(yf,

(6]
o
(6]
otk
o
(3]
(3]

ﬁ?@\o

§6 4

HMMs GRAPHS

cu@m NAL

Linear-chain CRFs GRAPHS General CRFs

Generative directed models

A CRF is trained to match marginals:
) - A0,2)
fer

* A max-margin Markov network or
structural SVM adapts hinge loss,
and is trained via MAP estimation



Approximate MAP Estimation
» Greedy coordinate ascent: /terative Conditional Modes (ICM)
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 Limit of both Gibbs sampling and mean fleld inlimit 3 — oo
* Physical interpretation: Temperature 5 — 0
« The simulated annealing method applies Gibbs sampling as

temperature is (very, very slowly) decreased



Marginalization as Convex Optimization

p(z | 0) = exp{0 d(z) — A(0)} (VA)
A(O) =log 3 exp{076(x)} ‘
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M = conv{¢(x) | x € X} (VA7)

Express log-partition as optimization over all distributions 9
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Jensen’s inequality gives arg max: ¢(z) = p(z | 6)

 More compact to optimize over relevant sufficient statistics:
concave function

A(@) = Sup {HT,U i H(p(x ‘ 9(#))} (linear plus entropy)

peM over a convex set
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MAP Estimation as Convex Optimization

p(z | 0) = exp{0T¢(x) — A(0)} (VA)
max 07 ¢(z) = max p(z | 6) ‘
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« This is a linear program: Maximization of a linear function
over a convex polytope, with one vertex foreach * € X

* No need to directly consider entropy for MAP estimation
 MAP also arises as limit of standard variational objective:
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Tree- Based Outer Approximations

For some graph G, denote true marginal polytope by M(G

Associate marginals with nodes and edges, and impose
the following /ocal consistency constraints L(G)

ZILLS(QZ’S) — 1, S & V ,us($s) Z Oaﬂst(msaxt) Z 0

Y pst(@s, m) = ps(xs), (s,1) € E, w5 € X,

For any graph, this is a convex outer bound: M((G) C L(G)
For any tree-structured graph T, we have M(T') = L(T)



MAP Linear Programming Relaxations
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« Spanning tree polytope has linear number of constraints, so
we can solve linear program in polynomial time

 If we find “integral” vertex of original polytope, we have
certificate guaranteeing solution of original MAP problem

« Otherwise, “round” solution to find approximate MAP estimate

Possible Efficient Solution: Reweighted Max-Product BP
s @5) 0 3 (s o)/ gy o) TT maaao

0 Mt (Tt) uel(t)

1/pst Qt(xt) Edge appearance weights as
s (Ts) X e Vst (s, 20) me:(x¢)  in reweighted sum-product




When Does BP Solve LP Relaxation?

B (5 0 ) For some convex u
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Informal summary of results of Wainwright et al., Weiss et al.:

« Zero-temperature limit of “convexified” sum-product
algorithms are guaranteed to solve MAP LP relaxation

* Reweighted max-product closely related, but not identical

« Standard max-product only approximates LP relaxation



Current Research: Structure Learning

Unknown Graphs for Known Variables

* Objective: Likelihood with MDL or Bayesian penalty

« Classic approach: Stochastic search in space of graphs

 Modern approach: Convex optimization with sparsity priors,
which encourage some parameters to be set to zero

Deep Learning

 Hierarchical models, with observations at finest scale, and
many layers of hidden variables

« Classic neural networks: Directed graphical models

* Modern restricted Boltzmann machines: Undirected models

« Challenge: Extraordinarily non-convex, extensive heuristics
(partially understood) required to avoid local optima

Bayesian Nonparametrics
» Allow model complexity to grow as observations observed
« “Infinite” models via stochastic process priors on distributions



