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Supervised Learning 
Generative ML or MAP Learning:  Naïve Bayes 
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Discriminative ML or MAP Learning:  Logistic regression 
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Binary Logistic Regression 
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•  Linear discriminant analysis: 

•  Quadratic discriminant analysis: 

•  Can derive weights from Gaussian generative model if that 
happens to be known, but more generally: 
•  Choose any convenient feature set 
•  Do discriminative Bayesian learning: 

�(x)

�(xi) = [1, xi1, xi2, . . . , xid]

�(xi) = [1, xi1, . . . , xid, x
2
i1, xi1xi2, x

2
i2, . . .]

p(yi | xi, ✓) = Ber(yi | sigm(✓T�(xi)))

p(✓ | x, y) / p(✓)
NY

i=1

Ber(yi | sigm(✓T�(xi)))



Generative versus Discriminative 

2.2 Generative versus Discriminative Models 279

One simple way to accomplish this is to assume that once the class
label is known, all the features are independent. The resulting classifier
is called the naive Bayes classifier. It is based on a joint probability
model of the form:

p(y,x) = p(y)
K∏

k=1

p(xk|y). (2.7)

This model can be described by the directed model shown in Figure 2.3
(left). We can also write this model as a factor graph, by defining a
factor Ψ(y) = p(y), and a factor Ψk(y,xk) = p(xk|y) for each feature xk.
This factor graph is shown in Figure 2.3 (right).

Another well-known classifier that is naturally represented as a
graphical model is logistic regression (sometimes known as the max-
imum entropy classifier in the NLP community). This classifier can
be motivated by the assumption that the log probability, logp(y|x), of
each class is a linear function of x, plus a normalization constant.1 This
leads to the conditional distribution:

p(y|x) =
1

Z(x)
exp




θy +
K∑

j=1

θy,jxj




 , (2.8)

where Z(x) =
∑

y exp{θy +
∑K

j=1 θy,jxj} is a normalizing constant, and
θy is a bias weight that acts like logp(y) in naive Bayes. Rather than
using one weight vector per class, as in (2.8), we can use a different
notation in which a single set of weights is shared across all the classes.
The trick is to define a set of feature functions that are nonzero only

x

y

x

y

Fig. 2.3 The naive Bayes classifier, as a directed model (left), and as a factor graph (right).

1 By log in this survey we will always mean the natural logarithm.

Generative ML or MAP Learning:  Naïve Bayes 

•  Class-specific distributions for each of M features 

p(y, x) = p(y)
MY

m=1

p(xm | y)
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Discriminative ML or MAP Learning:  Logistic regression 

•  Exponential family distribution (maximum entropy classifier) 
•  Different distribution, and normalization constant, for each x 

p(y = k | x, ✓) = 1

Z(x, ✓)
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Mixture Models versus HMMs 

x1 x2 x3 x4 x5

Mixture 
Model 

p(xi | yi = k,⇡, ✓) = exp{✓Tk �(xi)�A(✓k)}

y1 y2 y3 y4 y5 yi 2 {1, . . . ,K}

p(yi | ⇡, ✓) = Cat(yi | ⇡)

x1 x2 x3 x4 x5

Hidden 
Markov 
Model 

Recover mixture model when all rows of state transition matrix are equal. 

y1 y2 y3 y4 y5

p(yt | ⇡, ✓, yt�1, yt�2, . . .) = Cat(yt | ⇡yt�1)
p(xt | yt = k,⇡, ✓) = exp{✓Tk �(xt)�A(✓k)}



Modeling Sequential Data 

x1 x2 x3 x4 x5

Hidden 
Markov 
Model 

y1 y2 y3 y4 y5

p(yt | ⇡, ✓, yt�1, yt�2, . . .) = Cat(yt | ⇡yt�1)
p(xt | yt = k,⇡, ✓) = exp{✓Tk �(xt)�A(✓k)}

“Maximum 
Entropy 
Markov 
Model” 

Most graphical models have equal claim to max-entropy terminology… 

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

p(yt = k | yt�1, xt) = exp{✓Tk �(yt�1, xt)�A(yt�1, xt, ✓)}



The “Label Bias” Problem 

“Maximum 
Entropy 
Markov 
Model” x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

p(yt = k | yt�1, xt) = exp{✓Tk �(yt�1, xt)�A(yt�1, xt, ✓)}

•  Directed MEMM structure gives simple local learning problem: 
“classifier” for next state, given current state & observations 

•  But the MEMM structure has a major modeling weakness: 
future observations provide no information about current state 
p(y1 | x1, x2, x3) =

X

y2

X

y3

p(y1 | x1)p(y2 | y1, x2)p(y3 | y2, x3)

Sum-product algorithm has uninformative backward messages 

= p(y1 | x1)

"
X

y2

p(y2 | y1, x2)

"
X

y3

p(y3 | y2, x3)

##



(Generative) Markov Random Fields 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 

{1, 2, . . . , N}V
F f ✓ V

•  Assume an exponential family representation of each factor: 

 f (xf | ✓f ) = exp{✓Tf �f (xf )}

p(x | ✓) = 1

Z(✓)

Y

f2F
 f (xf | ✓f )

Z(✓) =
X

x

Y

f2F
 

f

(x
f

| ✓
f

)

p(x | ✓) = exp

⇢ X

f2F
✓

T
f �f (xf )�A(✓)

�

A(✓) = logZ(✓)

•  Partition function globally couples the local factor parameters 



(Discriminative) Conditional Random Fields 

•  Assume an exponential family representation of each factor: 

•  Log-probability is a linear function of fixed, possibly very 
complex features of input x and output y 

•  Partition function globally couples the local factor parameters, 
and every training example has a different normalizer 

p(y | x, ✓) = 1

Z(✓, x)

Y

f2F
 f (yf | x, ✓f )

Z(✓, x) =
X

y

Y

f2F
 f (yf | x, ✓f )

p(y | x, ✓) = exp

⇢ X

f2F
✓

T
f �f (yf , x)�A(✓, x)

�

 f (yf | x, ✓f ) = exp{✓Tf �f (yf , x)} A(✓, x) = logZ(✓, x)



CRF Models for Sequential Data 

2.3 Linear-chain CRFs 289

Notice that a linear chain CRF can be described as a factor graph
over x and y, i.e.,

p(y|x) =
1

Z(x)

T∏

t=1

Ψt(yt,yt−1,xt) (2.20)

where each local function Ψt has the special log-linear form:

Ψt(yt,yt−1,xt) = exp

{
K∑

k=1

θkfk(yt,yt−1,xt)

}
. (2.21)

This will be useful when we move to general CRFs in the next section.
Typically we will learn the parameter vector θ from data, as

described in Section 5.
Previously we have seen that if the joint p(y,x) factorizes as an

HMM, then the associated conditional distribution p(y|x) is a linear-
chain CRF. This HMM-like CRF is pictured in Figure 2.5. Other types
of linear-chain CRFs are also useful, however. For example, in an HMM,
a transition from state i to state j receives the same score, logp(yt =
j|yt−1 = i), regardless of the input. In a CRF, we can allow the score
of the transition (i, j) to depend on the current observation vector,
simply by adding a feature 1{yt=j}1{yt−1=1}1{xt=o}. A CRF with this
kind of transition feature, which is commonly used in text applications,
is pictured in Figure 2.6.

In fact, since CRFs do not represent dependencies among the vari-
ables x1, . . .xT , we can allow the factors Ψt to depend on the entire
observation vector x without breaking the linear graphical structure —
allowing us to treat x as a single monolithic variable. As a result, the
feature functions can be written fk(yt,yt−1,x) and have the freedom
to examine all the input variables x together. This fact applies gener-
ally to CRFs and is not specific to linear chains. A linear-chain CRF

. . .

. . .

y

x

Fig. 2.5 Graphical model of the HMM-like linear-chain CRF from equation (2.17).
p(y | x) /

Y

t

 t(yt, xt) t,t+1(yt, yt+1)

Direct 
Extension 
of HMM 

290 Modeling
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Fig. 2.6 Graphical model of a linear-chain CRF in which the transition factors depend on
the current observation.

. . .

. . .

y

x

Fig. 2.7 Graphical model of a linear-chain CRF in which the transition factors depend on
all of the observations.

with this structure in shown graphically in Figure 2.7. In this figure we
show x = (x1, . . .xT ) as a single large observed node on which all of the
factors depend, rather than showing each of the x1, . . .xT as individual
nodes.

To indicate in the definition of linear-chain CRF that each feature
function can depend on observations from any time step, we have writ-
ten the observation argument to fk as a vector xt, which should be
understood as containing all the components of the global observations
x that are needed for computing features at time t. For example, if the
CRF uses the next word xt+1 as a feature, then the feature vector xt

is assumed to include the identity of word xt+1.
Finally, note that the normalization constant Z(x) sums over all

possible state sequences, an exponentially large number of terms.
Nevertheless, it can be computed efficiently by the forward–backward
algorithm, as we explain in Section 4.1.

2.4 General CRFs

Now we generalize the previous discussion from a linear-chain to a
general graph, matching the definition of a CRF originally given in

p(y | x) /
Y

t

 t(yt, xt) t,t+1(yt, yt+1, xt)
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Transitions 
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with this structure in shown graphically in Figure 2.7. In this figure we
show x = (x1, . . .xT ) as a single large observed node on which all of the
factors depend, rather than showing each of the x1, . . .xT as individual
nodes.

To indicate in the definition of linear-chain CRF that each feature
function can depend on observations from any time step, we have writ-
ten the observation argument to fk as a vector xt, which should be
understood as containing all the components of the global observations
x that are needed for computing features at time t. For example, if the
CRF uses the next word xt+1 as a feature, then the feature vector xt

is assumed to include the identity of word xt+1.
Finally, note that the normalization constant Z(x) sums over all

possible state sequences, an exponentially large number of terms.
Nevertheless, it can be computed efficiently by the forward–backward
algorithm, as we explain in Section 4.1.

2.4 General CRFs

Now we generalize the previous discussion from a linear-chain to a
general graph, matching the definition of a CRF originally given in

Arbitrary 
Non-Local 
Features 

p(y | x) /
Y

t

 t(yt, x) t,t+1(yt, yt+1, x)



Families of Graphical Models 

286 Modeling

Because a generative model takes the form p(y,x) = p(y)p(x|y), it
is often natural to represent a generative model by a directed graph
in which in outputs y topologically precede the inputs. Similarly, we
will see that it is often natural to represent a discriminative model
by a undirected graph. However, this need not always be the case,
and both undirected generative models, such as the Markov random
field (2.32), and directed discriminative models, such as the MEMM
(6.2), are sometimes used. It can also be useful to depict discriminative
models by directed graphs in which the x precede the y.

The relationship between naive Bayes and logistic regression mirrors
the relationship between HMMs and linear-chain CRFs. Just as naive
Bayes and logistic regression are a generative-discriminative pair, there
is a discriminative analogue to the HMM, and this analogue is a partic-
ular special case of CRF, as we explain in the next section. This analogy
between naive Bayes, logistic regression, generative models, and CRFs
is depicted in Figure 2.4.

Fig. 2.4 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

2.3 Linear-chain CRFs

To motivate our introduction of linear-chain CRFs, we begin by
considering the conditional distribution p(y|x) that follows from the
joint distribution p(y,x) of an HMM. The key point is that this
conditional distribution is in fact a CRF with a particular choice of
feature functions.

p(y | ✓) = exp

⇢ X

f2F
✓Tf �f (yf )�A(✓)

�

p(y | x, ✓) = exp

⇢ X

f2F
✓

T
f �f (yf , x)�A(✓, x)

�

With informative observations (good features), the posterior  
may have a simpler graph (Markov) structure than the prior 



Generative Learning for MRFs 
•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 

p(D | ✓) =
NY

n=1

1

Z(✓)

Y

f2F
 f (xf,n | ✓f )

•  Take gradient with respect to parameters for a single factor: 

r✓f log p(D | ✓) =
"

NX

n=1

�f (xf,n)

#
�NE✓[�f (xf )]

log p(D | ✓) =
"

NX

n=1

X

f2F
✓

T
f �f (xf,n)

#
�NA(✓)

•  Must be able to compute prior marginal distributions for factors   
•  At each gradient step, must solve a single inference problem to find the 

marginal statistics of the prior distribution 



Discriminative Learning for CRFs 
•  Undirected graph encodes dependencies within a single training example: 

•  Given N independent, identically distributed, completely observed samples: 

•  Take gradient with respect to parameters for a single factor: 

•  Must be able to compute conditional marginal distributions for factors  
•  At each gradient step, must solve a N inference problems to find the 

conditional marginal statistics of the posterior for every training example 

p(y | x, ✓) =
NY

n=1

1

Z(✓, xV,n)

Y

f2F
 f (yf,n | xV,n, ✓f )

log p(y | x, ✓) =
NX

n=1

"
X

f2F
✓

T
f �f (yf,n, xV,n)�A(✓, xV,n)

#

r✓f log p(y | x, ✓) =
NX

n=1

"
�f (yf,n, xV,n)� E✓[�f (yf , xV,n) | xV,n]

#



Convex Conditional Likelihood Surrogates 

for a convex bound satisfying 
•  Apply tree-reweighted Bethe variational bound: 

•  Gradients depend on expectations of pseudo-marginals 
produced by applying tree-reweighted BP with current model 
parameters, for features of every training example 

log p(y | x, ✓) =
NX

n=1

"
X

f2F
✓

T
f �f (yf,n, xV,n)�A(✓, xV,n)

#

log p(y | x, ✓) �
NX

n=1

"
X

f2F
✓

T
f �f (yf,n, xV,n)�B(✓, xV,n)

#

A(✓, x)  B(✓, x)

r✓f log p(y | x, ✓) =
NX

n=1

"
�f (yf,n, xV,n)� E⌧ [�f (yf , xV,n) | xV,n]

#

•  To train CRF models on graphs with cycles: 



Inference in Graphical Models 

Maximum a Posteriori (MAP) Estimates 

Provides Bayesian estimators, confidence measures,  
and sufficient statistics for iterative parameter estimation 

Posterior Marginal Densities 

observed evidence variables (subset of nodes) xE

xF unobserved query nodes we’d like to infer 

xR
remaining variables, extraneous to this query 
but part of the given graphical representation 

p(xF | xE) =
p(xE , xF )

p(xE)

p(x
E

, x

F

) =
X

xR

p(x
E

, x

F

, x

R

)

p(x
E

) =
X

xF

p(x
E

, x

F

)

x̂

F

= argmax

xF

p(x

F

| x
E

) = argmax

xF

p(x

E

, x

F

)

R = V \ {E,F}



Global versus Local MAP Estimation 
Maximum a Posteriori (MAP) Estimates 

Maximizer of Posterior Marginals (MPM) Estimates 

x̂

F

= argmax

xF

p(x

F

| x
E

) = argmax

xF

p(x

E

, x

F

)

p(x
s

| x
E

) =
X

xF\s

p(x
F

| x
E

)

x̂

s

= argmax

xs

p(x

s

| x
E

)

MAP and MPM estimators are not equivalent 

MPM: (1,1) 
MAP: (1,2) 



MAP in Directed Graphs 
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A MAP Elimination Algorithm 

•  Determine maximal setting of variable being eliminated, 
for every possible configuration of its neighbors 

•  Compute a new potential table involving all other variables 
which depend on the just-marginalized variable 

Algebraic Maximization Operations 

•  Remove, or eliminate, a single node from the graph  
•  Add edges (if they don’t already exist) between all pairs of 

nodes who were neighbors of the just-removed node 

Graph Manipulation Operations 

•  Choose an elimination ordering  
•  Eliminate a node, remove its incoming edges, add edges 

between all pairs of its neighbors 
•  Iterate until all non-observed nodes are eliminated 

A Graph Elimination Algorithm 



Graph Elimination Example 
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Elimination Order: (6,5,4,3,2,1) 
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Graph Elimination Example 
Elimination Order: (6,5,4,3,2,1) 
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Elimination Algorithm Complexity 

1X

2X

3X

X 4

X 5

X6

•  Elimination cliques:  Sets of neighbors of eliminated nodes 
•  Maximization cost:  Exponential in number of variables in 

each elimination clique (dominated by largest clique) 
•  Treewidth of graph:  Over all possible elimination orderings, 

the smallest possible max-elimination-clique size, minus one 
•  NP-Hard:  Finding the best elimination ordering for an 

arbitrary input graph (but heuristic algorithms often effective)  



The Generalized Distributive Law 
•  A commutative semiring is a pair of generalized 

“multiplication” and “addition” operations which satisfy: 
Commutative: 
Associative: 
Distributive: 
(Why not a ring?  May be no additive/multiplicative inverses.) 

•  Examples: 

a · b = b · aa+ b = b+ a
a+ (b+ c) = (a+ b) + c a · (b · c) = (a · b) · c

a · (b+ c) = a · b+ a · c

Multiplication Addition 
sum product 
max product 
max sum 

sum min 
•  For each of these cases, our factorization-based dynamic 

programming derivation of belief propagation is still valid 
•  Leads to max-product and min-sum belief propagation 

algorithms for exact MAP estimation in trees  



Belief Propagation (Max-Product) 
Max-Marginals:  

MESSAGES: 

p̂t(xt) /  t(xt)
Y

u2�(t)

mut(xt)

xt

xt

xs

p̂

t

(x

t

) / argmax

x

p(x)I(X
t

= x

t

)

m

ts

(x

s

) / max

xt

 

st

(x

s

, x

t

) 

t

(x

t

)

Y

u2�(t)\s

m

ut

(x

t

)

•  If MAP is unique, find via arg-max of 
each max-marginal independently 

•  Otherwise, must backtrack from some 
chosen root node 


