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Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

p(x | ✓) = exp{✓T�(x)�A(✓)}

•  Express log-partition as optimization over all distributions 

Jensen’s inequality gives arg max: q(x) = p(x | ✓)
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•  More compact to optimize over relevant sufficient statistics: 
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Bethe & Loopy BP:  Approximate log-partition function 
•  Define tractable outer bound on constraints 
•  Tree-based models give approximation to true entropy 

M+ � M

Mean Field:  Lower bound log-partition function 
•  Restrict optimization to some simpler subset 
•  Imposing conditional independencies makes entropy tractable 

M� ⇢ M

Reweighted BP:  Upper bound log-partition function 
•  Define tractable outer bound on constraints 
•  Tree-based models give tractable upper bound on true entropy 

M+ � M



Tree-Based Outer Approximations 

•  Associate marginals with nodes and edges, and impose 
the following local consistency constraints 
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•  For some graph G, denote true marginal polytope by M(G)

L(G)
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Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

•  For any graph, this is a convex outer bound: 
•  For any tree-structured graph T, we have 

M(G) ✓ L(G)
M(T ) = L(T )



Tree-Based Entropy Bounds 
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H(µ)  H(µ(T )) for any tree T 

Maximum entropy property of exponential families: 

•  Original distribution maximizes entropy subject to constraints 

Ep[�st(xs, xt)] = µ(xs, xt), (s, t) 2 E
•  Tree-structured distribution maximizes subject to a subset of 

the full constraints (those corresponding to edges in tree): 
Ep[�st(xs, xt)] = µ(xs, xt), (s, t) 2 E(T )



Tree-Based Entropy Bounds 
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•  Family of bounds depends on edge appearance probabilities 
from some distribution over subtrees in the original graph: 
H(µ) 

X

T

⇢(T )H(µ(T ))
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defined at each vertex s ∈ V , and a joint pairwise marginal distribu-
tion µst( · , ·) defined for each edge (s, t) ∈ E(T ). As discussed earlier
in Section 4, the factorization (4.8) of any tree-structured probability
distribution yields the entropy decomposition

H(µ(T )) =
∑

s∈V

Hs(µs) −
∑

(s,t)∈E(T )

Ist(µst). (7.9)

Now consider the averaged form of the bound (7.5). Since the trees are
all spanning, the entropy term Hs for node s ∈ V receives a weight of
one in this average. On the other hand, the mutual information term
Ist for edge (s, t) receives the weight ρst = Eρ

[
I [(s, t) ∈ E(T )]

]
, where

I [(s, t) ∈ E(T )] is an indicator function for the event that edge (s, t) is
included in the edge set E(T ) of a given tree T . Overall, we obtain the
following upper bound on the exact entropy:

H(µ) ≤
∑

s∈V

Hs(µs) −
∑

(s,t)∈E

ρstIst(µst). (7.10)

We refer to the edge weight ρst as the edge appearance probability,
since it reflects the probability mass associated with edge (s, t). The
vector ρ = (ρst, (s, t) ∈ E) of edge appearance probabilities belong to
a set called the spanning tree polytope, as discussed at more length in
Theorem 7.2 to follow.

Let us now consider the form of the outer bound L(G;T) on the
set M. For the pairwise MRF with the overcomplete parameterization
under consideration, the set M is simply the marginal polytope M(G).
On the other hand, the set M(T ) is simply the marginal polytope for
the tree T , which from our earlier development (see Proposition 4.1) is
equivalent to L(T ). Consequently, the constraint µ(T ) ∈M(T ) is equiv-
alent to enforcing nonnegativity constraints, normalization (at each
vertex) and marginalization (across each edge) of the tree. Enforc-
ing the inclusion µ(T ) ∈M(T ) for all trees T ∈ T is equivalent to
enforcing the marginalization on every edge of the full graph G.
We conclude that in this particular case, the set L(G;T) is equiva-
lent to the set L(G) of locally consistent pseudomarginals, as defined
earlier (4.7).

Must only specify a single scalar parameter per edge 
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Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.

•  Local consistency constraints are convex, but allow globally 
inconsistent pseudo-marginals on graphs with cycles 

•  Assuming we pick weights corresponding to some distribution 
on acyclic sub-graphs, have upper bound on true entropy 

•  This defines a convex surrogate to true variational problem 

A(✓)  sup
⌧2L(G)

⇢
✓T ⌧ +H⇢(⌧)
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H⇢(⌧) =
X

s2V
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⇢stIst(⌧st)

•  Given edge weights, how can we efficiently find the best 
pseudo-marginals?  A message-passing algorithm? 

•  There are many distributions over spanning trees. 
How can we find the best edge appearance probabilities? 

Issues to resolve: 
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Fig. 7.1 Illustration of valid edge appearance probabilities. Original graph is shown in panel
(a). Probability 1/3 is assigned to each of the three spanning trees {Ti | i = 1,2,3} shown
in panels (b)–(d). Edge b appears in all three trees so that ρb = 1. Edges e and f appear
in two and one of the spanning trees, respectively, which gives rise to edge appearance
probabilities ρe = 2/3 and ρf = 1/3.

must belong to the so-called spanning tree polytope [54, 73] associated
with G. Note that these edge appearance probabilities must satisfy
various constraints, depending on the structure of the graph. A simple
example should help to provide intuition.

Example 7.1 (Edge Appearance Probabilities). Figure 7.1(a)
shows a graph, and panels (b) through (d) show three of its spanning
trees {T 1,T 2,T 3}. Suppose that we form a uniform distribution ρ over
these trees by assigning probability ρ(T i) = 1/3 to each T i, i = 1,2,3.
Consider the edge with label f ; notice that it appears in T 1, but in
neither of T 2 and T 3. Therefore, under the uniform distribution ρ,
the associated edge appearance probability is ρf = 1/3. Since edge e
appears in two of the three spanning trees, similar reasoning establishes
that ρe = 2/3. Finally, observe that edge b appears in any spanning tree
(i.e., it is a bridge), so that it must have edge appearance probability
ρb = 1.

In their work on fractional belief propagation, Wiegerinck and Hes-
kes [261] examined the class of reweighted Bethe problems of the
form (7.11), but without the requirement that the weights ρst belong
to the spanning tree polytope. Although loosening this requirement
does yield a richer family of variational problems, in general one loses
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•  Bound holds assuming edge weights lie in the spanning tree 
polytope (generated by some valid distribution on trees) 

•  Optimize via conditional gradient method: 
Ø  Find descent direction by maximizing linear function 

(gradient) over constraint set 
Ø  For spanning tree polytope, this reduces to a 

maximum weight spanning tree problem 
Ø  Iteratively tightens bound on partition function Bertsekas 1999 



MF & Reweighted BP:  Message Passing 
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•  Reweighted BP becomes loopy BP when 
•  Reweighted BP approaches mean field as 

Geometric mean is limit of power mean 
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MF & Reweighted BP:  Variational Objective 

•  View edge weights as positive, tunable parameters 
•  In the limit where they become very large: 

⌧st ! 1
Ist(⌧st) = 0
optimum sets 

⌧st(xs, xt) = ⌧s(xs)⌧t(xt)

Mean Field: For acyclic edge set               , otherwise ⇢st = 1 ⇢st ! 1
•  Objective:  Lower bounds true          , but non-convex 
•  Message-passing:  Guaranteed convergent, but local optima 

A(✓)
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Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope M(G)
and the outer bound L(G). The set L(G) is always an outer bound on M(G), and the
inclusion M(G) ⊂ L(G) is strict whenever G has cycles. Both sets are polytopes and so can
be represented either as the convex hull of a finite number of extreme points, or as the
intersection of a finite number of half-spaces, known as facets.

Both sets are polytopes, and consequently can be represented either
as the convex hull of a finite number of extreme points, or as the inter-
section of a finite number of half-spaces, known as facets. Letting φ
be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
indicator functions are {0,1}-valued, all of its extreme points consist
of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
the book [69] for background on the cut or correlation polytope, which
is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
known in general.
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be a shorthand for the full vector of indicator functions in the stan-
dard overcomplete representation (3.34), the marginal polytope has
the convex hull representation M(G) = conv{φ(x) | x ∈ X}. Since the
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of {0,1} elements, of the form µx := φ(x) for some x ∈ X m; there are
a total of |X m| such extreme points. However, with the exception of
tree-structured graphs, the number of facets for M(G) is not known
in general, even for relatively simple cases like the Ising model; see
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is equivalent to the marginal polytope for an Ising model. However,
the growth must be super-polynomial in the graph size, unless certain
widely believed conjectures in computational complexity are false.

On the other hand, the polytope L(G) has a polynomial number
of facets, upper bounded by any graph by O(rm + r2|E|). It has more
extreme points than M(G), since in addition to all the integral extreme
points {µx,x ∈ X m}, it includes other extreme points τ ∈ L(G)\M(G)
that contain fractional elements; see Section 8.4 for further discussion
of integral versus fractional extreme points. With the exception of trees
and small instances, the total number of extreme points of L(G) is not
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Mean Field: For acyclic edge set               , otherwise ⇢st = 1 ⇢st ! 1
•  Objective:  Lower bounds true         , but non-convex 
•  Message-passing:  Guaranteed convergent, but local optima 

A(✓)

Reweighted BP:  Respect spanning tree polytope, 
•  Objective:  Upper bounds true         , convex 
•  Message-passing:  Single global optimum, typically convergent 

A(✓)

0 < ⇢st  1

Loopy BP:  For all edges, set 
•  Objective:  Approximation, possibly poor, generally non-convex 
•  Message-passing:  Multiple optima, may not convergent 
•  But, for some models gives most accurate marginal estimates 

⇢st = 1



Undirected Graphical Models 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 
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•  Partition function globally couples the local factor parameters 



Learning for Undirected Models 
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•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 
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Learning for Undirected Models 
•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 

p(D | ✓) =
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n=1
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•  Take gradient with respect to parameters for a single factor: 
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•  Must be able to compute marginal distributions for factors in current model: 
Ø  Tractable for tree-structured factor graphs via sum-product 
Ø  What about general factor graphs or undirected graphs? 
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Convex Likelihood Surrogates 
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where we pick a bound satisfying                                      convex A(✓)  B(✓), B(✓)
•  Apply reweighted Bethe (generalizes to higher-order factors): 
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•  Gradients depend on expectations of pseudo-marginals 
produced by applying reweighted BP to current model 



Approximate Learning & Inference: 
Two Wrongs Make a Right 

ESTIMATING THE “WRONG” GRAPHICAL MODEL

specifically, our analysis applies to variational methods that are based on convex relaxations. This
class includes a number of existing methods—among them the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2005), reweighted forms of generalized belief propagation (Wiegerinck,
2005), and semidefinite relaxations (Wainwright and Jordan, 2005). Moreover, it is possible to
modify other variational methods—for instance, expectation propagation (Minka, 2001)—so as to
“convexify” them.
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Figure 1: Route A: computationally intractable combination of parameter estimation and predic-
tion. Route B: computationally efficient combination of approximate parameter estima-
tion and prediction.

1.2 Our Contributions

At a high level, the key idea of this paper is the following: given that approximate methods can lead
to errors at both the estimation and prediction phases, it is natural to speculate that these sources
of error might be arranged to partially cancel one another. The theoretical analysis of this paper
confirms this intuition: we show that with respect to end-to-end performance, it is in fact beneficial,
even in the infinite data limit, to learn the “wrong” the model by using inconsistent methods for
parameter estimation. En route to this result, we analyze the asymptotic properties of M-estimators
based on convex variational relaxations, and establish a Lipschitz stability property that holds for
a broad class of variational methods. Such global algorithmic stability is a fundamental concern
given statistical models imperfectly estimated from limited data, or for applications in which “er-
rors” may be introduced into message-passing (e.g., due to quantization or other forms of communi-
cation constraints in sensor networks). Thus, our global stability result provides further theoretical
justification—apart from the obvious benefit of unique global optima—for using message-passing
methods based on convex variational relaxations. Finally, we provide some empirical results to
show that joint estimation/prediction based on the reweighted sum-product algorithm substantially
outperforms a commonly used heuristic based on ordinary sum-product.

The remainder of this paper is organized as follows. Section 2 provides background on Markov
random fields. In Section 3, we introduce background on variational representations, including the
notion of a convex surrogate to the cumulant generating function, and then illustrate this notion via
the tree-reweighted Bethe approximation (Wainwright et al., 2005). In Section 4, we describe how
any convex surrogate defines a particular joint scheme for parameter estimation and prediction. Sec-
tion 5 provides results on the asymptotic behavior of the estimation step, as well as the stability of
the prediction step. Section 6 is devoted to the derivation of performance bounds for joint estimation
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•  Empirical Folk Theorem:  Performance is better if the inference 
approximations used to learn parameters from training data 
are “matched” to those used for test examples 

•  Actual Theorem roughly shows:  If learn based on convex 
upper bound to true partition function, can bound error on 
predictions for test examples which are “close” to training data 

•  Non-convexity & local optima bad in theory & practice   



Example:  Spatially Coupled Mixtures 

Wainwright 2006 

WAINWRIGHT

(a) Mixture ensemble A is bimodal, with components (ν0,σ20) = (−1,0.5) and (ν1,σ21) = (1,0.5).

(b) Mixture ensemble B was constructed with mean and variance components (ν0,σ20) = (0,1)
and (ν1,σ21) = (0,9); these choices serve to mimic heavy-tailed behavior.

In both cases, each mixture component is equally weighted; see Figure 3 for histograms of the
resulting mixture ensembles.
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Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensem-
ble with (ν0,σ20) = (−1,0.5) and (ν1,σ21) = (1,0.5). (b) Ensemble B: mimics a heavy-
tailed distribution, with (ν0,σ20) = (0,1) and (ν1,σ21) = (0,9).

Here we show results for a 2-D grid with N = 64 nodes. Since the mixture variables have m= 2
states, the coupling distribution can be written as

p(x ; θ∗) ∝ exp
{
∑
s∈V

θ∗sxs+ ∑
(s,t)∈E

θ∗stxsxt
}
,

where x ∈ {−1,+1}N are “spin” variables indexing the mixture components. In all trials (except
those in Section 7.2), we chose θ∗s = 0 for all nodes s ∈ V , which ensures uniform marginal dis-
tributions p(xs ; θ∗) = [0.5 0.5]T at each node. We tested two types of coupling in the underlying
Markov random field:

(a) In the case of attractive coupling, for each coupling strength β ∈ [0,1], we chose edge param-
eters as θ∗st ∼U[0,β].

(b) In the case of mixed coupling, for each coupling strength β∈ [0,1], we chose edge parameters
as θ∗st ∼U[−β,β].

Here U[a,b] denotes a uniform distribution on the interval [a,b]. In all cases, we varied the SNR
parameter α, as specified in the observation model (21), in the interval [0,1].

7.2 Comparison between “Incorrect” and True Model

We begin with an experimental comparison to substantiate our earlier claim that applying an ap-
proximate message-passing algorithm to the “incorrect” model yields prediction results superior to
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ESTIMATING THE “WRONG” GRAPHICAL MODEL

those obtained by applying the same message-passing algorithm to the true underlying model. As
discussed earlier in Section 6.3.1, for any underlying model p(x;θ∗) in which approximate message-
passing yields the incorrect marginals (without any additional observations), there exists a range of
SNR around α≈ 0 for which this superior performance will hold.
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Figure 4: Line plots of percentage increase in MSE relative to Bayes optimum for the TRWmethod
applied to the true model (black circles) versus the approximate model (red diamonds) as
a function of observation SNR for grids with N = 64 nodes, and attractive coupling β =
0.70. As predicted by theory, using the “incorrect” model leads to superior performance,
when prediction is performed using the approximate TRW method, for a range of SNR.

Figure 4 provides an empirical demonstration of this claim, when the TRW algorithm for pre-
diction is applied to a grid with N = 64 nodes and attractive coupling strength β = 0.70, and the
node observations chosen randomly as θ∗s ∼ N(0,0.5). Plotted versus the SNR parameter α is the
percentage increase in MSE performance relative to the Bayes optimal baseline. Note that for all
SNR parameters up to α ≈ 0.40, applying the TRW algorithm to the true model yields worse per-
formance than applying it to the “incorrect model”. Beyond this point, the pattern reverses, but any
differences between the two methods are rather small for α> 0.40.

7.3 Comparison between Tree-reweighted and Ordinary Sum-product

We now compare the performance of the prediction method based on tree-reweighted sum-product
(TRW) message-passing to that based on ordinary sum-product or belief propagation (BP) message-
passing. Shown in Figure 5 are 2-D surface plots of the average percentage increase in MSE,
taken over 100 trials, as a function of the coupling strength β ∈ [0,1] and the observation SNR
parameter α ∈ [0,1] for the independence model (left column), BP approach (middle column) and
TRW method (right column). The top two rows show performance for attractive coupling, for
mixture ensemble A ((a) through (c)) and ensemble B ((d) through (f)), whereas the bottom two row
show performance for mixed coupling, for mixture ensemble A ((g) through (i)) and ensemble B
((j) through (l)).

First, observe that for weakly coupled problems (β≈ 0), whether attractive or mixed coupling,
all three methods—including the independence model—perform quite well, as should be expected
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ESTIMATING THE “WRONG” GRAPHICAL MODEL

specifically, our analysis applies to variational methods that are based on convex relaxations. This
class includes a number of existing methods—among them the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2005), reweighted forms of generalized belief propagation (Wiegerinck,
2005), and semidefinite relaxations (Wainwright and Jordan, 2005). Moreover, it is possible to
modify other variational methods—for instance, expectation propagation (Minka, 2001)—so as to
“convexify” them.
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Figure 1: Route A: computationally intractable combination of parameter estimation and predic-
tion. Route B: computationally efficient combination of approximate parameter estima-
tion and prediction.

1.2 Our Contributions

At a high level, the key idea of this paper is the following: given that approximate methods can lead
to errors at both the estimation and prediction phases, it is natural to speculate that these sources
of error might be arranged to partially cancel one another. The theoretical analysis of this paper
confirms this intuition: we show that with respect to end-to-end performance, it is in fact beneficial,
even in the infinite data limit, to learn the “wrong” the model by using inconsistent methods for
parameter estimation. En route to this result, we analyze the asymptotic properties of M-estimators
based on convex variational relaxations, and establish a Lipschitz stability property that holds for
a broad class of variational methods. Such global algorithmic stability is a fundamental concern
given statistical models imperfectly estimated from limited data, or for applications in which “er-
rors” may be introduced into message-passing (e.g., due to quantization or other forms of communi-
cation constraints in sensor networks). Thus, our global stability result provides further theoretical
justification—apart from the obvious benefit of unique global optima—for using message-passing
methods based on convex variational relaxations. Finally, we provide some empirical results to
show that joint estimation/prediction based on the reweighted sum-product algorithm substantially
outperforms a commonly used heuristic based on ordinary sum-product.

The remainder of this paper is organized as follows. Section 2 provides background on Markov
random fields. In Section 3, we introduce background on variational representations, including the
notion of a convex surrogate to the cumulant generating function, and then illustrate this notion via
the tree-reweighted Bethe approximation (Wainwright et al., 2005). In Section 4, we describe how
any convex surrogate defines a particular joint scheme for parameter estimation and prediction. Sec-
tion 5 provides results on the asymptotic behavior of the estimation step, as well as the stability of
the prediction step. Section 6 is devoted to the derivation of performance bounds for joint estimation
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WAINWRIGHT

(a) Mixture ensemble A is bimodal, with components (ν0,σ20) = (−1,0.5) and (ν1,σ21) = (1,0.5).

(b) Mixture ensemble B was constructed with mean and variance components (ν0,σ20) = (0,1)
and (ν1,σ21) = (0,9); these choices serve to mimic heavy-tailed behavior.

In both cases, each mixture component is equally weighted; see Figure 3 for histograms of the
resulting mixture ensembles.
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Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensem-
ble with (ν0,σ20) = (−1,0.5) and (ν1,σ21) = (1,0.5). (b) Ensemble B: mimics a heavy-
tailed distribution, with (ν0,σ20) = (0,1) and (ν1,σ21) = (0,9).

Here we show results for a 2-D grid with N = 64 nodes. Since the mixture variables have m= 2
states, the coupling distribution can be written as

p(x ; θ∗) ∝ exp
{
∑
s∈V

θ∗sxs+ ∑
(s,t)∈E

θ∗stxsxt
}
,

where x ∈ {−1,+1}N are “spin” variables indexing the mixture components. In all trials (except
those in Section 7.2), we chose θ∗s = 0 for all nodes s ∈ V , which ensures uniform marginal dis-
tributions p(xs ; θ∗) = [0.5 0.5]T at each node. We tested two types of coupling in the underlying
Markov random field:

(a) In the case of attractive coupling, for each coupling strength β ∈ [0,1], we chose edge param-
eters as θ∗st ∼U[0,β].

(b) In the case of mixed coupling, for each coupling strength β∈ [0,1], we chose edge parameters
as θ∗st ∼U[−β,β].

Here U[a,b] denotes a uniform distribution on the interval [a,b]. In all cases, we varied the SNR
parameter α, as specified in the observation model (21), in the interval [0,1].

7.2 Comparison between “Incorrect” and True Model

We begin with an experimental comparison to substantiate our earlier claim that applying an ap-
proximate message-passing algorithm to the “incorrect” model yields prediction results superior to
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (ν0,σ20) = (−1,0.5) and (ν1,σ21) = (1,0.5). Second
row: Attractive coupling and a Gaussian mixture with components (ν0,σ20) = (0,1) and
(ν0,σ21) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components
(ν0,σ20) = (−1,0.5) and (ν1,σ21) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (ν0,σ20) = (0,1) and (ν0,σ21) = (0,9).
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