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Mean Field versus Belief Propagation 
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MF: 

Big implications from small changes: 
•! Mean Field:  Guaranteed to converge for general graphs, always 

lower-bounds partition function, but approximate even on trees 
•! Belief Propagation:  Produces exact marginals for any tree, but  

for general graphs no guarantees of convergence or accuracy 
•! Goal:  Can we justify and generalize loopy BP? 

xtxs



Mean Field Free Energy 
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Mean Field Entropy: 

Mean Field Average Energy (expected sufficient statistics): 



Markov Chain Factorizations 
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Tree Structured Variational Methods 
•!Trees exactly factorize as 

•!We may then optimize over all distributions which are 
Markov with respect to a tree-structured graph:  

Marginal 
Entropies 

Mutual 
Information 
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Tree Structured Variational Methods 
•!Trees exactly factorize as 

•!We may then optimize over all distributions which are 
Markov with respect to a tree-structured graph:  
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Bethe Variational Approximations 
Bethe approximation uses the tree-
structured free energy form even 

though the graph has cycles  

Average Energy 

Approximate Entropy 
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Optimization must enforce marginalization constraints 



Bethe Variational Lagrangian 
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Constraints not explicitly enforced: 

qs(xs) ! 0, qst(xs, xt) ! 0

Implied by other  
equality constraints 

Inactive, will be automatically 
satisfied by solution we derive 



Derivation: Bethe to Loopy BP 
Derivation on whiteboard.  For details, see: 
•! Wainwright & Jordan, Graphical Models, Exponential 

Families, & Variational Inference.   
Foundations and Trends in Machine Learning, 2008, Sec. 4.1. 

•! Yedidia, Freeman, & Weiss, Understanding Belief Propagation 
and its Generalizations. 
Exploring Artificial Intelligence in the New Millennium, 2002. 
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Bethe Approximations and Loopy BP 
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•! For a tree-structure graphical model, entropy approximation 
becomes exact, and unique solution gives true marginals 

•! For general graphs, there is a correspondence between 
fixed points of the loopy belief propagation algorithm and 
stationary points of the Bethe variational objective 

•! Biggest practical applications: 
•! Alternative, stable algorithms for Bethe objective 
•! Message passing algorithms from fancier objectives 



Implications for Loopy BP 
Bethe Free Energy is an Approximation 

•!BP may have multiple fixed points (non-convex) 

•!BP is not guaranteed to converge 

•!Few general guarantees on BP’s accuracy 

Characterizations of BP Fixed Points 

•!All graphical models have at least one BP fixed point 

•!Stable fixed points are local minima of Bethe 

•!For graphs with cycles, BP is almost never exact 

•!As cycles grow long, BP becomes exact (coding) 



Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

•!Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 



Structured Mean Field 
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MF: 

For the special case of a discrete pairwise MRF: 
•! Choose a subset of core edges which form no cycles 
•! On core edges, apply BP message updates 
•! On other edges, apply MF message updates 
•! Guaranteed convergent, optimizes lower bound on Z 
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