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Graphical Models, Inference, Learning

Graphical Model: A factorized probability representation

* Directed: Sequential, causal structure for generative process
* Undirected: Associate features with edges, cliques, or factors

Inference: Given model, find marginals of hidden variables

« Standardize: Convert directed to equivalent undirected form
« Sum-product BP: Exact for any tree-structured graph
« Junction tree: Convert loopy graph to consistent clique tree



Undirected Inference Algorithms

One Marginal All Marginals
elimination applied belief propagation
g recursively to or sum-product
~ leaves of tree algorithm
junction tree
'S_ elimination algorithm:
g algorithm belief propagation
on a junction tree

* A junction tree is a clique tree with special properties:

» Consistency: Clique nodes corresponding to any variable
from the original model form a connected subtree

» Construction: Triangulations and elimination orderings



Graphical Models, Inference, Learning

Graphical Model: A factorized probability representation

* Directed: Sequential, causal structure for generative process
* Undirected: Associate features with edges, cliques, or factors

Inference: Given model, find marginals of hidden variables

« Standardize: Convert directed to equivalent undirected form
« Sum-product BP: Exact for any tree-structured graph
« Junction tree: Convert loopy graph to consistent clique tree

Learning: Given a set of complete observations of all variables

* Directed: Decomposes to independent learning problems:
Predict the distribution of each child given its parents

« Undirected: Global normalization globally couples parameters:
Gradients computable by inferring clique/factor marginals

Learning: Given a set of partial observations of some variables

« E-Step: Infer marginal distributions of hidden variables

 M-Step: Optimize parameters to match E-step and data stats



Learning for Undirected Models

« Undirected graph encodes dependencies within a single training example:
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Learning for Undirected Models

« Undirected graph encodes dependencies within a single training example:
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« Given N mdependent, identically distributed, completely observed samples:
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« Take gradient with respect to parameters for a single factor:
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« Must be able to compute marginal distributions for factors in current model:
> Tractable for tree-structured factor graphs via sum-product
» For general graphs, use the junction tree algorithm to compute



Undirected Optimization Strategies
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Gradient Ascent: QuaS| Newton methods like PCG, L-BGFS, ...

 Gradients: Difference between statistics of observed data,
and inferred statistics for the model at the current iteration

* Obijective: Explicitly compute log-normalization (variant of BP)

Coordinate Ascent: Maximize objective with respect to the

parameters of a single factor, keeping all other factors fixed

« Simple closed form depending on ratio between factor marginal
for current model, and empirical marginal from data )

* [terative proportional fitting (IPF) and ¢<t+1>( ) = ¢§f> (2 f)z()“_f)
generalized iterative scaling algorithms py (zf)




Advanced Topics on the Horizon

Graph Structure Learning ¥¢(z¢ | 0f) = eXP{Q}:be(xf)}

« Setting factor parameters to zero implicitly removes from model
« Feature selection: Search-based, sparsity-inducing priors, ...
« Jopologies: Tree-structured, directed, bounded treewidth, ...

Approximate Inference: What if junction tree is intractable?

« Simulation-based (Monte Carlo) approximations
* Optimization-based (variational) approximations
 Inner loop of algorithms for approximate learning...

Alternative Objectives

« Max-Product: Global MAP configuration of hidden variables
* Discriminative learning: CRF, max-margin Markov network,...

Inference with Continuous Variables

« (Gaussian: Closed form mean and covariance recursions
* Non-Gaussian: Variational and Monte Carlo approximations...



Pairwise Markov Random Fields
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Simple parameterization, but still
expressive and widely used in practice
Guaranteed Markov with respect to graph
Any jointly Gaussian distribution can be
represented by only pairwise potentials

g —— set of undirected edges (s,7) linking pairs of nodes

)) — setof Nnodes or vertices, {1,2,..., N}

Z —— normalization constant (partition function)



Inference in Undirected Trees

* For atree, the maximal cliques are always pairs of nodes:
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Belief Propagation (Integral-Product)

BELIEFS: Posterior marginals
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BP for Continuous Variables

Is there a finitely
parameterized,
closed form for

the message and

marginal
functions?

Is there an analytic
formula for the
message integral,
phrased as an
update of these
parameters?
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Covariance and Correlation

Covariance: cov[X,Y] 2

E[(X -EXDY -E[Y])] =E[XY]-E[X]E[Y]
var [ X1 | cov [ X1, Xo| ---

cov (X1, X4]
cov [Xg, X1] var [ Xo]

cov [ X2, X{]

cov [x] 2 E | (x —E[x])(x ~E[x])"]
= Rdxd

var [ X ]

cov [ Xy, X1] cov [Xg, X5
Always positive semidefinite: ul' Yu > 0 for any u € RdX1, u # 0

Often positive definite: 1" 2 > 0 for any u € ]RXm, u # 0
Correlation:
corr [X,Y] £ cov [ X, ¥ —1<corr[X,Y]| <1
y/var [X] var [Y]

(corr[Xl,Xl] corr [ X1, Xo| .- COTT[XlaXd])
R = ; : ' :

corr [Xg, X1| corr [ X4, Xo] ---

Independence:

COorr [Xd,Xd]
p(X,Y) = p(X)p(Y) b

cov(X,Y] = 0 <4mmp corr X,Y| =0



Gaussian Distributions
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Simplest joint distribution that can capture arbitrary mean & covariance
Justifications from central limit theorem and maximum entropy criterion
Probability density above assumes covariance is positive definite

ML parameter estimates are sample mean & sample covariance
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Gaussian Geometry

Eigenvalues and eigenvectors: \2/“1
U i:Aiui,Z: 1,...,d
For a symmetric matrix:
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Probabilistic PCA & Factor Analysis

 Both Models: Data is a linear function of low-dimensional
latent coordinates, plus Gaussian noise
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« Factor analysis: VW is a general diagonal matrix
- Probabilistic PCA: U = ¢“] is a multiple of identity matrix
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C. Bishop, Pattern Recognition & Machine Learning
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Gaussian Potentials
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