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A Graph Elimination Algorithm

Algebraic Marginalization Operations

« Marginalize out the variable associated with sum node
« Compute a new potential table involving all other variables
which depend on the just-marginalized variable

Graph Manipulation Operations

 Remove, or eliminate, a single node from the graph
« Add edges (if they don’t already exist) between all pairs of
nodes who were neighbors of the just-removed node

A Graph Elimination Algorithm

« Choose an elimination ordering (query nodes should be last)

« Eliminate a node, remove its incoming edges, add edges
between all pairs of its neighbors

* lterate until all non-query nodes are eliminated



Graph Elimination Example
Elimination Order: (6,5,4,3,2,1)
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Graph Elimination Example
Elimination Order: (6,5,4,3,2,1)
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The clique tree contains the cliques
(fully connected subsets) which are
generated as elimination executes

Elimination Clique Tree
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The separator sets contain the X>
variables which are shared among
each linked pair of cliques
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Elimination for Trees
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Elimination for Trees
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Elimination for Trees
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Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals
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Undirected Inference Algorithms

One Marginal All Marginals
L . belief propagation
g elimination applied or sum-product
= to leaves of tree .
algorithm
junction tree
3 elimination algorithm:
g algorithm belief propagation
on a junction tree

 For directed models, first convert to undirected
factor graph form (moralization)

* A junction tree is a clique tree with special properties



Undirected Graphical Models

« Parameterization exactly captures those
non-degenerate distributions which are
Markov with respect to this graph

« For now, we will assume that potentials
are restricted to maximal cliques

C —— set of maximal cliques (fully connected subsets) of nodes

g —— set of undirected edges (s,7) linking pairs of nodes

)) — setof Nnodes or vertices, {1,2,..., N}

Z —— normalization constant (partition function)



Cligue-Based Inference Algorithms
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* For each clique ¢, define a variable z.
which enumerates joint configurations of dependent variables
* Does this define an equivalent joint distribution?

PROBLEM: We have defined multiple copies of the variables in
the true model, but not enforced any relationships among them



Cligue-Based Inference Algorithms

* For each clique ¢, define a variable z.
which enumerates joint configurations of dependent variables

« Add potentials enforcing consistency between all pairs of clique
variables which share one of the original variables:
1 2. = zq for all xg,s €cnNd

Ved(Ze, 2d) = { 0 otherwise

PROBLEM: The graph may have a large number of pairwise
consistency constraints, and inference will be difficult



Cligue-Based Inference Algorithms
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For each clique ¢, define a variable 2.
which enumerates joint configurations of dependent variables
« Add potentials enforcing consistency between some subset of
pairs of cliques, taking advantage of transitivity of equality:

xa:xb,xb:xcéxa:xc

Question: How many edges are needed for global consistency?
When can we build a tree-structured clique graph?



Cligue Trees and Junction Trees

« This clique tree has the junction tree
property: the clique nodes containing
any variable from the original model
form a connected subtree

« We can exactly represent the distribution ignoring redundant constraints

* Note that not all clique trees
are junction trees:




Finding a Junction Tree

The junction tree property. A clique tree possesses the junction tree property if for every pair
of cliques V' and W, all cliques on the (unique) path between V' and W contain V N W.
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« Given a set of cliques, how can we efficiently find a clique tree with the
junction tree (running intersection) property?
« How can we be sure that at least one junction tree exists?

« Strategy: Augment the graph with additional edges
» Cliques of original graph are always subsets of cliques of the
augmented graph, so original distribution still factorizes appropriately
» As cliques grow, will eventually be able to construct a junction tree

Question: Which undirected graphs have junction trees?



Junction Trees and Triangulation

The junction tree property. A clique tree possesses the junction tree property if for every pair
of cliques V and W, all cliques on the (unique) path between V and W contain V NW.
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 Achord is an edge connecting two non-adjacent nodes in some cycle
« Acycle is chordless if it contains no chords
« Agraph is triangulated if it contains no chordless cycles

Theorem: The maximal cliques of a graph have a corresponding
junction tree if and only if that undirected graph is triangulated

Lemma 2 Let G = (V, E) be a noncomplete triangulated graph with at least three nodes. Then
there exists a decomposition of V into disjoint sets A, B and S such that S separates A and B and
S 1s complete.

» Key induction argument in constructing junction tree from triangulation

» Implies existence of elimination ordering which introduces no new edges



Contructing a Junction Tree
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Theorem: A clique tree is a junction tree if and only ifit is a
maximal spanning tree of the weighted clique intersection graph

» Graph: Fully connected with nodes corresponding to maximal cliques
> Edge weights: Cardinality of separator set (intersection) of cliques
» Computational complexity: Quadratic in number of maximal cliques

Junction Tree Algorithms for General-Purpose Inference
1. Triangulate the target undirected graphical model

» Any elimination ordering generates a valid triangulation
» Optimal triangulation is NP-hard (in multiple ways)

2. Arrange triangulated cliques into a junction tree

3. Execute variant of sum-product algorithm on junction tree



Sum-Product for Junction Trees
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Consider a junction tree linking a set of cliques, N
with pairwise equality constraints among intersections:

Messages are functions of the separating
sets (variables shared among cliques):
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Undirected Graphical Models
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« Assume an exponential family representation of each factor:
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 Partition function globally couples the local factor parameters




Learning for Undirected Models

« Undirected graph encodes dependencies within a single training example:
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« Given N mdependent identically distributed, completely observed samples:
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Learning for Undirected Models

« Undirected graph encodes dependencies within a single training example:
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« Given N mdependent, identically distributed, completely observed samples:

logp(D | 0) =

Y Y 0ios(wra)| — NA®O)

L n=1 feF

« Take gradient with respect to parameters for a single factor:
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« Must be able to compute marginal distributions for factors in current model:
> Tractable for tree-structured factor graphs via sum-product
» For general graphs, use the junction tree algorithm to compute



