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Inference in Undirected Graphs 
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A Graph Elimination Algorithm 

•  Marginalize out the variable associated with sum node 
•  Compute a new potential table involving all other variables 

which depend on the just-marginalized variable 

Algebraic Marginalization Operations 

•  Remove, or eliminate, a single node from the graph  
•  Add edges (if they don’t already exist) between all pairs of 

nodes who were neighbors of the just-removed node 

Graph Manipulation Operations 

•  Choose an elimination ordering (query nodes should be last) 
•  Eliminate a node, remove its incoming edges, add edges 

between all pairs of its neighbors 
•  Iterate until all non-query nodes are eliminated 

A Graph Elimination Algorithm 



Graph Elimination Example 
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Graph Elimination Example 
Elimination Order: (6,5,4,3,2,1) 
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Elimination Clique Tree 
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The separator sets contain the 
variables which are shared among 

each linked pair of cliques 

The clique tree contains the cliques 
(fully connected subsets) which are 
generated as elimination executes 



Elimination for Trees 



Elimination for Trees 



Elimination for Trees 



Belief Propagation (Sum-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 

neighborhood of node t 
(adjacent nodes) 

I)  Message Product 
II) Message Propagation 
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Undirected Inference Algorithms 
One Marginal All Marginals 
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elimination applied 
to leaves of tree 

elimination 
algorithm 

belief propagation 
or sum-product 

algorithm 

junction tree 
algorithm: 

belief propagation  
on a junction tree 

•  For directed models, first convert to undirected 
factor graph form (moralization) 

•  A junction tree is a clique tree with special properties 



Undirected Graphical Models 

set of N nodes or vertices,  

set of undirected edges  (s,t)  linking pairs of nodes 

{1, 2, . . . , N}V
E

normalization constant (partition function) Z

50 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)





(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Parameterization exactly captures those 
non-degenerate distributions which are 
Markov with respect to this graph 

•  For now, we will assume that potentials 
are restricted to maximal cliques 

p(x) =
1

Z

Y

c2C
 c(xc)

set of maximal cliques (fully connected subsets) of nodes C



Clique-Based Inference Algorithms 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )


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
(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)


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
(2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  For each clique c, define a variable 
which enumerates joint configurations of dependent variables 

•  Does this define an equivalent joint distribution?  

p(x) =
1

Z

Y

c2C
 c(xc)

z123

z34 z35p(z) /
Y

c2C
 c(zc)

zc = {xs | s 2 c}, c 2 C

zc

PROBLEM:  We have defined multiple copies of the variables in 
the true model, but not enforced any relationships among them 



Clique-Based Inference Algorithms 
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For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )


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
(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp


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∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)


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Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  For each clique c, define a variable 
which enumerates joint configurations of dependent variables 

•  Add potentials enforcing consistency between all pairs of clique 
variables which share one of the original variables: 

p(x) =
1

Z

Y

c2C
 c(xc)

z123

z34 z35

zc = {xs | s 2 c}, c 2 C

zc

PROBLEM:  The graph may have a large number of pairwise 
consistency constraints, and inference will be difficult  

p(z) /
Y

c2C
 c(zc)

Y

d 6=c

 cd(zc, zd)

 cd(zc, zd) =

⇢
1 zc = zd for all xs, s 2 c \ d

0 otherwise



Clique-Based Inference Algorithms 
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For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )





(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp


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
∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)


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Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  For each clique c, define a variable 
which enumerates joint configurations of dependent variables 

•  Add potentials enforcing consistency between some subset of 
pairs of cliques, taking advantage of transitivity of equality: 

p(x) =
1

Z

Y

c2C
 c(xc)

z123

z34 z35

zc = {xs | s 2 c}, c 2 C

zc

Question:  How many edges are needed for global consistency? 
When can we build a tree-structured clique graph? 
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xa = xb, xb = xc ! xa = xc



Clique Trees and Junction Trees 
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•  This clique tree has the junction tree  
property: the clique nodes containing  
any variable from the original model  
form a connected subtree 

•  We can exactly represent the distribution ignoring redundant constraints 
•  Note that not all clique trees 

are junction trees: 
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Finding a Junction Tree 

•  Given a set of cliques, how can we efficiently find a clique tree with the 
junction tree (running intersection) property? 

•  How can we be sure that at least one junction tree exists?  

A B

C D

A,B

A,C

B,D

C,D
D

A

C

B

•  Strategy:  Augment the graph with additional edges 
Ø  Cliques of original graph are always subsets of cliques of the 

augmented graph, so original distribution still factorizes appropriately 
Ø  As cliques grow, will eventually be able to construct a junction tree 

Question:  Which undirected graphs have junction trees? 



Junction Trees and Triangulation 

•  A chord is an edge connecting two non-adjacent nodes in some cycle 
•  A cycle is chordless if it contains no chords 
•  A graph is triangulated if it contains no chordless cycles   
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D
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Theorem:  The maximal cliques of a graph have a corresponding 
junction tree if and only if that undirected graph is triangulated 

Ø  Key induction argument in constructing junction tree from triangulation 
Ø  Implies existence of elimination ordering which introduces no new edges 



Constructing a Junction Tree 
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Junction Tree Algorithms for General-Purpose Inference 
1.  Triangulate the target undirected graphical model 

Ø  Any elimination ordering generates a valid triangulation 
Ø  Optimal triangulation is NP-hard (in multiple ways) 

2.  Arrange triangulated cliques into a junction tree 
3.  Execute variant of sum-product algorithm on junction tree 

Ø  Graph:  Fully connected with nodes corresponding to maximal cliques 
Ø  Edge weights:  Cardinality of separator set (intersection) of cliques 
Ø  Computational complexity:  Quadratic in number of maximal cliques 

Theorem:  A clique tree is a junction tree if and only if it is a 
maximal spanning tree of the weighted clique intersection graph 



Sum-Product for Junction Trees 
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Consider a junction tree linking a set of cliques,  
with pairwise equality constraints among intersections: 
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Messages are functions of the separating 
sets (variables shared among cliques): 
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Shafer-Shenoy 
Junction Tree Algorithm 



Undirected Graphical Models 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 

{1, 2, . . . , N}V
F f ✓ V

•  Assume an exponential family representation of each factor: 

 f (xf | ✓f ) = exp{✓Tf �f (xf )}

p(x | ✓) = 1

Z(✓)

Y

f2F
 f (xf | ✓f )

Z(✓) =
X

x

Y

f2F
 

f

(x
f

| ✓
f

)

p(x | ✓) = exp

⇢ X

f2F
✓

T
f �f (xf )�A(✓)

�

A(✓) = logZ(✓)

•  Partition function globally couples the local factor parameters 



Learning for Undirected Models 

 f (xf | ✓f ) = exp{✓Tf �f (xf )}

p(x | ✓) = exp

⇢ X

f2F
✓

T
f �f (xf )�A(✓)

�

A(✓) = logZ(✓)

•  Partition function globally couples the local factor parameters 

•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 

p(D | ✓) =
NY

n=1

1

Z(✓)

Y

f2F
 f (xf,n | ✓f )

log p(D | ✓) =
"

NX

n=1

X

f2F
✓

T
f �f (xf,n)

#
�NA(✓)



Learning for Undirected Models 
•  Undirected graph encodes dependencies within a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 

p(D | ✓) =
NY

n=1

1

Z(✓)

Y

f2F
 f (xf,n | ✓f )

•  Take gradient with respect to parameters for a single factor: 

r✓f log p(D | ✓) =
"

NX

n=1

�f (xf,n)

#
�NE✓[�f (xf )]

•  Must be able to compute marginal distributions for factors in current model: 
Ø  Tractable for tree-structured factor graphs via sum-product 
Ø  For general graphs, use the junction tree algorithm to compute 

log p(D | ✓) =
"

NX
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X

f2F
✓

T
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#
�NA(✓)


