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Exponential Families of Distributions

p(x]0) = %h(x)exp[@r‘rq’)(x)] Z(0) = /mh(x)exp[9T¢(X)]dx

= h(x)exp[0”p(x) — A0)]  AB) = logZ(6)
0 ( a:) c Rd fixed vector of sufficient stafistics (features),
specifying the family of distributions

HcO unknown vector of natural parameters,
determine particular distribution in this family

normalization constant or partition function,
Z(0) >0 = nsuring this is a valid probability distribution

h 0 — reference measure independent of parameters
(-517) > (for many models, we simply have h(z) =1)

To ensure this construction is valid, we take

O={0cR"| Z(h) < 0}



Why the Exponential Family?

p(x]0) = %h(x)exp[@r‘ﬁd)(x)] Z(0) = /mh(x)exp[Hch(x)]dX

— h(x)expl0”d(x) — A6)]  AO) = logZ(6)

Many standard distributions are in this family, and by studying
exponential families, we study them all simultaneously
Explains similarities among learning algorithms for different
models, and makes it easier to derive new algorithms:
* ML estimation takes a simple form for exponential families:
moment matching of sufficient statistics
« Bayesian learning is simplest for exponential families:
they are the only distributions with conjugate priors
They have a maximum entropy interpretation: Among all
distributions with certain moments of interest, the exponential
family is the most random (makes fewest assumptions)



Examples of Exponential Families

pxlf) = Zheml e 20) = [ hex)exslo” $xldx
= h(x)expl0’ ¢(x) — A(0)] A0) = logZ(0)
« Bernoulli and binomial (2 classes) px)=Ix=1)==x

« Categorical and multinomial (K classes)

ox)=I(x=1),...,[(x=K —1)

* Scalar Gaussian ¢(x) =[x, x°

 Multivariate Gaussian o(x) = [z, zx’]
. i 1

Poisson h(z) = —, o(x) =z
!

» Dirichlet and beta
« Gamma and exponential



Non-Exponential Families

 Uniform distribution

1 =4
b_a]l(a<a:<b)

« Laplace and Student-t distributions
A

Unif(x | a,b) =

Lap( | . A) = 5 exp(=Alz — ) 3 ?’




Convexity

A+ (1—N)f €8, VAe[o,1]
0.0 c S




Convexity & Jensen'’s Inequality

f(E[X]) <E[f(X)]




Concavity & Jensen'’s Inequality
| In(E[X]) > E[ln(X)]
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p(x[0)

Log Partition Function

- Zheeslo o) 20) = [ heewlo” gwlix

— h(x)expl0”d(x) — A6)]  AO) = logZ(6)

« Derivatives of log partition function have an intuitive form:
Vo A(0) = Eg|o()]
Vi A(0) = Covgld(z)] = Eg[p(x)p(2)"] — Eo[d(x)|Eq[d(x)]"

« Important consequences for learning with exponential families:

Finding gradients is equivalent to finding expected
sufficient statistics, or moments, of some current model
The Hessian is positive definite so A(f) is convex

This in turn implies that the parameter space &) is convex
Learning is a convex problem: No local optima!

At least when we have complete observations...



A Little Information Theory

« The entropy is a natural measure of the inherent uncertainty
(difficulty of compression) of some random variable:

= pla)logp(a Hp) =~ [ (@) logp(e) da
reX X
discrete entropy differential entropy
(concave, non-negative) (concave, real-valued)

* The relative entropy or Kullback-Leibler (KL) divergence
IS then a non-negative, but asymmetric, “distance” between a
given pair of probability distributions:

D(olla) = [ pla)log” " da D(pllg) > 0

The KL divergence equals zero iff p(z) = ¢(z) almost everywhere.

 The mutual information measures dependence between a

air of random variables: a _ g L@ Y)
P (pey) £ Dl 1papy) = [ [ poylo.)ton Py

= H(p,) + H(py) - H(pmy)



Learning in Exponential Families

p(x]0) = %H)h(x)exp[OTqb(X)] Z(0) = /mh(x)exp[9T¢(x)]dx
= B expl0To(x) — AB)]  AB) = logZ(6)

« Given any target probability distribution p(z), the closest
exponential family distribution matches moments:

6 = arg min D(p [ pg) 4 Egloa(n)] = /X ba() P(x) da
« Given L samples, their empirical distribution equals
L
1
plz) =+ > buw(2)
/=1

* For exponential families, maximum likelihood estimation
always minimizes KL divergence from empirical distribution:

L L

A . - 1

0 = argmax » logp(z'”) | 0) = argmin D(5 || pp) 4 Eyloa(2)] = 7 > da(2')
/=1 (=1



Maximum Entropy Models

p(x]0) = %h(x)exp[@r‘ﬁd)(x)] Z(0) = /mh(x)exp[Hch(x)]dX

— h(x)expl0”d(x) — A6)]  AO) = logZ(6)

Consider a collection of d target statistics ¢.(z), whose
expectations with respect to some distribution p(x) are

/cba r)dr = g

The unique distribution p(x) maximizing the entropy H (p),
subject to the constraint that these moments are exactly
matched, is then an exponential family distribution with

Eé[qba(x)] — Ha h(ﬂj) =1

Out of all distributions which reproduce the observed
Sufficient statistics, the exponential family distribution
(roughly) makes the fewest additional assumptions.



Parametric & Predictive Sufficiency

Posterior distributions and predictive likelihoods:

W 2D e, N p(6 ] N) L
(1) L) v pE,. a0, N)p )
T CA R AN ’)\)_f@p(x(l),...,x(L)\Q,A)p(e\)\)dﬁocp(e’)\)I|p(x | 0)
(=1

p(@ | =W, 2z ) Z/p(ff 10)p(0 | =), .. 2" ) db
©

Theorem 2.1.2. Let p(x | 0) denote an exponential family with canonical parameters 0,
and p(0 | \) a corresponding prior density. Given L independent, identically distributed
samples {x\Y}L_ | consider the following statistics:

oz, 2 { Z% )aeA} (2.24)

These empirical moments, along with the sample size L, are then said to be parametric
sufficient for the posterior distribution over canonical parameters, so that

p(0] 2V, 2 =p(0] $D,...,2H), L2 (2.25)
Equivalently, they are predictive sufficient for the likelihood of new data x:

p@ |z, 2™ N =p@| ¢, ..z, L)) (2.26)



Learning with Conjugate Priors

Pl | 0) = v(z) exp {Z batra() — @(9)} 5(0) = 10g [ vi)exp {z ea¢a<x>} da

p(0 ] \) =exp {Z Oa ora — Ao @(0) — Q(A)} Q) = 1og/®exp {Zeaxoxa - )\OCD(H)} do
acA aed
AL {A e RHHL | o)) < oo}

Proposition 2.1.4. Let p(x | 8) denote an exponential family with canonical param-
eters 0, and p(0 | \) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(f)}gL:l, the posterior distribution remains in the same family:

p(0 | +D ,m(L),)\) = p(é’ | 5\) (2.31)

. S doda + 20 Gala®)
Mo =N+ L A, = =
0 0+ o+ L

ae A (2.32)

Integrating over O, the log—likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

L
logp(z™,.... 2 | A) = Q(X) — Q) + ) logw(a') (2.33)
/=1



Learning with Conjugate Priors
plz | 0) =v(x exp{Z%% )} () = 1og/ exp{zea% }

acA acA

p(0 ] \) =exp {Z Oa ora — Ao @(0) — Q()\)} Q) = log/®exp {Z BaNoNa — )\OCD(H)} do

acA a€A
A2 {A e RAFT Q) < oo}

Proposition 2.1.4. Let p(x | 8) denote an exponential family with canonical param-
eters 0, and p(0 | X\) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {a:(f)}%:l, the posterior distribution remains in the same family:

p0 | zW, . 2B N =p(0] N (2.31)

- S doda + 20 Gala®)
Xo = \o+ L A, = =
0 0+ o+ L

ae A (2.32)

For an exponential family, the conjugate prior is defined by:

 Prior expected values A, of the d sufficient statistics

* A measure of confidence in those prior expectations,
expressed as a positive number of pseudo-observations Ag



Factor Graphs & Exponential Families

p(x) = H Ve(zy | Of) @ @

fE]—"
f‘ —— set of hyperedges linking subsets of nodes f cC Yy @
)) — setof Nnodes or vertices, {1,2,..., N}
/, — normalization constant (partition function) @ e

« A factor graph is created from non-negative potential functions

« To guarantee non-negativity, we typically define potentials as

i(xy | 0p) = vy(zy) eXP{ > Opadraley)

aGAf

= ( H yf(xf)> exp {Z Z Oradra(Ts) — cb(@)} ®(0) = log Z(0)

feF feF acAy

Local exponential family:
Qf = {Qfa | a < .Af}



