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Abstract. High-resolution array comparative genomic hybridization
(aCGH) provides exon-level mapping of DNA aberrations in cells or tis-
sues. Such aberrations are central to carcinogenesis and, in many cases,
central to targeted therapy of the cancers. Some of the aberrations are
sporadic, one-of-a-kind changes in particular tumor samples; others oc-
cur frequently and reflect common themes in cancer biology that have
interpretable, causal ramifications. Hence, the difficult task of identify-
ing and mapping common, overlapping genomic aberrations (including
amplifications and deletions) across a sample set is an important one; it
can provide insight for the discovery of oncogenes, tumor suppressors,
and the mechanisms by which they drive cancer development.

In this paper we present an efficient computational framework for
identification and statistical characterization of genomic aberrations that
are common to multiple cancer samples in a CGH data set. We present
and compare three different algorithmic approaches within the context
of that framework. Finally, we apply our methods to two datasets – a
collection of 20 breast cancer samples and a panel of 60 diverse human
tumor cell lines (the NCI-60). Those analyses identified both known and
novel common aberrations containing cancer-related genes. The potential
impact of the analytical methods is well demonstrated by new insights
into the patterns of deletion of CDKN2A (p16), a tumor suppressor gene
crucial for the genesis of many types of cancer.

Keywords: CGH, cancer, microarray data analysis, common aberra-
tions, breast cancer, NCI-60.

1 Introduction

Alterations in DNA copy number are characteristic of many cancer types and drive
some cancer pathogenesis processes as well as several developmental disorders.
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These alterations include large chromosomal gains and losses as well as smaller
scale amplifications and deletions. Genomic instability can often trigger the over-
expression or activation of oncogenes and the silencing of tumor suppressors.
Mapping regions of common genomic aberrations can therefore provide insight to
cancer pathogenesis and lead to discovery of cancer-related genes and the mecha-
nisms by which they drive the disease. Genomic aberrations are also routinely used
for diagnosis and clinical practice. For example,Erbb2amplification is a strong pre-
dictor of Herceptin activity in breast cancer patients [1]. Similarly, amplifications
of MDM2 and CDK4 genes on chromosome 12q13-15 are useful in distinguishing
well-differentiated liposarcomas from benign adipose tumors [2].

Technologies for measuring alterations in DNA copy number include local
fluorescence in situ hybridization-based techniques, Comparative Genomic Hy-
bridization (CGH [3,4,5]) and the advanced method termed array CGH (aCGH).
In aCGH differentially labeled tumor and normal DNA are co-hybridized to a mi-
croarray of thousands to hundreds of thousands of genomic BAC clones, cDNA or
oligonucleotide probes [6,7,8,9,10,11,12]. The use of oligonucleotide aCGH allows
the determination of changes in DNA copy number of relatively small chromo-
somal regions. Using high density arrays allows very high DNA copy number
resolution, in terms of genomic distances, down to single Kb and less.

A common first step in analyzing DNA copy number alterations (CNAs) data
consists of identifying aberrant (amplified or deleted) regions in each individual
sample. Aberration calling is the subject of extensive literature [13,14,15,16,17].
We briefly address this step of the process in Section 2.1.

To realize the full power of multi-sample, high-resolution oligo-aCGH studies,
we are interested in efficient computational methods that enable the automatic
elucidation of more complex structures. The focus of this paper is the discov-
ery of common genomic aberrations, either in a fixed set of samples or in a
significant subset of the samples. To date, little attention has been given in
the literature to formal treatments of this task. Two important exceptions are
the work of Disking et al [18] and Rouveirol et al [19]. In [18] the authors devel-
oped a method called Significance Testing for Aberrant Copy number (STAC) to
address the detection of DNA copy number aberrations across multiple aCGH
experiments. STAC uses two complementary statistical scores in combination
with a heuristic search strategy. The significance of both statistics is assessed,
and p-values are assigned to each location in the genome by using a permuta-
tion approach. In the work of Rouveirol et al [19] the authors propose a formal
framework for the task of detecting commonly aberrant regions in CGH data,
and present two algorithms (MAR and CMAR) for this task. The framework
requires, however, a segmentation algorithm that categorize each data point as
being gained/lost/normal. Therefore, this approach requires setting an arbitrary
threshold for the discretization step, and is not sensitive to the actual copy num-
ber change. In addition, the methods of Lipson et al [20], based on optimizing
a statistically motivated score function for genomic intervals can be adapted to
automatic identification of aberrations that are common in subsets of the sam-
ple set. Despite the lack of formal approaches to identifying common aberrations
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many studies do report common aberrations and their locations. Typically these
aberrations are determined by counting and applying human judgment to single
sample calls.

In this paper we present an efficient computational framework for identifica-
tion and statistical characterization of common genomic aberrations. In Section 2
we start with a description of the overall structure of the framework. The first
step, aimed at per-sample aberration calling is described in Section 2.1. The rest
of Section 2 is devoted to detailed description of three specific approaches for
detecting common aberrations. In Section 2.2 we present the commonly used
penetrance method, and its weighted version. We introduce a context-corrected
version of penetrance in Section 2.3. We conclude the methods section in Sec-
tion 2.4 with the CoCoA algorithm, that extends the context-corrected statistical
approach to multi-probe intervals.

In Section 3 we apply our methods to two DNA copy number cancer datasets,
one derived from a collection of 20 breast cancer samples, and the other a set of 60
cell lines. We compare the results of the three approached using the breast cancer
dataset, and highlight several interesting significant aberrations that contain
cancer related genes.

2 Framework

In this section we describe a framework for identifying and statistically scoring
aberrations that are reoccurring in multiple samples. In a nutshell, the process
consists of four steps.

1. Aberration Calling – Each of the samples’ data vector is analyzed indepen-
dently, and a set of aberrations (amplifications and deletions) is identified.

2. Listing candidate intervals - Given the collection of aberration sets called
for all samples, we construct a list of genomic intervals that will be evaluated.
We refer to these intervals as candidate intervals.

3. Scoring 〈candidate interval, sample〉 – In this step, we calculate a sta-
tistical significance score for each candidate interval with respect to each
sample.

4. Scoring candidate intervals – For each candidate interval, we combine the
per-sample scores derived in the previous step into a comprehensive score for
the candidate interval and estimate its statistical significance. In addition, we
also identify for each candidate interval the set of samples that supports it.

At the end of the process, we list the top-scoring candidate intervals together
with their support sets.

The framework is modular in nature, in the sense that different algorithms
and statistical models and methods can be used in each of the different steps. For
example, alternative algorithms can be used to call aberrations in the first step.
Similarly, alternative approaches may be employed to define candidate intervals
and interval scores.
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In the rest of this section we will describe several specific embodiments of the
framework. We begin (Section 2.1) by discussing single sample aberration calling,
which may be viewed as the input of the common aberration analysis procedure.
In Sections 2.2-2.4 we describe three different algorithms based on the framework.
For simplicity, we will describe only scores related to common amplifications,
although it is clear that symmetric scores apply to common deletions.

2.1 Single Sample Aberration Calling

The starting point of the procedure of identifying statistically significant common
aberrations is a set of aberrant segments for each sample. In this paper we
assume that, independent of the particular aberration-calling algorithm, the set
of aberration calls for a particular sample and a particular chromosome can be
represented by a step-function. The latter consists of discrete segments parallel
to the x-axis, that together span the entire chromosome. Formally, for a sample
s, denote the length (in Mb) of the chromosome by !. A step-function Fs :
[0, !] −→ R contains a segment for each aberration call (with the appropriate
boundaries and height). In addition, segments of height zero are used to represent
non-aberrant regions of the chromosome. See Figure 1 for an example of a step-
function.

Fig. 1. Step-function derived from chromosome 8 data for colon carcinoma cell line
HT29, data from Agilent 44K aCGH array. Solid blue line shows the step-function Fs.

In this study we used the StepGram algorithm for single sample aberration
calling. StepGram runs in subquadratic time in terms of the number of probes
on the chromosome. That translates to < 1 sec for 44K probes, and 3 sec for
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185K probes with current the implementation. StepGram is therefore particu-
larly suitable for analysis of large datasets and useful in the context of looking
for common aberrations. The details of StepGram were described previously by
Lipson et al [20], and an overview is provided here for completeness.

StepGram. Given a vector of real values V = (v1, . . . , vn) (corresponding to
normalized log-ratio measurements along a particular chromosome) the opti-
mization problem solved by StepGram involves identifying the interval I ⊆ [1, n]
that maximizes the score |

∑
i∈I vi/

√
I|. A branch-and-bound approach allows

solving this problem in O(n1.5) time complexity in practice. Following identifica-
tion of the maximal scoring interval the analysis is repeated by recursion to the
left, to the right, and within the identified interval until some lower threshold
score is attained. A stand-alone implementation of the StepGram algorithm is
publicly available at http://bioinfo.cs.technion.ac.il/stepgram/.

Other aberration-calling algorithms. Several other algorithms for identifying
aberrations in DNA copy number data have been described. These include CBS
[15] based on binary segmentation, CLAC [16] based on clustering, aCGH [13]
based on HMM, ACE [21] based on FDR, and others. Comparison studies of
several of these algorithms were conducted by Lai et al [14] and by Willenbrock
et al [17]. Note that many of them are segmentation algorithms in the sense that
they partition the chromosome into segments of equal copy number but do not
attempt to identify which of those segments are aberrant. For the purpose of
identifying common aberrations the segmentation output is typically sufficient.

2.2 Weighted and Unweighted Penetrance

We begin by describing the commonly-used penetrance score and its role within
the common aberrations analysis framework. Although the penetrance score is
not a measure of statistical significance, it does exemplify the different steps of
the process.

Candidate intervals. In the case of the penetrance score, the candidate intervals
are defined simply as the positions of the probes in the aCGH array. Similar
definitions, such as uniformly-spaced pseudo-probes, are also possible. In either
case, for a particular chromosome the candidate intervals can be formally defined
as a set of non-overlapping intervals I = {[xi − ε, xi + ε]}. Here ε is an arbitrary
constant smaller then the minimum distance between any two probes on the
array.

Scoring 〈interval, sample〉. For a given interval I = [xi − ε, xi + ε] and sample
s the unweighted amplification penetrance score is defined as a binary score
α(I, s) = 1Fs(xi)>t for some threshold t. The weighted penetrance scores take
into account also the height of the aberration: α′(I, s) = 1Fs(xi)>t · Fs(xi).

Scoring candidate intervals. The overall penetrance score for a given candidate
interval I is defined simply as α(I) =

∑
s α(I, s). As noted before, this score

does not reflect any measure of statistical significance.
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2.3 Context-Corrected Penetrance

A variant of the penetrance score provides a measure of statistical significance of
the common aberration at the specified probe. The significance is defined with
respect to the genomic background of each sample, as represented by the pattern
of aberrations over each of the samples. In other words, given the specific set of
aberration calls for each sample, we wish to describe our “surprise” at seeing a
specific set of aberrations co-localized at the same genomic position. Note that
the context provided for the score may be either genomic or chromosomal.

Candidate intervals. As was in the case of the penetrance score, the candidate
intervals are defined as as a set of non-overlapping intervals at specific genomic
positions: I = {[xi − ε, xi + ε]}.

Scoring 〈interval, sample〉. For the context-corrected score, we wish the score
of a given interval I = [xi − ε, xi + ε] and sample s to reflect the probability
of finding an interval of similar (or higher) amplitude given the context of the
sample. The score is therefore defined as

p(I, s) =
|{xj ∈ I : Fs(xj) ≥ Fs(xi)}|

|I| .

Scoring candidate intervals. Let S be the set of samples, with m = |S|. For
a given interval I we now have m scores. Note that the interval I might be
aberrant in only a subset of the samples, we therefore seek the subset of samples
that will provide maximal significance. Assume, w.l.o.g., that p(I, 1) ≤ p(I, 2) ≤
. . . ≤ p(I, m). Looking at the first k samples, the probability of concurrently
observing k or more scores of probability p = p(I, k) or lower is provided by the
Binomial distribution:

ρk(I) = Binom(k, m, p) =
m∑

i=k

(
m

i

)
pi(1 − p)m−i

Since we are interested in identifying aberrations that occur in at least two
samples, and to address multiple testing concerns, we define a more conservative
score that ignores the first success in the computation,

ρ
′

k(I) = Binom(k − 1, m − 1, p)

We define the score of I, to be the minimum of these scores over all values of k,
namely,

ρ(I) = min
k=1,...,m−1

ρ
′

k(I).

2.4 Context-Corrected Common Aberrations (CoCoA)

Although the context-corrected penetrance algorithm will clearly detect statisti-
cally significant common aberrations that are affecting a single probe, its ability
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to detect larger significant aberrations is not guaranteed. In some cases, a multi-
probe common aberration may be significant as a whole, although the score of
each single probe contained in the aberration may not show statistical signifi-
cance. For example, consider the case in which each of many samples contains
many random high-amplitude single-probe amplifications and a common large
moderate-amplitude amplification. In that case, the size of the aberration may
help us to determine its significance, since not many random aberrations of the
same size will be detected in the background.

The third, most sophisticated, algorithm for identifying significant common
aberrations expands the concept of a context-corrected significance score to in-
tervals that are larger than a single probe.

Candidate intervals. Consider a particular chromosome, c, and denote by T =
{[b1, e1], . . . , [bk, ek]} the set of all genomic intervals in c that are called as aber-
rant in any of the samples. The set of candidate intervals in c is defined to be all
genomic intervals that starts at the left side of one interval from T and end at
the right side of another. That is, I = {[bi, ej ] : 1 ≤ i, j ≤ k, and bi ≤ ej}. Note
that the size of I is quadratic in k, the number of called aberrations. A smaller
list of candidate intervals can be constructed by considering only intervals in T
and intersections thereof. that is I = T ∪ {t ∩ s : t, s ∈ T }. The size of I is
typically o(k2), and can be constructed in linear time (proof omitted).

Scoring 〈interval, sample〉. Applying the same reasoning as for the Context-
Corrected Penetrance, we wish the score of a given interval I = [b, e] and sample
s to reflect the probability of finding an interval of the same length with a similar
(or higher) amplitude given the context of the sample. More specifically, assume
we pick a random interval J of the same size as I in the context (that is, in
the same chromosome, or in the entire genome). The score is defined as the
probability that the average height of J would be as high (or higher) as the
height of I,

p(I, s) = PrJ:|J|=|I| (hs(J) ≥ hs(I)) .

where |I| denotes the genomic size I, and hs(J) denotes the average height of the
step-function Fs over the interval J . We outline now how to computed p(I, s)
efficiently (in linear time). Denote by Fs,"(·) the !-window moving average of
Fs. The score p(I, s), can now be expressed as a function of Fs,",

p(I, s) =
|x : Fs,"(x) ≥ hs(I)|

c − !
.

where c denoted the length of the chromosome. Since Fs is a step-function,
its moving average Fs," is a piecewise-linear function. Thus, we can efficiently
identify the regions where Fs,"(x) ≥ hs(i), and compute p(I, s).

Scoring candidate intervals. After computing context-corrected per-sample
scores for I, we combine them into a statistical score for I using the same bino-
mial distribution calculation as detailed in Section 2.3.
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3 Results

In this section we demonstrate the application of the above methods to DNA
copy number data from two datasets, both measured using Agilent 44K aCGH
arrays:

1. A set of 20 primary breast tumor samples were included in this study. These
samples are part of a larger patient cohort consisting of 920 breast cancer
patients stage I and II referred for surgical treatment and where detection of
isolated tumor cells in bone marrow was performed (The Oslo Micrometas-
tases Study) [22]. Tumor material were fresh frozen immediately after surgery
and stored at -80C until use. Although the sample set includes several dis-
tinct subtypes that had previously been characterized [23,24], due to its
relative homogeneity, we expected to encounter common aberrations typical
of breast cancer.

2. A diverse set of 60 cancer cell-lines known as the NCI-60 cell line panel [25].
The NCI-60 panel has been used by the Developmental Therapeutics Pro-
gram (DTP) of the U.S. National Cancer Institute (NCI) to screen > 100, 000
chemical compounds and natural product extracts for anticancer activity
since 1990 [26,27,25]. The NCI-60 panel is comprised of cell lines from di-
verse human cancers, including leukemias, melanomas, and cancers of renal,
ovarian, lung, colon, breast, prostate, and central nervous system origin. The
NCI-60 have been profiled more comprehensively at the DNA, RNA, protein,
and functional levels than any other set of cells in existence. The resulting
information on molecular characteristics and their relationship to patterns
of drug activity have proven fruitful for studies of drug mechanisms of action
and resistance [28,29,30,31,25]. Because of its diversity, we expected to find
mostly aberrations common only to specific tissue of origin, and possibly
some that were found more generally in the panel.

We first compared three algorithms – simple unweighted penetrance, context-
corrected penetrance, and CoCoA – on the breast tumor dataset. Overall, the
three algorithms detected similar patterns, although the specific output con-
tained obvious differences. In Figure 2 we show the output of the three algo-
rithms for chromosome 9 of the breast tumor dataset. The top panel (a) depicts
the aberration calls made on that set of samples, using the StepGram algorithm
[20]1. Several common aberrations, detectable by visual inspection, are indicated
at the top of the panel by green and red arrows (deletions and amplifications,
respectively). The lower three panels (b-d) depict the output of the three al-
gorithms for the chromosome, aligned by genomic position along the x-axis.
Output for the simple penetrance method is expressed in fraction of affected
samples, whereas the output for the remaining algorithms is expressed in units
of − log10 ρ(I). Note that while the output of the two penetrance algorithms
(b,c) is simple to plot in genomic coordinates (by probe location), the output
1 The data points were first centered by most common ploidy. StepGram was then

applied with a threshold parameter of 5 stds.



130 A. Ben-Dor et al.

Fig. 2. Common aberrations in a panel of 20 breast tumor samples, chromosome 9: a)
Aberration calls in each of the tumor samples (amplifications noted in red, deletion in
green). Aberrations were called using StepGram algorithm [20] on centered data, with
threshold of 5 stds; b) unweighted penetrance (fraction of samples), c) context-corrected
penetrance, d) context-corrected common aberrations (CoCoA), where each probe was
scored according to the maximal-scoring interval containing it. Positive values denote
amplifications, negative values — deletions. Scores for last two methods are given in
− log10 ρ(I) units, only aberrations with score ρ(I) < 10−3 and larger than one probe
are denoted. Some specific common aberrations in the data are highlighted by arrows
at the top of the figure.

of the CoCoA algorithm was transformed into a genomic plot by setting the
value of each probe to the score of the maximally-scoring common interval that
contains it.

The most prominent common aberrations in the chromosome shown are
clearly the large amplification between 110-120Mb and the smaller deletion at
95Mb, both of which were detected by all algorithms. The results of the simple
penetrance method, which is a non-statistical method, can be interpreted loosely
based on setting of some arbitrary threshold. It is clear that a significant part
of the genome can be considered to contain common aberrations if that method
is used. The context-corrected penetrance method gives improved output in the



Framework for Identifying Common Aberrations 131

Table 1. Number of common aberrations in the breast cancer data

Amplifications Deletions Total
< 200Kb 160 118 278
≥ 200Kb 86 32 118

Total 246 150 396

a) b)

Fig. 3. Two common focal deletions identified in a panel of 20 breast tumor samples: a)
Common deletion in 9q22.32 disrupting FANCC – a gene that encodes a DNA repair
protein (11/20 samples, ρ(I) = 10−21), b) Common deletion in 5q13.2 disrupting a
cyclin gene CCNB1 (8/20 samples, ρ(I) = 10−11.8)

sense that only very specific parts of the chromosome are deemed to contain
common aberrations, based on a very modest threshold ρ(I) < 10−3. Clearly,
from the biological point of view, specific output of this type, a result of the
correction for the chromosomal context, is highly preferable.

The superiority of the common aberrations method (CoCoA) lies in the higher
significance that it gives common aberrations that are longer than one probe.
This feature allows higher sensitivity for lower-amplitude common aberrations
without loss of specificity. An example of the increased sensitivity is the common
amplification detected between 1-5Mb. That aberration is not clearly visible in
the outputs of the two methods based on single probe.

Overall, CoCoA identified 396 disjoint common aberrations with score ρ(I) <
10−3 in the breast tumor dataset (see Table 1). The range of sizes of the common
aberrations identified on the basis of more than a single probe is 1.7Kb - 60Mb.
The aberrations are supported by 3-17 samples each. Two specific common focal
deletions that were identified in the data set are depicted in Figure 3. The two

Table 2. Number of common aberrations in the NCI-60 data

Amplifications Deletions Total
< 200Kb 216 145 361
≥ 200Kb 60 50 110

Total 276 195 471
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Fig. 4. A common deletion in 9p that reoccurs in a large fraction (20/60) of the cell-
lines of the NCI-60 panel. Common aberration analysis points to the focus of the
deletion as being the known tumor suppressor gene CDNK2A (p16), with ρ(I) = 10−54.

deletions, identified in 5q13.2 and 9q22.32, appear to be disrupting two genes
with direct involvement in tumor development – CCNB1 (a cyclin gene) and
FANCC (a gene encoding a DNA repair protein), respectively. Slightly larger
intervals are also aberrant in many samples. The highlighted intervals, however,
have the strongest statistical significance.

In the NCI-60 cell line panel CoCoA identified 471 common aberrations
(see Table 2). The range of sizes of the common aberrations identified on the ba-
sis of more than a single probe is 0.5kb - 100Mb, and aberrations are supported
by 3-38 samples each.

One striking common aberration detected in the NCI-60 dataset was a dele-
tion of CDKN2A (p16), a well-characterized tumor-suppressor gene (Figure 4).
Clearly the deletion of this gene is a common feature of many of the cell-lines
(20/60 of the samples), crossing the boundaries of cell-line subtype. Note also
that even though some samples have deletions over larger regions, they all over-
lap at the genomic location of the p16 gene itself. This observation indicates
that a selective pressure to delete p16 was part of the development of all 20 cell
line populations and represents a very common feature of cancer development.
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4 Discussion

In this paper we propose a computational framework for identifying and ana-
lyzing copy number aberrations (amplifications and deletions) that occur across
multiple samples and for assessing their statistical significance. The framework
allows using different aberration calling algorithms as input, independent of their
statistical modeling.

Two central features of our methods are: A)When assessing the significance of
a particular aberration, we use the height of the aberration, as opposed to requir-
ing an additional threshold to discretize the aberration calls. B) The ability to
address the context of the aberration structures in the individual samples. Given
a candidate interval, its significance at a particular sample depends not only on
the average height of the candidate interval, but also on the overall prevalence
of aberrations in that sample. We describe two methods that have those impor-
tant features. The CoCoA method scores intervals while the context-corrected
penetrance method scores individual loci. In theory, there is a larger statistical
power in considering multi-loci aberrations as both a supporting sample set and
a genomic interval are identified together. Another difference between probe level
and interval level analysis, is that in probe level analysis an additional thresh-
olding step is required to determine the boundaries of the common aberrations.
Note that for any single locus penetrance based method intervals with consistent
high scoring can theoretically arise from aberrations in different sets of samples.
In practice this is usually not the case. When scoring intervals, as CoCoA does,
sample integrity is always preserved: the set of samples over which an interval is
reported as a common aberration is the same for all loci spanned by said interval.

Our framework is very efficient. When run on the NCI60 sample set our pro-
cess takes under 1 minute, including the first step of single sample aberration
calling, using StepGram. This enables interactive data analysis that is not pos-
sible for less efficient approaches. This combined approach will scale up to larger
datasets and to denser arrays that allow for much finer mapping of aberrant re-
gions. We emphasize that this requires not only an efficient approach to common
aberrations but also a very efficient aberration-calling methods.

One important previous formal treatment of calling common aberrations in
CGH data is described in [18]. The method described therein, called STAC,
is based on a heuristic search seeking to optimize statistical scores assigned
to candidate regions of common aberrations. STAC’s search is computationally
intensive and performance is further limited by relying on permutations and
simulations to obtain significance estimates. According to the paper’s Supple-
mentary material STAC implementation takes days to run on relatively small
datasets of 42 and 47 samples, measured using a low resolution (approximately
1Mb) technology. STAC treats gains and losses as binary and does not takes into
account the exact amplitude of the measured signal.

We have shown examples of applying the framework on a set of breast cancer
samples that identify both known and novel cancer related genes. It is interesting
to note p16 as a universal deletion in the NCI60 panel. FANCC, a gene from the
Fanconi anemia group of genes (FA), which codes to a DNA repair protein is
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deleted in 11 out of the 20 breast cancer samples. FA genes are known to be co-
factors interacting with BRCA2 in breast cancer pathogenesis. In a recent study
[32] the authors demonstrate a role for the FA pathway in interstrand cross-
link repair which is independent from that of BRCA2 in the same process. This
finding and our implication of FANCC as a fairly focal common breast cancer
deletion together suggest an important role for FANCC under-functioning in
cancer pathogenesis.

Lastly, we note that the methods herein presented can be extended to identify
differential aberrations in DNA copy number data coming from several pheno-
typic classes. A more detailed investigation of this application will be the topic
of future work.
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