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Markov Chains

Definition Given a Markov Chain MC = (ϕ,P). We say that a
row verctor ϕ = (ϕ1, ϕ2, ..., ϕk) is said to be a stationary
distribution for the MC if it satisfies:

ϕi ≥ 0, 1 ≤ i ≤ k,
∑k

i=1 ϕi = 1

ϕP = ϕ, i.e.,
∑k

i=1 ϕiPi ,j = ϕj , 1 ≤ j ≤ k
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Stationary Distribution

Theorem (Existence and Uniqueness to Stationary Distributions)
For any irreducible and aperiodic MC there is a unique stationary
distribution.
—
Definition of Total Variance Distance
If v1 = (v11 , ...v

1
k ) and v2 = (v21 , ..., v

2
k ) are probability discributions

on S = {s1, ..., sk} then we define the
total variation distance between v1 and v2 as

dTV (v1, v2 =
1

2

k∑
1

| v1i − v2i |
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Total Variation Distance

Properties of Total Variation Distance

1 If dTV (v1, v2) = 0 then v1 = v2

2 If dTV (v1, v2) = 1 then v1 and v2 are ”disjoint” in the sense
that S = S1 ∪ S2 and v1 puts its probability on S1 and v2

puts its probability on S2.

3 the Total Variation Distance has also the equivalent natural
interpretation:

dTV (v1, v2) = MAXA⊂S | v1(A)− v2(A) |

i.e., the maximal difference between the probabilities that the
two distributions assign to any event
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Convergence to Equilibrium

Theorem. (Convergence)
Let (X1,X2, ...) be an irreducible aperiodic MC with state space
S = {s1, ..., sk} and transition matrix P and an arbitrary initial
distribution π0 . Then for any distribution ϕ which is stationary for
P we have:

π0 →TV ϕ

We say in this case that the MC is approaching equilibrium as
n→∞
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Reversible Markov Chains

Definition Let (X0,X1, ...) be a MC with state space
S = {s1, s2, ..., sk} and transition probability P. A probability
distribution π is reversible for the chain if for all i , j ∈ {1, 2, ...k}
we have

πiPi ,j = πjPj ,i

A MC is reversible if there is a reversible distribution for it.
—
Theorem (A strong form of equilibrium)
If π is a reversible distribution for the MC, then it is a stationary
distribution for the MC.
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Random Walks on Graphs

An example. Let us consider a graph G that is a triangle with
vertices v0, v1, v2. Let us take a random walk on the G . Suppose
that we are at node vi . Flip a fair coin. If we get H then we move
to v(i+1(mod3)) and if we get T then we move to v(i−1(mod3)).
Suppose now that we start at v0. Let with Xn denotes the index of
the vertex at the walk at time n. We obtain the chain
(X − 0,X1, ...) Then:

Pr(X1 = 1) = 1
2

Pr(X2 = 2) = 1
2

...
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Random Walks on Graphs

Definition A graph G = (V ,E ) consists of vertices
V = {v1, ..., vk} and edges E = {e1, ..., el}. Two vertices are
adjacent if they share an edge.
A random walk on a graph G = (V ,E ) is a Markov Chain with
state space V = {v1, ..., vn} and the following transition
mechanism : If at vertex vi at time n it moves at time n+! to one
of the neighbours of vi chosen at random with equal probability for
each neighbour. The degree of a verted vi is the number of
neighbours di of it.

Pi ,j = 1
di

if i , and j are neighbours; and

Pi ,j = 0 otherwise.
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Random Walks on Graphs

Theorem
The stationary distribution for this Markov Chian is

ϕ = (
d1
d
, ...,

dk
d

)

where d =
∑k

i=1 di .
—
It is easy to see that ϕ is a reversible distribution for the Markov
Chain.
Proof

If vi and vj are neighbours (adjacent) then

ϕiPi ,j =
di
d
∗ 1

d
=

1

d
=

dj
d
∗ 1

d
= ϕjPj ,i

If If vi and vj are not neighbours (adjacent) then

ϕiPi ,j = 0 = ϕjPj ,i
Sorin Istrail Algorithmic Foundations of the Metropolis Algorithm and the Markov-Chain Monte Carlo Method



Outline
Markov Chains

Reversible Markov Chains
Random Walks on Graphs
The Metropolis Algorithm

The Hard-Core Model in Statistical Physics

The Metropolis Algorithm

We want to simulate a given probability distribution
ϕ = (ϕ1, ..., ϕk) on a set S = (s1, ..., sk).

The first step is to construct a graph G with vertex set S .

We construct edges in G such that

The graph must be connected to assure irreducibility of the
resuting chain
Each vertex should not be with high degrees as such a Markov
chain is ”heavy” - observe that in the stationary distribution
on the standard random walk on a graph that the time visiting
a certain vertex is proportional to its degree.
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The Metropolis Algorithm

The following is the Metropolis Markov Chaint probability
transition matrix corresponding to the graph G = (V ,E )

If (si , sj) ∈ E then

Pi ,j =
1

d
MIN{

ϕjdi
ϕidj

, 1}

If (si , sj) 6 ∈E (si is not adjacent ot sj) then

Pi ,j = 0

If i = j then

Pi ,j = 1−
∑

(sl ,si )∈E

1

d
MIN{ϕldi

ϕidl
, 1}
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The Metropolis Algorithm

The transition Pi ,j corresponds to the following mechanism.

Suppose Xn = si

First pick a state sj according to uniform distribution to the
set of neighbours of si , so each neighbour is chosen with
probability 1

di
Then

Xn+1 = sj with probability MIN{ϕjdi
ϕidj

, 1} (move to a neighbour

state) or

Xn+1 = si with probability 1−MIN{ϕjdi
ϕidj

, 1} (remains in the

same state)
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The Metropolis Algorithm

To show that this mechanism has ϕ as its stationary distribution, it
is enough to verify that the reversibility condition

ϕiPi ,j = ϕjPj ,i

for all i , j . We prove this in three steps.

For i = j we have
ϕiPi ,i = ϕiPi ,i

For i 6 =j and (si , sj) 6 ∈E both sides are equal to zero as
Pi ,j = 0
For i 6 =j and (si , sj) ∈ E we have two cases to consider.

1 CASE A.
ϕjdi
ϕidj
≥ 1

2 CASE B.
ϕjdi
ϕidj

< 1
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The Metropolis Algorithm

1 CASE A. If
ϕjdi
ϕidj
≥ 1 then

ϕidj
ϕjdi

<= 1

Then ϕiPi ,j = ϕi ∗ 1
di
∗ 1 = ϕi

di

Also ϕjPj ,i = ϕj ∗ 1
dj
∗ ϕidj
ϕjdi

= ϕi
di

In conclusion: ϕiPi ,j = ϕjPj ,i (reversibility)

2 CASE B. If
ϕjdi
ϕidj

< 1 then
ϕidj
ϕjdi

> 1

Then ϕiPi ,j = ϕi ∗ 1
di
∗ ϕjdi
ϕidj

=
ϕj

dj
Also we have
ϕjPj ,i = ϕj ∗ 1

dj
∗ (MIN{ϕidj

ϕjdi
, 1}) = ϕj ∗ 1

dj
∗ 1 =

ϕj

dj
∗ 1 =

ϕj

dj

In conclusion: ϕiPi ,j = ϕjPj ,i (reversibility).
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The Hard-Core Model - in statistical physics

Consider a graph G = (V ,E ),V = {v1, ..., vn},E = {e1, ..., el}
Randomly assign value 0 and 1 on each vertex, such that no two
adjacent vertices (endpoints of an edge) both take value 1.
An assignment of 0’s and 1’s to the vertices is called a
configuration C : V → {0, 1}.
The set of all configurations is {0, 1}V . A configuration is feasible
if no two 1s are adjacent.
—
This is a statistical mechanics model, called ”Hard-Core” as it tries
to capture some of the behavior of gas molecules where particles
have non-negative radii and cannot overlap;
1s represent a particles, and 0s empty spaces.
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The Hard-Core Model - in statistical physics

We assign equal probaility to each configuration.
Consider µG a probability distribution on {0, 1}V defined as
follows.

If ξ is feasible then muG (ξ) = 1
Z

If ξ is not feasible then muG (ξ) = 0

Z is the number of feasible configurations.
—-
NATURAL QUESTION:
What is the expected number of 1s in a random configuration
chosen according to µG?

Sorin Istrail Algorithmic Foundations of the Metropolis Algorithm and the Markov-Chain Monte Carlo Method
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The Hard-Core Model - in statistical physics

If we write n(ξ)= the number of 1s in configuration ξ and we
denote by X a random configuration chosen according to µG (ξ)
then:

E [n(ξ)] =
∑

ξ∈{0,1}V
n(ξ)µG (ξ) =

1

ZG

∑
ξ∈{0,1}V

n(ξ)I[ξfeasible]

Hard to compute and ZG = the total number of feasible
configurations on graph G is hard to compute as well.

Sorin Istrail Algorithmic Foundations of the Metropolis Algorithm and the Markov-Chain Monte Carlo Method
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The Hard-Core Model - in statistical physics

To evaluate this sum is infeasible unless the graph is very
small. For an 8x8 grid there are 264 = 1019 configurations.

Most terms are zero but the number of non-zero terms grows
exponential as well.

When we cannot compute E [n(X )] we go to simulations!
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The Hard-Core Model - in statistical physics

If we know how to simulate a random configuration X with
distribution µG , then we can do this many tmes, and estimate
E [n(X )] by the average number of 1’s in our simulation.

By the Law of Large Numbers this estimate converges to
the same true value of E [n(X )] as the number of simultations
tends to infinity.
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The Hard-Core Model - in statistical physics

How is it possible to be easier to construct a Markov Chain
with the desired property than to construct a random variable
with distribution ϕ directly?

We typically solve such problems by finding a stronger Markov
Chain satisfying the property of reversibility not just
stationarity of the distribution.
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The Hard-Core Model - in statistical physics

An Markov Chain Monte Carlo Algorithm for the Hard-Core
Model on a graph G
We are at time n in configuration Xn. At time n + 1 we do the
following:

1 Pick a vertex v ∈ V at random uniformly

2 Toss a fair coin

3 If the coin comes up Heads, and all neighbours at V take
value 0 in Xn then we let Xn+1(v) = 1; otherwise Xn+1(v) = 0

4 For all vertices w other than v leave the value of w
unchanged, i.e., Xn+1(w) = Xn(w)

It is not difficult to verify that this MC is irreducible and aperiodic
and µG is reversible.
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