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Markov Chains

Markov Chains

Definition Given a Markov Chain MC = (¢, P). We say that a
row verctor ¢ = (1, ¢2, ..., Pk) is said to be a stationary
distribution for the MC if it satisfies:

00 >0,1<i<k K p=1
o pP =y, ie, X piPij=p,1<j<k
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Markov Chains

Stationary Distribution

Theorem (Existence and Uniqueness to Stationary Distributions)
For any irreducible and aperiodic MC there is a unique stationary
distribution.

Definition of Total Variance Distance
If vi=(vi,..v}) and v? = (v, ..., v?) are probability discributions
on S = {si,...,s¢} then we define the

total variation distance between v! and v2 as

1
drv(v viv? §Z|v—v
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Markov Chains

Total Variation Distance

Properties of Total Variation Distance

@ If dry (v, v?) =0 then v = v2

@ If dryv (v, v?) =1 then v! and v? are "disjoint” in the sense
that S = S U S? and v! puts its probability on S and v?
puts its probability on S2.

© the Total Variation Distance has also the equivalent natural
interpretation:

drv (v, v?) = MAXacs | vi(A) — v3(A) |

i.e., the maximal difference between the probabilities that the
two distributions assign to any event
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Markov Chains

Convergence to Equilibrium

Theorem. (Convergence)
Let (X1, X2, ...) be an irreducible aperiodic MC with state space
S ={s1,...,5«} and transition matrix P and an arbitrary initial
distribution 7% . Then for any distribution ¢ which is stationary for
P we have:

STV
We say in this case that the MC is approaching equilibrium as
n— oo
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Reversible Markov Chains

Reversible Markov Chains

Definition Let (Xp, Xi,...) be a MC with state space
S ={s1,%,...,5¢} and transition probability P. A probability
distribution 7 is reversible for the chain if for all i,j € {1,2,...k}
we have

miPij = mjPji

A MC is reversible if there is a reversible distribution for it.

Theorem (A strong form of equilibrium)
If 7w is a reversible distribution for the MC, then it is a stationary
distribution for the MC.
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Random Walks on Graphs

Random Walks on Graphs

An example. Let us consider a graph G that is a triangle with
vertices vy, v1, v». Let us take a random walk on the G. Suppose
that we are at node v;. Flip a fair coin. If we get H then we move
to V(j41(mod3)) and if we get T then we move to V(j_1(mod3))-
Suppose now that we start at vy. Let with X, denotes the index of
the vertex at the walk at time n. We obtain the chain

(X —0,Xi,...) Then:

"] Pr(Xl = 1) =
1 Pr(X2 = 2) =

NI= N[=
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Random Walks on Graphs

Random Walks on Graphs

Definition A graph G = (V/, E) consists of vertices

V ={vi,..., v} and edges E = {e1, ..., e/}. Two vertices are
adjacent if they share an edge.

A random walk on a graph G = (V. E) is a Markov Chain with
state space V = {v1, ..., v} and the following transition
mechanism : If at vertex v; at time n it moves at time n+! to one
of the neighbours of v; chosen at random with equal probability for
each neighbour. The degree of a verted v; is the number of
neighbours d; of it.

° Pij= % if i, and j are neighbours; and

e P;; = 0 otherwise.
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Random Walks on Graphs

Random Walks on Graphs

Theorem
The stationary distribution for this Markov Chian is
o dr dk
SD = (F, veny g

where d = Zf'(:l d;.

It is easy to see that ¢ is a reversible distribution for the Markov
Chain.

Proof
e If v; and v; are neighbours (adjacent) then
d 1 1 d 1
PP g g =g T g g At

e If If v; and v; are not neighbours (adjacent) then
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The Metropolis Algorithm

The Metropolis Algorithm

@ We want to simulate a given probability distribution

© = (¢1,.-,pk) on a set S = (s1, ..., Sk).
@ The first step is to construct a graph G with vertex set S.
@ We construct edges in G such that

e The graph must be connected to assure irreducibility of the
resuting chain

o Each vertex should not be with high degrees as such a Markov
chain is "heavy” - observe that in the stationary distribution
on the standard random walk on a graph that the time visiting
a certain vertex is proportional to its degree.
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The Metropolis Algorithm

The Metropolis Algorithm

The following is the Metropolis Markov Chaint probability
transition matrix corresponding to the graph G = (V, E)
o If (si,s;) € E then

1 w;d;
P = =MIN{ZL" 1
J d {(Pldj }

o If (si,s;) £E (si is not adjacent ot s;) then

Pij=0
o If i =/ then

Z SD/C/ 1)

(5/,5,)€E
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The Metropolis Algorithm

The Metropolis Algorithm

The transition P;; corresponds to the following mechanism.

@ Suppose X, = s;

e First pick a state s; according to uniform distribution to the
set of neighbours of s;, so each neighbour is chosen with
probability dl
Then

o Xny1=s; with probability MIN{7 “0’ 1} (move to a neighbour
state) or

° Xn41 = s; with probability 1 — MIN{Z7 £id
same state)

(remains in the
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The Metropolis Algorithm

The Metropolis Algorithm

To show that this mechanism has ¢ as its stationary distribution, it
is enough to verify that the reversibility condition

piPij = ¢jPji
for all i,j. We prove this in three steps.

@ For i =j we have
@iPii = ¢iPi

e For i /&j and (s;,s;) £E both sides are equal to zero as
P,"j =0
e For i /=j and (s;,s;) € E we have two cases to consider.

pjdi
@ CASE A. od, >1

QCASEB.%Q
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The Metropolis Algorithm

The Metropolis Algorithm

@ CASE A. If‘pf >1then “”{J <=1
J
Then ¢;P;j = (p, x1= f/l’
1 0d _ o
j %d S 4
In conclusion: ¢;P;; = ¢;P;; (reversibility)

@ CASE B. If‘PJ <1thenj—f>1

_ <Pd P
Then ‘PiPi,j—SOi Treg=4d

Also (ijJ',' = pj*

Also we have
0jPji = pj * (/\/I/N{‘p’ 1}) = %*1:%*1:%
In conclusion: gp,P,J = goijy, (rever5|b|Iity).
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The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

Consider a graph G = (V,E),V ={vi,....,vn}, E ={e1, ..., e/}
Randomly assign value 0 and 1 on each vertex, such that no two
adjacent vertices (endpoints of an edge) both take value 1.

An assignment of 0's and 1's to the vertices is called a
configuration C : V — {0,1}.

The set of all configurations is {0,1}". A configuration is feasible
if no two 1s are adjacent.

This is a statistical mechanics model, called "Hard-Core” as it tries
to capture some of the behavior of gas molecules where particles
have non-negative radii and cannot overlap;

1s represent a particles, and Os empty spaces.

Sorin Istrail Algorithmic Foundations of the Metropolis Algorithm and the Mz



The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

We assign equal probaility to each configuration.
Consider 11 a probability distribution on {0,1}Y defined as
follows.

e If £ is feasible then mug (&) = %
e If £ is not feasible then mug(§) =0

Z is the number of feasible configurations.

NATURAL QUESTION:
What is the expected number of 1s in a random configuration
chosen according to pg?

Sorin Istrail Algorithmic Foundations of the Metropolis Algorithm and the Mz



The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

If we write n(§)= the number of 1s in configuration & and we
denote by X a random configuration chosen according to pg (&)
then:

E@l= Y n@ucl@) =5 Y mEeramie

£c{01}v € eefo1yv

Hard to compute and Zg = the total number of feasible
configurations on graph G is hard to compute as well.
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The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

@ To evaluate this sum is infeasible unless the graph is very
small. For an 8x8 grid there are 264 = 109 configurations.

@ Most terms are zero but the number of non-zero terms grows
exponential as well.

@ When we cannot compute E[n(X)] we go to simulations!
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The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

o If we know how to simulate a random configuration X with
distribution p g, then we can do this many tmes, and estimate
E[n(X)] by the average number of 1's in our simulation.

@ By the Law of Large Numbers this estimate converges to
the same true value of E[n(X)] as the number of simultations
tends to infinity.
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The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

@ How is it possible to be easier to construct a Markov Chain
with the desired property than to construct a random variable
with distribution ¢ directly?

@ We typically solve such problems by finding a stronger Markov
Chain satisfying the property of reversibility not just
stationarity of the distribution.
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The Hard-Core Model in Statistical Physics

The Hard-Core Model - in statistical physics

An Markov Chain Monte Carlo Algorithm for the Hard-Core
Model on a graph G

We are at time n in configuration X,. At time n+ 1 we do the
following:

@ Pick a vertex v € V' at random uniformly

@ Toss a fair coin

© If the coin comes up Heads, and all neighbours at V take
value 0 in X, then we let X,11(v) = 1; otherwise X,11(v) =0

@ For all vertices w other than v leave the value of w
unchanged, i.e., Xp+1(w) = Xy(w)

It is not difficult to verify that this MC is irreducible and aperiodic
and pg is reversible.
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