Expectation Maximization

Sorin Istrail

Department of Computer Science Brown University, Providence sorin@cs.brown.edu

31 October 2006

• In this lecture, we outline the haplotype phasing algorithm of Excoffier & Slatin [].

A 10

- In this lecture, we outline the haplotype phasing algorithm of Excoffier & Slatin [].
- Our domain is the set D = {x₁, x₂, ..., x_n} of n samples, where each sample x_i is drawn independently from a probability density p(x|θ).

- In this lecture, we outline the haplotype phasing algorithm of Excoffier & Slatin [].
- Our domain is the set D = {x₁, x₂, ..., x_n} of n samples, where each sample x_i is drawn independently from a probability density p(x|θ).
- The vector of parameters θ = (θ₁,...,θ_d) ∈ ℝ^d is fixed but unknown and we would like to estimate θ from the sampled data.

- In this lecture, we outline the haplotype phasing algorithm of Excoffier & Slatin [].
- Our domain is the set D = {x₁, x₂, ..., x_n} of n samples, where each sample x_i is drawn independently from a probability density p(x|θ).
- The vector of parameters θ = (θ₁,...,θ_d) ∈ ℝ^d is fixed but unknown and we would like to estimate θ from the sampled data.

Recall that the log likelihood of θ with respect to $\mathcal D$ is given by the likelihood function

$$l(\theta) = \log p(\mathcal{D}|\theta) = \sum_{k=1}^{n} p(x_k|\theta)$$

Recall that the log likelihood of θ with respect to $\mathcal D$ is given by the likelihood function

$$l(\theta) = \log p(\mathcal{D}|\theta) = \sum_{k=1}^{n} p(x_k|\theta)$$

and the maximum log-likelihood estimate of θ , denoted $\hat{\theta}$, is the value of θ that maximizes $p(\mathcal{D}|\theta)$

$$\hat{ heta} = rg\max_{ heta} \log p(\mathcal{D}| heta)$$

 In the missing data problem, we have both observed and missing features x_k = {x_{kg}, x_{kb}}.

A 10

- In the missing data problem, we have both observed and missing features x_k = {x_{kg}, x_{kb}}.
- For missing features, we need to perform statistical inference to infer the most likely value of the missing feature.

- In the missing data problem, we have both observed and missing features x_k = {x_{kg}, x_{kb}}.
- For missing features, we need to perform statistical inference to infer the most likely value of the missing feature.
- Our central equation is the following.

$$Q(\theta; \theta^{i}) = \mathcal{E}_{\mathcal{D}_{b}}[Inp(\mathcal{D}_{g}, \mathcal{D}_{b}|\theta)|\mathcal{D}_{b}; \theta^{i}]$$

- In the missing data problem, we have both observed and missing features x_k = {x_{kg}, x_{kb}}.
- For missing features, we need to perform statistical inference to infer the most likely value of the missing feature.
- Our central equation is the following.

$$Q(\theta; \theta^{i}) = \mathcal{E}_{\mathcal{D}_{b}}[Inp(\mathcal{D}_{g}, \mathcal{D}_{b}|\theta)|\mathcal{D}_{b}; \theta^{i}]$$

• Q is a function of θ with θ^i assumed fixed.

- In the missing data problem, we have both observed and missing features x_k = {x_{kg}, x_{kb}}.
- For missing features, we need to perform statistical inference to infer the most likely value of the missing feature.
- Our central equation is the following.

$$Q(\theta; \theta^{i}) = \mathcal{E}_{\mathcal{D}_{b}}[Inp(\mathcal{D}_{g}, \mathcal{D}_{b}|\theta)|\mathcal{D}_{b}; \theta^{i}]$$

• Q is a function of θ with θ^i assumed fixed.

• Suppose we have an initial parameter vector θ^i that is the current best estimate for the full distribution.

- Suppose we have an initial parameter vector θ^i that is the current best estimate for the full distribution.
- We will use the candidate vector θ^i to obtain an improved estimate θ^{i+1} .

- Suppose we have an initial parameter vector θ^i that is the current best estimate for the full distribution.
- We will use the candidate vector θ^i to obtain an improved estimate θ^{i+1} .
- Given θ^i , the bound on the right hand side calculates the likelihood of the data including the unknown \mathcal{D}_b marginalized with respect to the current distribution (given by θ^i).

- Suppose we have an initial parameter vector θ^i that is the current best estimate for the full distribution.
- We will use the candidate vector θ^i to obtain an improved estimate θ^{i+1} .
- Given θ^i , the bound on the right hand side calculates the likelihood of the data including the unknown \mathcal{D}_b marginalized with respect to the current distribution (given by θ^i).
- The EM algorithm will select θ^{i+1} as the best such candidate, i.e.,

$$\theta^{i+1} = \arg \max_{\theta} Q(\theta; \theta^i).$$

- Suppose we have an initial parameter vector θ^i that is the current best estimate for the full distribution.
- We will use the candidate vector θ^i to obtain an improved estimate θ^{i+1} .
- Given θ^i , the bound on the right hand side calculates the likelihood of the data including the unknown \mathcal{D}_b marginalized with respect to the current distribution (given by θ^i).
- The EM algorithm will select θ^{i+1} as the best such candidate, i.e.,

$$\theta^{i+1} = \arg \max_{\theta} Q(\theta; \theta^i).$$

 Note that by choosing different initial candidates θ⁰, the output of the EM algorithm possibly varies.

- Note that by choosing different initial candidates θ^0 , the output of the EM algorithm possibly varies.
- Therefore, in order to compute a good candidate for a global optimal solution, the EM algorithm is often run many times from different initial values θ⁰.

- Note that by choosing different initial candidates θ^0 , the output of the EM algorithm possibly varies.
- Therefore, in order to compute a good candidate for a global optimal solution, the EM algorithm is often run many times from different initial values θ⁰.

The entire algorithm is given as follows.

Image: A = A

 The entire algorithm is given as follows.

Input: Observed data \mathcal{D} , initial estimate θ^0 , margine of error ϵ **Output:** Maximum likelihood parameters $\hat{\theta}$

1. Initialize
$$i = 0$$
.
While $Q(\theta^{i+1}, \theta^i) - Q(\theta^i, \theta^{i-1}) \le \epsilon$
(i) E-Step: Compute $Q(\theta; \theta^i)$
(ii) Max step: $\theta^{i+1} = \arg \max_{\theta} Q(\theta; \theta^i)$
(iii) $i = i + 1$
Return n $\hat{\theta} \leftarrow \theta^{i+1}$

• In this problem, we have m different phenotype with frequencies $P_1, P_2, \ldots P_m$.

- **→** → **→**

- In this problem, we have m different phenotype with frequencies $P_1, P_2, \ldots P_m$.
- Given observed samples $n_1, n_2 \dots n_m$ of the phenotypes, the likelihood of the samples given the frequencies are given by the likelihood equation

- In this problem, we have m different phenotype with frequencies $P_1, P_2, \ldots P_m$.
- Given observed samples $n_1, n_2 \dots n_m$ of the phenotypes, the likelihood of the samples given the frequencies are given by the likelihood equation

$$P(Samples|P_1,...,P_m) = \frac{n!}{n_1!n_2!\cdots n_m!}P_1^{n_1}P_2^{n_2}\dots P_m^{n_m}$$

- In this problem, we have m different phenotype with frequencies $P_1, P_2, \ldots P_m$.
- Given observed samples $n_1, n_2 \dots n_m$ of the phenotypes, the likelihood of the samples given the frequencies are given by the likelihood equation

$$P(Samples|P_1,...,P_m) = \frac{n!}{n_1!n_2!\cdots n_m!}P_1^{n_1}P_2^{n_2}\dots P_m^{n_m}$$

• Under the assumption of Hardy-Weinberg equilibrium, or random mating, the likelihood of the haplotype frequencies given the phenotypic counts is given by

- In this problem, we have m different phenotype with frequencies $P_1, P_2, \ldots P_m$.
- Given observed samples $n_1, n_2 \dots n_m$ of the phenotypes, the likelihood of the samples given the frequencies are given by the likelihood equation

$$P(Samples|P_1,...,P_m) = \frac{n!}{n_1!n_2!\cdots n_m!}P_1^{n_1}P_2^{n_2}\dots P_m^{n_m}$$

• Under the assumption of Hardy-Weinberg equilibrium, or random mating, the likelihood of the haplotype frequencies given the phenotypic counts is given by

$$I(P_1,...,P_h) = a_1 \cdot \prod_{j=1}^m (\sum_{i=1}^{C_j} P(h_{ik}h_{ie}))^{n_i}$$

- In this problem, we have m different phenotype with frequencies $P_1, P_2, \ldots P_m$.
- Given observed samples $n_1, n_2 \dots n_m$ of the phenotypes, the likelihood of the samples given the frequencies are given by the likelihood equation

$$P(Samples|P_1,...,P_m) = \frac{n!}{n_1!n_2!\cdots n_m!}P_1^{n_1}P_2^{n_2}\dots P_m^{n_m}$$

• Under the assumption of Hardy-Weinberg equilibrium, or random mating, the likelihood of the haplotype frequencies given the phenotypic counts is given by

$$I(P_1,...,P_h) = a_1 \cdot \prod_{j=1}^m (\sum_{i=1}^{C_j} P(h_{ik}h_{ie}))^{n_i}$$