
The Power of Amnesia: Learning ProbabilisticAutomata with Variable Memory LengthDANA RON danar@cs.huji.ac.ilYORAM SINGER singer@cs.huji.ac.ilNAFTALI TISHBY tishby@cs.huji.ac.ilInstitute of Computer Science, Hebrew University, Jerusalem 91904, IsraelAbstract. We propose and analyze a distribution learning algorithm for variable memory lengthMarkov processes. These processes can be described by a subclass of probabilistic �nite automatawhich we name Probabilistic Su�x Automata (PSA). Though hardness results are known forlearning distributions generated by general probabilistic automata, we prove that the algorithmwe present can e�ciently learn distributions generated by PSAs. In particular, we show thatfor any target PSA, the KL-divergence between the distribution generated by the target and thedistribution generated by the hypothesis the learning algorithm outputs, can be made small withhigh con�dence in polynomial time and sample complexity. The learning algorithm is motivatedby applications in human-machine interaction. Here we present two applications of the algorithm.In the �rst one we apply the algorithm in order to construct a model of the English language,and use this model to correct corrupted text. In the second application we construct a simplestochastic model for E.coli DNA.1. IntroductionStatistical modeling of complex sequences is a fundamental goal of machine learningdue to its wide variety of natural applications. The most noticeable examples ofsuch applications are statistical models in human communication such as naturallanguage, handwriting and speech [14], [21], and statistical models of biologicalsequences such as DNA and proteins [17].These kinds of complex sequences clearly do not have any simple underlying sta-tistical source since they are generated by natural sources. However, they typicallyexhibit the following statistical property, which we refer to as the short memoryproperty. If we consider the (empirical) probability distribution on the next symbolgiven the preceding subsequence of some given length, then there exists a lengthL (the memory length) such that the conditional probability distribution does notchange substantially if we condition it on preceding subsequences of length greaterthan L.This observation lead Shannon, in his seminal paper [29], to suggest modeling suchsequences by Markov chains of order L > 1, where the order is the memory lengthof the model. Alternatively, such sequences may be modeled by Hidden MarkovModels (HMMs) which are more complex distribution generators and hence maycapture additional properties of natural sequences. These statistical models de�nerich families of sequence distributions and moreover, they give e�cient procedures



2 DANA RON, YORAM SINGER, NAFTALI TISHBYboth for generating sequences and for computing their probabilities. However, bothmodels have severe drawbacks. The size of Markov chains grows exponentially withtheir order, and hence only very low order Markov chains can be considered inpractical applications. Such low order Markov chains might be very poor approxi-mators of the relevant sequences. In the case of HMMs, there are known hardnessresults concerning their learnability which we discuss in Section 1.1.In this paper we propose a simple stochastic model and describe its learningalgorithm. It has been observed that in many natural sequences, the memorylength depends on the context and is not �xed . The model we suggest is hence avariant of order LMarkov chains, in which the order, or equivalently, the memory, isvariable. We describe this model using a subclass of Probabilistic Finite Automata(PFA), which we name Probabilistic Su�x Automata (PSA).Each state in a PSA is labeled by a string over an alphabet �. The transitionfunction between the states is de�ned based on these string labels, so that a walkon the underlying graph of the automaton, related to a given sequence, alwaysends in a state labeled by a su�x of the sequence. The lengths of the stringslabeling the states are bounded by some upper bound L, but di�erent states maybe labeled by strings of di�erent length, and are viewed as having varying memorylength. When a PSA generates a sequence, the probability distribution on the nextsymbol generated is completely de�ned given the previously generated subsequenceof length at most L. Hence, as mentioned above, the probability distributions theseautomata generate can be equivalently generated by Markov chains of order L, butthe description using a PSA may be much more succinct. Since the size of order Lmarkov chains is exponential in L, their estimation requires data length and timeexponential in L.In our learning model we assume that the learning algorithm is given a sam-ple (consisting either of several sample sequences or of a single sample sequence)generated by an unknown target PSA M of some bounded size. The algorithm isrequired to output a hypothesis machine M̂ , which is not necessarily a PSA butwhich has the following properties. M̂ can be used both to e�ciently generate adistribution which is similar to the one generated by M , and given any sequence s,it can e�ciently compute the probability assigned to s by this distribution.Several measures of the quality of a hypothesis can be considered. Since we aremainly interested in models for statistical classi�cation and pattern recognition,the most natural measure is the Kullback-Leibler (KL) divergence. Our resultshold equally well for the variation (L1) distance and other norms, which are upperbounded by the KL-divergence. Since the KL-divergence between Markov sourcesgrows linearly with the length of the sequence, the appropriate measure is theKL-divergence per symbol. Therefore, we de�ne an �-good hypothesis to be anhypothesis which has at most � KL-divergence per symbol to the target source.In particular, the hypothesis our algorithm outputs, belongs to a class of proba-bilistic machines named Probabilistic Su�x Trees (PST). The learning algorithmgrows such a su�x tree starting from a single root node, and adaptively adds nodes



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 3(strings) for which there is strong evidence in the sample that they signi�cantlya�ect the prediction properties of the tree.We show that every distribution generated by a PSA can equivalently be gener-ated by a PST which is not much larger. The converse is not true in general. Wecan however characterize the family of PSTs for which the converse claim holds,and in general, it is always the case that for every PST there exists a not muchlarger PFA that generates an equivalent distribution. There are some contexts inwhich PSAs are preferable, and some in which PSTs are preferable, and thereforewe use both representation in the paper. For example, PSAs are more e�cientgenerators of distributions, and since they are probabilistic automata, their wellde�ned state space and transition function can be exploited by dynamic program-ming algorithms which are used for solving many practical problems. In addition,there is a natural notion of the stationary distribution on the states of a PSA whichPSTs lack. On the other hand, PSTs sometimes have more succinct representationsthan the equivalent PSAs, and there is a natural notion of growing them.Stated formally, our main theoretical result is the following. If both a bound L,on the memory length of the target PSA, and a bound n, on the number of statesthe target PSA has, are known, then for every given 0 < � < 1 and 0 < � < 1,our learning algorithm outputs an �-good hypothesis PST, with con�dence 1 � �,in time polynomial in L, n, j�j, 1� and 1� . Furthermore, such a hypothesis can beobtained from a single sample sequence if the sequence length is also polynomialin a parameter related to the rate in which the target machine converges to itsstationary distribution. Despite an intractability result concerning the learnabil-ity of distributions generated by Probabilistic Finite Automata [15] (described inSection 1.1), our restricted model can be learned in a PAC-like sense e�ciently.This has not been shown so far for any of the more popular sequence modelingalgorithms.We present two applications of the learning algorithm. In the �rst applicationwe apply the algorithm in order to construct a model of the English language, anduse this model to correct corrupted text. In the second application we construct asimple stochastic model for E.coli DNA. Combined with a learning algorithm fora di�erent subclass of probabilistic automata [26], the algorithm presented here ispart of a complete cursive handwriting recognition system [30].1.1. Related WorkThe most powerful (and perhaps most popular) model used in modeling naturalsequences is the Hidden Markov Model (HMM). A detailed tutorial on the theory ofHMMs as well as selected applications in speech recognition is given by Rabiner [22].A commonly used procedure for learning an HMM from a given sample is a maxi-mum likelihood parameter estimation procedure that is based on the Baum-Welchmethod [3], [2] (which is a special case of the EM (Expectation-Maximization) al-gorithm [7]). However, this algorithm is guaranteed to converge only to a localmaximum, and thus we are not assured that the hypothesis it outputs can serve



4 DANA RON, YORAM SINGER, NAFTALI TISHBYas a good approximation for the target distribution. One might hope that theproblem can be overcome by improving the algorithm used or by �nding a new ap-proach. Unfortunately, there is strong evidence that the problem cannot be solvede�ciently.Abe and Warmuth [1] study the problem of training HMMs. The HMM trainingproblem is the problem of approximating an arbitrary, unknown source distributionby distributions generated by HMMs. They prove that HMMs are not trainablein time polynomial in the alphabet size, unless RP = NP. Gillman and Sipser [10]study the problem of exactly inferring an (ergodic) HMM over a binary alphabetwhen the inference algorithm can query a probability oracle for the long-term prob-ability of any binary string. They prove that inference is hard: any algorithm forinference must make exponentially many oracle calls. Their method is informa-tion theoretic and does not depend on separation assumptions for any complexityclasses.Natural simpler alternatives, which are often used as well, are order L Markovchains [29], [11], also known as n-gram models. As noted earlier, the size of anorder L Markov chain is exponential in L and hence, if we want to capture morethan very short term memory dependencies in the sequences, of substantial lengthin the sequences, then these models are clearly not practical.H�o�gen [12] studies families of distributions related to the ones studied in thispaper, but his algorithms depend exponentially and not polynomially on the order,or memory length, of the distributions. Freund et. al. [9] point out that theirresult for learning typical deterministic �nite automata from random walks withoutmembership queries, can be extended to learning typical PFAs. Unfortunately,there is strong evidence indicating that the problem of learning general PFAs ishard. Kearns et. al. [15] show that PFAs are not e�ciently learnable under theassumption that there is no e�cient algorithm for learning noisy parity functionsin the PAC model.The machines used as our hypothesis representation, namely Probabilistic Su�xTrees (PSTs), were introduced (in a slightly di�erent form) in [23] and have beenused for other tasks such as universal data compression [23], [24], [32], [33]. Perhapsthe strongest among these results (which has been brought to our attention after thecompletion of this work) and which is most tightly related to our result is [33]. Thispaper describes an e�cient sequential procedure for universal data compression forPSTs by using a larger model class. This algorithm can be viewed as a distributionlearning algorithm but the hypothesis it produces is not a PST or a PSA and hencecannot be used for many applications. Willems et. al. show that their algorithmcan be modi�ed to give the minimum description length PST. However, in casethe source generating the examples is a PST, they are able to show that this PSTconvergence only in the limit of in�nite sequence length to that source.Vitter and Krishnan [31], [16] adapt a version of the Ziv-Lempel data compressionalgorithm [34] to get a page prefetching algorithm, where the sequence of pageaccesses is assumed to be generated by a PFA. They show that the page fault rateof their algorithm converges to the page fault rate of the best algorithm that has full



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 5knowledge of the source. This is true for almost all page access sequences (in thelimit of the sequence length). Laird and Saul [19] describe a prediction algorithmwhich is similar in spirit to our algorithmand is based on theMarkov tree orDirectedAcyclic Word Graph approach which is used for data compression [5]. They do notanalyze the correctnes of the algorithm formally, but present several applicationsof the algorithm.1.2. Overview of the PaperThe paper is organized as follows. In Section 2 we give basic de�nitions and nota-tion and describe the families of distributions studied in this paper, namely thosegenerated by PSAs and those generated by PSTs. In Section 4 we discuss the re-lation between the above two families of distributions. In Section 5 the learningalgorithm is described. Some of the proofs regarding the correctness of the learningalgorithm are given in Section 6. Finally, we demonstrate the applicability of thealgorithm by two illustrative examples in Section 7. In the �rst example we useour algorithm to learn the structure of natural English text, and use the resultinghypothesis for correcting corrupted text. In the second example we use our algo-rithm to build a simple stochastic model for E.coli DNA. The detailed proofs of theclaims presented in Section 4 concerning the relation between PSAs and PSTs areprovided in Appendices A and B. The more technical proofs and lemmas regardingthe correctness of the learning algorithm are given in Appendix C.2. Preliminaries2.1. Basic De�nitions and NotationsLet � be a �nite alphabet. By �� we denote the set of all possible strings over �.For any integer N , �N denotes all strings of length N , and ��N denotes the setof all strings with length at most N . The empty string is denoted by e. For anystring s = s1 : : : sl, si 2 �, we use the following notations:� The longest pre�x of s di�erent from s is denoted by pre�x (s) def= s1s2 : : : sl�1.� The longest su�x of s di�erent from s is denoted by su�x (s) def= s2 : : : sl�1sl.� The set of all su�xes of s is denoted by Su�x�(s) def= fsi : : : sl j 1 � i � lg[feg.A string s0 is a proper su�x of s, if it a su�x of s but is not s itself.� Let s1 and s2 be two strings in ��. If s1 is a su�x of s2 then we shall say thats2 is a su�x extension of s1.� A set of strings S is called a su�x free set if 8s 2 S; Su�x�(s) \ S = fsg.



6 DANA RON, YORAM SINGER, NAFTALI TISHBY2.2. Probabilistic Finite Automata and Prediction Su�x Trees2.2.1. Probabilistic Finite AutomataA Probabilistic Finite Automaton (PFA)M is a 5-tuple (Q;�; �; ; �), where Q is a�nite set of states, � is a �nite alphabet, � : Q��! Q is the transition function,  :Q��! [0; 1] is the next symbol probability function, and � : Q! [0; 1] is the initialprobability distribution over the starting states. The functions  and � must satisfythe following conditions: for every q 2 Q, P�2� (q; �) = 1, and Pq2Q �(q) = 1.We assume that the transition function � is de�ned on all states q and symbols� for which (q; �) > 0, and on no other state-symbol pairs. � can be extendedto be de�ned on Q � �� as follows: � (q; s1s2 : : : sl) = � (� (q; s1 : : : sl�1); sl) =� (� (q; pre�x (s)); sl).A PFA M generates strings of in�nite length, but we shall always discuss prob-ability distributions induced on pre�xes of these strings which have some speci�ed�nite length. If PM is the probability distribution M de�nes on in�nitely longstrings, then PNM , for any N � 0, will denote the probability induced on strings oflength N . We shall sometimes drop the superscript N , assuming that it is under-stood from the context. The probability that M generates a string r = r1r2 : : : rNin �N isPNM (r) = Xq02Q�(q0) NYi=1 (qi�1; ri) ; (1)where qi+1 = � (qi; ri).2.2.2. Probabilistic Su�x AutomataWe are interested in learning a subclass of PFAs which we name Probabilistic Su�xAutomata (PSA). These automata have the following property. Each state in aPSA M is labeled by a string of �nite length in ��. The set of strings labeling thestates is su�x free. For every two states q1; q2 2 Q and for every symbol � 2 �, if� (q1; �) = q2 and q1 is labeled by a string s1, then q2 is labeled by a string s2 whichis a su�x of s1 ��. In order that � be well de�ned on a given set of strings S, notonly must the set be su�x free, but it must also have the following property. Forevery string s in S labeling some state q, and every symbol � for which (q; �) > 0,there exists a string in S which is a su�x of s�. For our convenience, from thispoint on, if q is a state in Q then q will also denote the string labeling that state.We assume that the underlying graph of M , de�ned by Q and � (�; �), is stronglyconnected, i.e., for every pair of states q and q0 there is a directed path from q toq0. Note that in our de�nition of PFAs we assumed that the probability associatedwith each transition (edge in the underlying graph) is non-zero, and hence strongconnectivity implies that every state can be reached from every other state withnon-zero probability. For simplicity we assumeM is aperiodic, i.e., that the greatest



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 7common divisor of the lengths of the cycles in its underlying graph is 1. These twoassumptions ensure us that M is ergodic. Namely, there exists a distribution �Mon the states such that for every state we may start at, the probability distributionon the state reached after time t as t grows to in�nity, converges to �M . Theprobability distribution �M is the unique distribution satisfying�M (q) = Xq0 s:t: �(q0 ;�)=q�M (q0)(q0; �) ; (2)and is named the stationary distribution of M . We ask that for every state q inQ, the initial probability of q, �(q), be the stationary probability of q, �M (q). Itshould be noted that the assumptions above are needed only when learning froma single sample string and not when learning from many sample strings. However,for sake of brevity we make these requirements in both cases.For any given L � 0, the subclass of PSAs in which each state is labeled by astring of length at most L is denoted by L-PSA. An example 2-PSA is depicted inFigure 1. A special case of these automata is the case in which Q includes all stringsin �L. An example of such a 2-PSA is depicted in Figure 1 as well. These automatacan be described as Markov chains of order L. The states of the Markov chain arethe symbols of the alphabet �, and the next state transition probability dependson the last L states (symbols) traversed. Since every L-PSA can be extended to a(possibly much larger) equivalent L-PSA whose states are labeled by all strings in�L, it can always be described as a Markov chain of order L. Alternatively, sincethe states of an L-PSA might be labeled by only a small subset of ��L, and manyof the su�xes labeling the states may be much shorter than L, it can be viewed asa Markov chain with variable order, or variable memory.Learning Markov chains of order L, i.e., L-PSAs whose states are labeled by all�L strings, is straightforward (though it takes time exponential in L). Since the`identity' of the states (i.e., the strings labeling the states) is known, and sincethe transition function � is uniquely de�ned, learning such automata reduces toapproximating the next symbol probability function . For the more general caseof L-PSAs in which the states are labeled by strings of variable length, the taskof an e�cient learning algorithm is much more involved since it must reveal theidentity of the states as well.2.2.3. Prediction Su�x TreesThough we are interested in learning PSAs, we choose as our hypothesis classthe class of prediction su�x trees (PST) de�ned in this section. We later show(Section 4) that for every PSA there exists an equivalent PST of roughly the samesize.A PST T , over an alphabet �, is a tree of degree j�j. Each edge in the tree islabeled by a single symbol in �, such that from every internal node there is exactlyone edge labeled by each symbol. The nodes of the tree are labeled by pairs (s; s)



8 DANA RON, YORAM SINGER, NAFTALI TISHBYwhere s is the string associated with the walk starting from that node and endingin the root of the tree, and s : � ! [0; 1] is the next symbol probability functionrelated with s. We require that for every string s labeling a node in the tree,P�2� s(�) = 1.As in the case of PFAs, a PST T generates strings of in�nite length, but we con-sider the probability distributions induced on �nite length pre�xes of these strings.The probability that T generates a string r = r1r2 : : : rN in �N isPNT (r) = �Ni=1si�1 (ri) ; (3)where s0 = e, and for 1 � j � N � 1, sj is the string labeling the deepest nodereached by taking the walk corresponding to riri�1 : : : r1 starting at the root ofT . For example, using the PST depicted in Figure 1, the probability of the string00101, is 0:5�0:5�0:25�0:5�0:75, and the labels of the nodes that are used for theprediction are s0 = e; s1 = 0; s2 = 00; s3 = 1; s4 = 10. In view of this de�nition,the requirement that every internal node have exactly j�j sons may be loosened,by allowing the omission of nodes labeled by substrings which are generated by thetree with probability 0.PSTs therefore generate probability distributions in a similar fashion to PSAs.As in the case of PSAs, symbols are generated sequentially and the probability ofgenerating a symbol depends only on the previously generated substring of somebounded length. In both cases there is a simple procedure for determining thissubstring, as well as for determining the probability distribution on the next symbolconditioned on the substring. However, there are two (related) di�erences betweenPSAs and PSTs. The �rst is that PSAs generate each symbol simply by traversing asingle edge from the current state to the next state, while for each symbol generatedby a PST, one must walk down from the root of the tree, possibly traversing L edges.This implies that PSAs are more e�cient generators. The second di�erence is thatwhile in PSAs for each substring (state) and symbol, the next state is well de�ned, inPSTs this property does not necessarily hold. Namely, given the current generatingnode of a PST, and the next symbol generated, the next node is not necessarilyuniquely de�ned, but might depend on previously generated symbols which are notincluded in the string associated with the current node. For example, assume wehave a tree whose leaves are: 1,00,010,110 (see Figure B.1 in Appendix B). If 1is the current generating leaf and it generates 0, then the next generating leaf iseither 010 or 110 depending on the symbol generated just prior to 1.PSTs, like PSAs, can always be described as Markov chains of (�xed) �nite order,but as in the case of PSAs this description might be exponentially large.We shall sometimes want to discuss only the structure of a PST and ignore itsprediction property. In other words, we will be interested only in the string labelsof the nodes and not in the values of s(�). We refer to such trees as su�x trees. Wenow introduce two more notations. The set of leaves of a su�x tree T is denotedby L(T ), and for a given string s labeling a node v in T , T (s) denotes the subtreerooted at v.
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(0.25,0.75)(0.75,0.25)Figure 1. Left: A 2-PSA. The strings labeling the states are the su�xes corresponding to them.Bold edges denote transitions with the symbol `1', and dashed edges denote transitions with `0'.The transition probabilities are depicted on the edges. Middle: A 2-PSA whose states are labeledby all strings in f0;1g2. The strings labeling the states are the last two observed symbols beforethe state was reached, and hence it can be viewed as a representation of a Markov chain of order 2.Right: A prediction su�x tree. The predictionprobabilities of the symbols `0' and `1', respectively,are depicted beside the nodes, in parentheses. The three models are equivalent in the sense thatthey induce the same probability distribution on strings from f0;1g?.3. The Learning ModelThe learning model described in this paper is motivated by the PAC model forlearning boolean concepts from labeled examples and is similar in spirit to thatintroduced in [15]. We start by de�ning an �-good hypothesis PST with respect toa given PSA.De�nition. Let M be a PSA and let T be a PST. Let PM and PT be the twoprobability distributions they generate respectively. We say that T is an �-goodhypothesis with respect to M , if for every N > 0,1NDKL[PNM jjPNT ] � � ;where DKL[PNM jjPNT ] def= Xr2�N PNM (r) log PNM (r)PNT (r)is the Kullback-Leibler divergence between the two distributions.In this de�nition we chose the Kullback-Leibler (KL) divergence as a distancemeasure between distributions. Similar de�nitions can be considered for otherdistance measures such as the variation and the quadratic distances. Note thatthe KL-divergence bounds the variation distance as follows [6]: DKL[P1jjP2] �12 jjP1� P2jj21. Since the L1 norm bounds the L2 norm, the last bound holds forthe quadratic distance as well. Note that the KL-divergence between distributions,generated by �nite order markov chains, is proportional to the length of the stringsover which the divergence is computed, when this length is longer than the order ofthe model. Hence, to obtain a measure independent of that length it is necessaryto divide the KL-divergence by the length of the strings, N .



10 DANA RON, YORAM SINGER, NAFTALI TISHBYA learning algorithm for PSAs is given the maximum length L of the stringslabeling the states of the target PSA M , and an upper bound n on the number ofstates inM . The second assumption can be easily removed by searching for an upperbound. This search is performed by testing the hypotheses the algorithm outputswhen it runs with growing values of n. The algorithm is also given a con�dence(security) parameter 0 < � < 1 and an approximation parameter 0 < � < 1. Weanalyze the following two learning scenarios. In the �rst scenario the algorithmhas access to a source of sample strings of minimal length L + 1, independentlygenerated by M . In the second scenario it is given only a single (long) samplestring generated by M . In both cases we require that it output a hypothesis PSTT̂ , which with probability at least 1� � is an �-good hypothesis with respect to M .The only drawback to having a PST as our hypothesis instead of a PSA (or moregenerally a PFA), is that the prediction procedure using a tree is somewhat lesse�cient (by at most a factor of L). Since no transition function is de�ned, in orderto predict/generate each symbol, we must walk from the root until a leaf is reached.As mentioned earlier, we show in Appendix B that every PST can be transformedinto an equivalent PFA which is not much larger. This PFA di�ers from a PSAonly in the way it generates the �rst L symbols. We also show that if the PSThas a certain property (de�ned in Appendix B), then it can be transformed into anequivalent PSA.In order to measure the e�ciency of the learning algorithm, we separate the casein which the algorithm is given a sample consisting of independently generatedsample strings, from the case in which it is given a single sample string. In the �rstcase we say that the learning algorithm is e�cient if it runs in time polynomialin L, n, j�j, 1� and 1� . In order to de�ne e�ciency in the latter case we need totake into account an additional property of the model { its mixing or convergencerate. To do this we next discuss another parameter of PSAs (actually, of PFAs ingeneral).For a given PSA, M , let RM denote the n�n stochastic transition matrix de�nedby � (�; �) and (�; �) when ignoring the transition labels. That is, if si and sj arestates inM and the last symbol in sj is �, then RM(si; sj) is (si; �) if � (si; �) = sj ,and 0 otherwise. Hence, RM is the transition matrix of an ergodic Markov chain.Let ~RM denote the time reversal of RM . That is,~RM(si; sj) = �M (sj)RM (sj ; si)�M (si) ;where �M is the stationary probability vector of RM as de�ned in Equation (2).De�ne the multiplicative reversiblization UM of M by UM = RM ~RM . Denote thesecond largest eigenvalue of UM by �2(UM ).If the learning algorithm receives a single sample string, we allow the length ofthe string (and hence the running time of the algorithm) to be polynomial not onlyin L, n, j�j, 1� , and 1� , but also in 1=(1 � �2(UM )). The rationale behind this isroughly the following. In order to succeed in learning a given PSA, we must observeeach state whose stationary probability is non-negligible enough times so that the



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 11algorithm can identify that the state is signi�cant, and so that the algorithm cancompute (approximately) the next symbol probability function. When given severalindependently generated sample strings, we can easily bound the size of the sampleneeded by a polynomial in L, n, j�j, 1� , and 1� , using Cherno� bounds. Whengiven one sample string, the given string must be long enough so as to ensureconvergence of the probability of visiting a state to the stationary probability. Weshow that this convergence rate can be bounded using the expansion properties ofa weighted graph related to UM [20] or more generally, using algebraic propertiesof UM , namely, its second largest eigenvalue [8].4. Emulation of PSAs by PSTsIn this section we show that for every PSA there exists an equivalent PST which isnot much larger. This allows us to consider the PST equivalent to our target PSA,whenever it is convenient.Theorem 1 For every L-PSA, M = (Q;�; �; ; �), there exists an equivalent PSTTM , of maximal depth L and at most L � jQj nodes.Proof: (Sketch) We describe below the construction needed to prove the claim.The complete proof is provided in Appendix A.Let TM be the tree whose leaves correspond to the strings in Q. For each leaf s,and for every symbol �, let s(�) = (s; �). This ensures that for every given strings which is a su�x extension of a leaf in TM , and for every symbol �, PM (�js) =PTM (�js). It remains to de�ne the next symbol probability functions for the internalnodes of TM . These functions must be de�ned so that TM generates all stringsrelated to its nodes with the same probability as M .For each node s in the tree, let the weight of s, denoted by ws, be ws def=Ps02Q; s2Su�x�(s0) �(s0). In other words, the weight of a leaf in TM is the sta-tionary probability of the corresponding state in M ; and the weight of an internalnode labeled by a string s, equals the sum of the stationary probabilities over allstates of which s is a su�x (which also equals the sum of the weights of the leavesin the subtree rooted at the node). Using the weights of the nodes we assign val-ues to the s's of the internal nodes s in the tree in the following manner. Forevery symbol � let s(�) = Ps02Q; s2Su�x�(s0) ws0ws (s0; �). The probability s(�),of generating a symbol � following a string s, shorter than any state in M , is thusa weighted average of (s0; �) taken over all states s0 which correspond to su�xextensions of s. The weight related with each state in this average, correspondsto its stationary probability. As an example, the probability distribution over the�rst symbol generated by TM , is Ps2Q �(s)(s; �). This probability distributionis equivalent, by de�nition, to the probability distribution over the �rst symbolgenerated by M .Finally, if for some internal node in TM , its next symbol probability function isequivalent to the next symbol probability functions of all of its descendants, thenwe remove all its descendants from the tree. 2



12 DANA RON, YORAM SINGER, NAFTALI TISHBYAn example of the construction described in the proof of Theorem 1 is illustratedin Figure 1. The PST on the right was constructed based on the PSA on the left,and is equivalent to it. Note that the next symbol probabilities related with theleaves and the internal nodes of the tree are as de�ned in the proof of the theorem.5. The Learning AlgorithmWe start with an overview of the algorithm. Let M = (Q;�; �; ; �) be the targetL-PSA we would like to learn, and let jQj � n. According to Theorem 1, thereexists a PST T , of size bounded by L � jQj, which is equivalent to M . We use thesample statistics to de�ne the empirical probability function, ~P (�), and using ~P , weconstruct a su�x tree, �T , which with high probability is a subtree of T . We de�neour hypothesis PST, T̂ , based on �T and ~P ,The construction of �T is done as follows. We start with a tree consisting of asingle node (labeled by the empty string e) and add nodes which we have reasonto believe should be in the tree. A node v labeled by a string s is added as aleaf to �T if the following holds. The empirical probability of s, ~P (s), is non-negligble, and for some symbol �, the empirical probability of observing � followings, namely ~P (�js), di�ers substantially from the empirical probability of observing �following su�x (s), namely ~P (�jsu�x (s)). Note that su�x (s) is the string labelingthe parent node of v. Our decision rule for adding v, is thus dependent on the ratiobetween ~P (�js) and ~P (�jsu�x (s)). We add a given node only when this ratio issubstantially greater than 1. This su�ces for our analysis (due to properties of theKL-divergence), and we need not add a node if the ratio is smaller than 1.Thus, we would like to grow the tree level by level, adding the sons of a given leafin the tree, only if they exhibit such a behavior in the sample, and stop growing thetree when the above is not true for any leaf. The problem is that the node mightbelong to the tree even though its next symbol probability function is equivalentto that of its parent node. The leaves of a PST must di�er from their parents (orthey are redundant) but internal nodes might not have this property. The PSTdepicted in Figure 1 illustrates this phenomena. In this example, 0(�) � e(�), butboth 00(�) and 10(�) di�er from 0(�). Therefore, we must continue testing furtherpotential descendants of the leaves in the tree up to depth L.As mentioned before, we do not test strings which belong to branches whoseempirical count in the sample is small. This way we avoid exponential grow-up inthe number of strings tested. A similar type of branch-and-bound technique (withvarious bounding criteria) is applied in many algorithms which use trees as datastructures (cf. [18]). The set of strings tested at each step, denoted by �S, can beviewed as a kind of potential frontier of the growing tree �T , which is of boundedsize. After the construction of �T is completed, we de�ne T̂ by adding nodes sothat all internal nodes have full degree, and de�ning the next symbol probabilityfunction for each node based on ~P . These probability functions are de�ned so thatfor every string s in the tree and for every symbol �, s(�) is bounded from belowby min which is a parameter that is set subsequently. This is done by using a



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 13conventional smoothing technique. Such a bound on s(�) is needed in order tobound the KL-divergence between the target distribution and the distribution ourhypothesis generates.The above scheme follows a top-down approach since we start with a tree con-sisting of a single root node and a frontier consisting only of its children, andincrementally grow the su�x tree �T and the frontier �S. Alternatively, a bottom-upprocedure can be devised. In a bottom-up procedure we start by putting in �S allstrings of length at most L which have signi�cant counts, and setting �T to be thetree whose nodes correspond to the strings in �S. We then trim �T starting fromits leaves and proceeding up the tree by comparing the prediction probabilities ofeach node to its parent node as done in the top-down procedure. The two schemesare equivalent and yield the same prediction su�x tree. However, we �nd the in-cremental top-down approach somewhat more intuitive, and simpler to implement.Moreover, our top-down procedure can be easily adapted to an online setting whichis useful in some practical applications.Let P denote the probability distribution generated by M . We now formallyde�ne the empirical probability function ~P , based on a given sample generated byM . For a given string s, ~P (s) is roughly the relative number of times s appears inthe sample, and for any symbol �, ~P (�js) is roughly the relative number of times� appears after s. We give a more precise de�nition below.If the sample consists of one sample string r of length m, then for any string s oflength at most L, de�ne �j(s) to be 1 if rj�jsj+1 : : : rj = s and 0 otherwise. Let~P (s) = 1m � L m�1Xj=L �j(s) ; (4)and for any symbol �, let~P (�js) = Pm�1j=L �j+1(s�)Pm�1j=L �j(s) : (5)If the sample consists of m0 sample strings r1; : : : ; rm0 , each of length ` � L + 1,then for any string s of length at most L, de�ne �ij(s) to be 1 if rij�jsj+1 : : : rij = s,and 0 otherwise. Let~P (s) = 1m0(` � L) m0Xi=1 `�1Xj=L�ij(s) ; (6)and for any symbol �, let~P (�js) = Pm0i=1Pl�1j=L �j+1(s�)Pm0i=1Pl�1j=L �j(s) : (7)For simplicity we assume that all the sample strings have the same length and thatthis length is polynomial in n, L, and �. The case in which the sample strings are



14 DANA RON, YORAM SINGER, NAFTALI TISHBYof di�erent lengths can be treated similarly, and if the strings are too long then wecan ignore parts of them.In the course of the algorithm and in its analysis we refer to several parameterswhich are all simple functions of �, n, L and j�j, and are set as follows:�2 = �48L ;min = �2j�j = �48L j�j ;�0 = �2nL log(1=min) = �2nL log(48Lj�j=�) ;�1 = �2 min8n �0 = � log(48Lj�j=�)9216L j�j :The size of the sample is set in the analysis of the algorithm.A pseudo code describing the learning algorithm is given in Figure 2 and anillustrative run of the algorithm is depicted in Figure 3.Algorithm Learn-PSA1. Initialize �T and �S: let �T consist of a single root node (corresponding to e), andlet �S  f� j � 2 � and ~P (�) � (1� �1)�0g.2. While �S 6= ;, pick any s 2 �S and do:(A) Remove s from �S;(B) If there exists a symbol � 2 � such that~P (�js) � (1 + �2)min and ~P (�js)= ~P (�jsu�x (s)) > 1 + 3�2 ;then add to �T the node corresponding to s and all the nodes on the pathfrom the deepest node in �T that is a su�x of s, to S;(C) If jsj < L then for every �0 2 �, if ~P (�0�s) � (1� �1)�0, then add �0�s to �S.3. Initialize T̂ to be �T .4. Extend T̂ by adding all missing sons of internal nodes.5. For each s labeling a node in T̂ , let̂s(�) = ~P (�js0)(1� j�jmin) + min ;where s0 is the longest su�x of s in �T .Figure 2. Algorithm Learn-PSA
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16 DANA RON, YORAM SINGER, NAFTALI TISHBY6. Analysis of the Learning AlgorithmIn this section we state and prove our main theorem regarding the correctness ande�ciency of the learning algorithm Learn-PSA, described in Section 5.Theorem 2 For every target PSA M , and for every given security parameter 0 <� < 1, and approximation parameter 0 < � < 1, Algorithm Learn-PSA outputs ahypothesis PST, T̂ , such that with probability at least 1� �:1. T̂ is an �-good hypothesis with respect to M .2. The number of nodes in T̂ is at most j�j � L times the number of states in M .If the algorithm has access to a source of independently generated sample strings,then its running time is polynomial in L; n; j�j; 1� and 1� . If the algorithm hasaccess to only one sample string, then its running time is polynomial in the sameparameters and in 1=(1� �2(UM )).In order to prove the theorem above we �rst show that with probability 1 � �,a large enough sample generated according to M is typical to M , where typical isde�ned subsequently. We then assume that our algorithm in fact receives a typicalsample and prove Theorem 2 based on this assumption. Roughly speaking, a sampleis typical if for every substring generated with non-negligible probability by M , theempirical counts of this substring and of the next symbol given this substring, arenot far from the corresponding probabilities de�ned by M .De�nition. A sample generated according to M is typical if for every string s 2��L the following two properties hold:1. If s 2 Q then j ~P (s) � �(s)j � �1�0;2. If ~P (s) � (1 � �1)�0 then for every � 2 �, j ~P (�js) � P (�js)j � �2min;Where �0, �1, �2, and min were de�ned in Section 5.Lemma 11. There exists a polynomial m00 in L, n, j�j, 1� , and 1� , such that the probabilitythat a sample of m0 � m00(L; n; j�j; 1� ; 1� ) strings each of length at least L + 1generated according to M is typical is at least 1� �.2. There exists a polynomial m0 in L, n, j�j, 1� , 1� , and 1=(1��2(UM )), such thatthe probability that a single sample string of length m � m0(L; n; j�j; 1� ; 1� ; 1=(1��2(UM ))) generated according to M is typical is at least 1� �.The proof of Lemma 1 is provided in Appendix C.Let T be the PST equivalent to the target PSA M , as de�ned in Theorem 1. Inthe next lemma we prove two claims. In the �rst claim we show that the prediction



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 17properties of our hypothesis PST T̂ , and of T , are similar. We use this in the proofof the �rst claim in Theorem 2, when showing that the KL-divergence per symbolbetween T̂ and M is small. In the second claim we give a bound on the size of T̂in terms of T , which implies a similar relation between T̂ and M (second claim inTheorem 2).Lemma 2 If Learn-PSA is given a typical sample then:1. For every string s in T , if P (s) � �0 then s(�)̂s0(�) � 1 + �=2 , where s0 is thelongest su�x of s corresponding to a node in T̂ .2. jT̂ j � (j�j � 1) � jT j.Proof: (Sketch, the complete proofs of both claims are provided in Appendix C.)In order to prove the �rst claim, we argue that if the sample is typical, thenthere cannot exist such strings s and s0 which falsify the claim. We prove thisby assuming that there exists such a pair, and reaching contradiction. Based onour setting of the parameters �2 and min, we show that for such a pair, s ands0, the ratio between s(�) and s0 (�) must be bounded from below by 1 + �=4.If s = s0, then we have already reached a contradiction. If s 6= s0, then we canshow that the algorithm must add some longer su�x of s to �T , contradicting theassumption that s0 is the longest su�x of s corresponding to a node in T̂ . In orderto bound the size of T̂ , we show that �T is a subtree of T . This su�ces to provethe second claim, since when transforming �T into T̂ , we add at most all j�j � 1siblings of every node in �T . We prove that �T is a subtree of T , by arguing that inits construction, we did not add any string which does not correspond to a nodein T . This follows from the decision rule according to which we add nodes to �T .Proof of Theorem 2: According to Lemma 1, with probability at least 1 � �our algorithm receives a typical sample. Thus according to the second claim inLemma 2, jT̂ j � (j�j � 1) � jT j and since jT j � L � jQj, then jT̂ j � j�j � L � jQj andthe second claim in the theorem is valid.Let r = r1r2 : : : rN , where ri 2 �, and for any pre�x r(i) of r, where r(i) = r1 : : : ri,let s[r(i)] and ŝ[r(i)] denote the strings corresponding to the deepest nodes reachedupon taking the walk ri : : : r1 on T and T̂ respectively. In particular, s[r(0)] =ŝ[r(0)] = e. Let P̂ denote the probability distribution generated by T̂ . Then1N Xr2�N P (r) log P (r)P̂ (r) = (8a)= 1N Xr2�N P (r) � log QNi=1 s[r(i�1) ](ri)QNi=1 ̂ŝ[r(i�1) ](ri) (8b)



18 DANA RON, YORAM SINGER, NAFTALI TISHBY= 1N Xr2�N P (r) � NXi=1 log s[r(i�1) ](ri)̂ŝ[r(i�1) ](ri) (8c)= 1N NXi=1 [ Xr2�N s.t.P (s[r(i�1) ])<�0 P (r) � log s[r(i�1) ](ri)̂ŝ[r(i�1) ](ri)+ Xr2�N s.t.P (s[r(i�1) ])��0 P (r) � log s[r(i�1) ](ri)̂ŝ[r(i�1) ](ri) ] : (8d)For every 1 � i � N , the �rst term in the parenthesis in Equation (8d) can bebounded as follows. For each string r, the worst possible ratio between s[r(i�1) ](ri)and ̂ŝ[r(i�1) ](ri), is 1=min. The total weight of all strings in the �rst term equalsthe total weight of all the nodes in T whose weight is at most �0, which is at mostnL�0. The �rst term is thus bounded by nL�0 log(1=min). Based on Lemma 2, theratio between s[r(i�1) ](ri) and ̂ŝ[r(i�1) ](ri) for every string r in the second term inthe parenthesis, is at most 1 + �=2. Since the total weight of all these strings isbounded by 1, the second term is bounded by log(1 + �=2). Combining the abovewith the value of �0 (that was set in Section 5 to be �= (2nL log(1=min)) ), we getthat, 1NDKL[PN jjP̂N ] � 1N �N [nL �0 log 1min + log(1 + �=2)] � � : (9)Using a straightforward implementation of the algorithm, we can get a (veryrough) upper bound on the running time of the algorithm which is of the order ofthe square of the size of the sample times L. In this implementation, each time weadd a string s to �S or to �T , we perform a complete pass over the given sample tocount the number of occurrences of s in the sample and its next symbol statistics.According to Lemma 1, this bound is polynomial in the relevant parameters, asrequired in the theorem statement. Using the following more time-e�cient, but lessspace-e�cient implementation, we can bound the running time of the algorithm bythe size of the sample times L. For each string in �S, and each leaf in �T we keep a setof pointers to all the occurrences of the string in the sample. For such a string s, ifwe want to test which of its extensions, �s should we add to �S or to �T , we need onlyconsider all occurrences of s in the sample (and then distribute them accordinglyamong the strings added). For each symbol in the sample there is a single pointer,and each pointer corresponds to a single string of length i for every 1 � i � L. Thusthe running time of the algorithm is of the order of the size of the sample times L.7. ApplicationsA slightly modi�ed version of our learning algorithm was applied and tested onvarious problems such as: correcting corrupted text, predicting DNA bases [25], and



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 19part-of-speech disambiguation resolving [28]. We are still exploring other possibleapplications of the algorithm. Here we demonstrate how the algorithm can be usedto correct corrupted text and how to build a simple model for DNA strands.7.1. Correcting Corrupted TextIn many machine recognition systems such as speech or handwriting recognizers,the recognition scheme is divided into two almost independent stages. In the �rststage a low-level model is used to perform a (stochastic) mapping from the observeddata (e.g., the acoustic signal in speech recognition applications) into a high levelalphabet. If the mapping is accurate then we get a correct sequence over the highlevel alphabet, which we assume belongs to a corresponding high level language.However, it is very common that errors in the mapping occur, and sequences in thehigh level language are corrupted. Much of the e�ort in building recognition systemsis devoted to correct the corrupted sequences. In particular, in many optical andhandwriting character recognition systems, the last stage employs natural-languageanalysis techniques to correct the corrupted sequences. This can be done after agood model of the high level language is learned from uncorrupted examples ofsequences in the language. We now show how to use PSAs in order to perform sucha task.We applied the learning algorithm to the bible. The alphabet was the englishletters and the blank character. We removed Jenesis and it served as a test set.The algorithm was applied to the rest of the books with L = 30, and the accuracyparameters (�i) were of order O(pN ), where N is the length of the training data.This resulted in a PST having less than 3000 nodes. This PST was transformedinto a PSA in order to apply an e�cient text correction scheme which is describedsubsequently. The �nal automaton constitutes both of states that are of length 2,like `qu' and `xe', and of states which are 8 and 9 symbols long, like `shall be'and `there was'. This indicates that the algorithm really captures the notion ofvariable memory that is needed in order to have accurate predictions. Buildinga Markov chain of order L in this case is clearly not practical since it requiresj�jL = 279 = 7625597484987 states!Let �r = (r1; r2; : : : ; rt) be the observed (corrupted) text. If an estimation of thecorrupting noise probability is given, then we can calculate for each state sequence�q = (q0; q1; q2; : : : ; qt); qi 2 Q, the probability that �r was created by a walk overthe PSA which constitutes of the states �q. For 0 � i � t, let Xi be a randomvariable over Q, where Xi = q denotes the event that the ith state passed was q.For 1 � i � t let Yi be a random variable over �, where Yi = � denotes the eventthat the ith symbol observed was �. For �q 2 Qt+1, let �X = �q denote the jointevent that Xi = qi for every 0 � i � t, and for �r 2 �t, let �Y = �r denote the jointevent that Yi = ri for every 1 � i � t. If we assume that the corrupting noise isi.i.d and is independent of the states that constitute the walk, then the most likely



20 DANA RON, YORAM SINGER, NAFTALI TISHBYstate sequence, �qML, is�qML = arg max�q2Qt+1 P � �X = �qj�Y = �r� = arg max�q2Qt+1 P ��Y = �rj �X = �q�P ( �X = �q) (10a)= arg max�q2Qt+1( tYi=1P �Yi = rij �X = �q�! � �(q0) tYi=1P (Xi = qijXi�1 = qi�1)!) (10b)= argmax�q2Qt( tXi=1 log (P (Yi = rijXi = qi) + log(�(q0)) +tXi=1 log (P (Xi = qijXi�1 = qi�1))) ; (10c)where for deriving the last Equality (10c) we used the monotonicity of the logfunction and the fact that the corruption noise is independent of the states. Letthe string labeling qi be s1; : : : ; sl. Then P (Yi = rijXi = qi) is the probabilitythat ri is an uncorrupted symbol if ri = sl, and is the probability that the noiseprocess ipped sl to be ri otherwise. Note that the sum (10c) can be computede�ciently in a recursive manner. Moreover, the maximization of Equation (10a) canbe performed e�ciently by using a dynamic programming (DP) scheme [4]. Thisscheme requires O(jQj � t) operations. If jQj is large, then approximation schemesto the optimalDP, such as the stack decoding algorithm [13] can be employed. Usingsimilar methods it is also possible to correct errors when insertions and deletionsof symbols occur as well.We tested the algorithm by taking a text from Jenesis and corrupting it in twoways. First, we altered every letter (including blanks) with probability 0:2. In thesecond test we altered every letter with probability 0:1 and we also changed eachblank character, in order to test whether the resulting model is powerful enough tocope with non-uniform noise. The result of the correction algorithm for both casesas well as the original and corrupted texts are depicted in Figure 4.We compared the performance of the PSA we constructed to the performanceof Markov chains of order 0 { 3. The performance is measured by the negativelog-likelihood obtained by the various models on the (uncorrupted) test data, nor-malized per observation symbol. The negative log-likelihood measures the amountof `statistical surprise' induced by the model. The results are summarized in Ta-ble 1. The �rst four entries correspond to the Markov chains of order 0 { 3, and thelast entry corresponds to the PSA. The order of the PSA is de�ned to be logj�j(jQj).These empirical results imply that using a PSA of reasonable size, we get a bettermodel of the data than if we had used a much larger full order Markov chain.



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 21Original Text:and god called the dry land earth and the gathering together of the waters calledhe seas and god saw that it was good and god said let the earth bring forth grassthe herb yielding seed and the fruit tree yielding fruit after his kindCorrupted text (1):and god cavsed the drxjland earth ibd shg gathervng together oj the waterscled re seas aed god saw thctpit was good ann god said let tae earth bringforth gjasb tse hemb yielpinl peed and thesfruit tree sielxing fzuitnafter his kindCorrected text (1):and god caused the dry land earth and she gathering together of the waters calledhe sees and god saw that it was good and god said let the earth bring forth grassthe memb yielding peed and the fruit tree �elding fruit after his kindCorrupted text (2):andhgodpcilledjthesdryjlandbeasthcandmthelgatceringhlogetherjfytrezaatersoczlledxherseasaknddgodbsawwthathitqwasoqoohanwzgodcsaidhletdtheuejrthriringmforthhbgrasstthexherbyieldingzseedmazdctcybfruitttreeayieldinglfruztbafherihiskindCorrected text (2):and god called the dry land earth and the gathering together of the altars calledhe seasaked god saw that it was took and god said let the earthriring forth grassthe herb yielding seed and thy fruit treescielding fruit after his kindFigure 4. Correcting corrupted text.Table 1. Comparison of full order Markov chains versus a PSA (a Markovmodel with variable memory). Fixed Order Markov PSAModel Order 0 1 2 3 1.84Number of States 1 27 729 19683 432Negative Log-Likelihood 0.853 0.681 0.560 0.555 0.4567.2. Building A Simple Model for E.coli DNAThe DNA alphabet is composed of four nucleotides denoted by: A,C,T,G. DNAstrands are composed of sequences of protein coding genes and �llers between thoseregions named intergenic regions. Locating the coding genes is necessary, priorto any further DNA analysis. Using manually segmented data of E. coli [27] webuilt two di�erent PSAs, one for the coding regions and one for the intergenicregions. We disregarded the internal (triplet) structure of the coding genes and theexistence of start and stop codons at the beginning and the end of those regions.



22 DANA RON, YORAM SINGER, NAFTALI TISHBYThe models were constructed based on 250 di�erent DNA strands from each type,their lengths ranging from 20 bases to several thousands. The PSAs built are rathersmall compared to the HMM model described in [17]: the PSA that models thecoding regions has 65 states and the PSA that models the intergenic regions has81 states.We tested the performance of the models by calculating the log-likelihood of thetwo models obtained on test data drawn from intergenic regions. In 90% of the casesthe log-likelihood obtained by the PSA trained on intergenic regions was higherthan the log-likelihood of the PSA trained on the coding regions. Misclassi�cations(when the log-likelihood obtained by the second model was higher) occurred only forsequences shorter than 100 bases. Moreover, the log-likelihood di�erence betweenthe models scales linearly with the sequence length where the slope is close tothe KL-divergence between the Markov models (which can be computed from theparameters of the two PSAs), as depicted in Figure 5. The main advantage of PSAmodels is in their simplicity. Moreover, the log-likelihood of a set of substrings ofa given strand can be computed in time linear in the number of substrings. Thelatter property combined with the results mentioned above indicate that the PSAmodel might be used when performing tasks such as DNA gene locating. However,we should stress that we have done only a preliminary step in this direction andthe results obtained in [17] as part of a complete parsing system are better.
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LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 25equals the sum of the stationary probabilities over all states of which s is a su�x.Note that the weight of any internal node is the sum of the weights of all the leavesin its subtree, and in particular we = 1. Using the weights of the nodes we assignvalues to the s's of the internal nodes s in the tree in the following manner. Forevery symbol � lets(�) = Xs02Q s.t. s2Su�x�(s0) ws0ws (s0; �) : (A.2)According to the de�nition of the weights of the nodes, it is clear that for everynode s, s(�) is in fact a probability function on the next output symbol as requiredin the de�nition of prediction su�x trees.What is the probability that M generates a string s which is a node in TM (asu�x of a state in Q)? By de�nition of the transition function of M , for everys0 2 Q, if s0 = � (s0; s), then s0 must be a su�x extension of s. Thus PM (s) is thesum over all such s0 of the probability of reaching s0, when s0 is chosen accordingto the initial distribution �(�) on the starting states. But if the initial distributionis stationary then at any point the probability of being at state s0 is just �(s0), andPM(s) = Xs02Q s.t. s2Su�x�(s0)�(s0) = ws : (A.3)We next prove that PTM (s) equals ws as well. We do this by showing that for everys = s1 : : : sl in the tree, where jsj � 1, ws = wpre�x(s)pre�x(s)(sl). Since we = 1, itfollows from a simple inductive argument that PTM (s) = ws.By our de�nition of PSAs, �(�) is such that for every s 2 Q, s = s1 : : : sl,�(s) = Xs0 s.t. �(s0;sl)=s�(s0)(s0; sl) : (A.4)Hence, if s is a leaf in TM thenws = �(s) (a)= Xs02L(TM ) s.t. s2Su�x�(s0sl)ws0s0 (sl)(b)= Xs02L(TM (pre�x(s)))ws0s0 (sl)(c)= wpre�x(s)pre�x(s)(sl) ; (A.5)where (a) follows by substituting ws0 for �(s0) and s0(sl) for (s0; sl) in Equation(A.4), and by the de�nition of � (�; �); (b) follows from our de�nition of the structureof prediction su�x trees; and (c) follows fromour de�nition of the weights of internalnodes. Hence, if s is a leaf, ws = wpre�x(s)pre�x(s)(sl) as required.If s is an internal node then using the result above and Equation (A.2) we getthat ws = Xs02L(TM (s))ws0



26 DANA RON, YORAM SINGER, NAFTALI TISHBY= Xs02L(TM (s))wpre�x(s0)pre�x(s0)(sl)= wpre�x(s)pre�x(s)(sl) : (A.6)It is left to show that the resulting tree is not bigger than L times the numberof states in M . The number of leaves in TM equals the number of states in M , i.e.jL(T )j = jQj. If every internal node in TM is of full degree (i.e. the probability TMgenerates any string labeling a leaf in the tree is strictly greater than 0) then thenumber of internal nodes is bounded by jQj and the total number of nodes is atmost 2jQj. In particular, the above is true when for every state s in M , and everysymbol �, (s; �) > 0. If this is not the case then we can simply bound the totalnumber of nodes by L � jQj.Appendix BEmulation of PSTs by PFAsIn this section we show that for every PST there exists an equivalent PFA whichis not much larger and which is a slight variant of a PSA. Furthermore, if the PSThas a certain property, de�ned below and denoted by Property�, then it can beemulated by a PSA.Property� For every string s labeling a node in the tree, T ,PT (s) = X�2�PT (�s) :Before we state our theorem, we observe that Property� implies that for everystring r,PT (r) = X�2�PT (�r) (B.1)This is true for the following simple reasoning. If r is a node in T , then Equal-ity (B.1) is equivalent to Property�. Otherwise let r = r1r2, where r1 is the longestpre�x of r which is a leaf in T .PT (r) = PT (r1) � PT (r2jr1) (B.2a)= X� PT (�r1) � PT (r2jr1) (B.2b)= X� PT (�r1) � PT (r2j�r1) (B.2c)= X� PT (�r) ; (B.2d)where Equality (B.2c) follows from the de�nition of PST's.



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 27Theorem 3 For every PST, T , of depth L over � there exists an equivalent PFA,MT , with at most L � jL(T )j states. Furthermore, if Property� holds for T , then ithas an equivalent PSA.Proof: In the proof of Theorem 1, we were given a PSA M and we de�ned theequivalent su�x tree TM to be the tree whose leaves correspond to the states of theautomaton. Thus, given a su�x tree T , the natural dual procedure would be toconstruct a PSA MT whose states correspond to the leaves of T . The �rst problemwith this construction is that we might not be able to de�ne the transition function� on all pairs of states and symbols. That is, there might exist a state s and asymbol � such that there is no state s0 which is a su�x of s�. The solution is toextend T to a larger tree T 0 (of which T is a subtree) such that � is well de�nedon the leaves of T 0. It can easily be veri�ed that the following is an equivalentrequirement on T 0: for each symbol �, and for every leaf s in T 0, s� is either aleaf in the subtree T 0(�) rooted at �, or is a su�x extension of a leaf in T 0(�). Inthis case we shall say that T 0 covers each of its children's subtrees. Viewing thisin another way, for every leaf s, the longest pre�x of s must be either a leaf oran internal node in T 0. We thus obtain T 0 by adding nodes to T until the aboveproperty holds.The next symbol probability functions of the nodes in T 0 are de�ned as follows.For every node s in T \ T 0 and for every � 2 �, let 0s(�) = s(�). For each newnode s0 = s01 : : : s0l in T 0 � T , let 0s0 (�) = s(�), where s is the longest su�x of s0in T (i.e. the deepest ancestor of s0 in T ). The probability distribution generatedby T 0 is hence equivalent to that generated by T . >From Equality (B.1) it directlyfollows that if Property� holds for T , then it holds for T 0 as well.Based on T 0 we now de�ne MT = (Q;�; �; ; �). If Property� holds for T , thenwe de�ne MT as follows. Let the states of MT be the leaves of T 0 and let thetransition function be de�ned as usual for PSAs (i.e. for every state s and symbol�, � (s; �) is the unique su�x of s�.) Note that the number of states in MT is atmost L times the number of leaves in T , as required. This is true since for eachoriginal leaf in the tree T , at most L � 1 pre�xes might be added to T 0. For eachs 2 Q and for every � 2 �, let (s; �) = 0s(�), and let �(s) = PT (s). It shouldbe noted that MT is not necessarily ergodic. It follows from this construction thatfor every string r which is a su�x extension of a leaf in T 0, and every symbol �,PMT (�jr) = PT (�jr). It remains to show that for every string r which is a nodein T 0, PMT (r) = PT 0 (r) (= PT (r)). For a state s 2 Q, let P sMT (r) denote theprobability that r is generated assuming we start at state s. Then,PMT (r) = Xs2Q�(s)P sMT (r) (B.3a)= Xs2Q�(s)PMT (rjs) (B.3b)= Xs2L(T 0)PT 0(s)PT 0 (rjs) (B.3c)



28 DANA RON, YORAM SINGER, NAFTALI TISHBY= Xs2L(T 0)PT 0(sr) (B.3d)= PT 0(r) ; (B.3e)where Equality (B.3b) follows from the de�nition of PSAs, Equality (B.3c) followsfrom our de�nition of �(�), and Equality (B.3e) follows from a series of applicationsof Equality (B.1).If T does not have Property�, then we may not be able to de�ne an initial distri-bution on the states of the PSA MT such that for every string r which is a nodein T 0, PMT (r) = PT 0(r). We thus de�ne a slight variant of MT as follows. Let thestates of MT be the leaves of T 0 and all their pre�xes, and let � (�; �) be de�ned asfollows: for every state s and symbol �, � (s; �) is the longest su�x of s�. Thus,MT has the structure of a pre�x tree combined with a PSA. If we de�ne (�; �) asabove, and let the empty string, e, be the single starting state (i.e., �(e) = 1), then,by de�nition, MT is equivalent to T .An illustration of the constructions described above is given in Figure B.1.
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LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 29Appendix CProofs of Technical Lemmas and TheoremsLemma 11. There exists a polynomial m00 in L, n, j�j, 1� , and 1� , such that the probabilitythat a sample of m0 � m00(L; n; j�j; 1� ; 1� ) strings each of length at least L + 1generated according to M is typical is at least 1� �.2. There exists a polynomial m0 in L, n, j�j, 1� , 1� , and 1=(1��2(UM )), such thatthe probability that a single sample string of length m � m0(L; n; j�j; 1� ; 1� ; 1=(1��2(UM ))) generated according to M is typical is at least 1� �.Proof: Before proving the lemma we would like to recall that the parameters �0,�1, �2, and min, are all polynomial functions of 1=�, n, L, and j�j, and were de�nedin Section 5.Several sample strings We start with obtaining a lower bound for m0, so that the�rst property of a typical sample holds. Since the sample strings are generatedindependently, we may view ~P (s), for a given state s, as the average value of m0independent random variables. Each of these variables is in the range [0; 1] andits expected value is �(s). Using a variant of Hoe�ding's inequality we get that ifm0 � 12�21�20 ln 4n� , then with probability at least 1� �2n , j ~P (s) � �(s)j � �1�0. Theprobability that this inequality holds for every state is hence at least 1� �2 .We would like to point out that since our only assumptions on the sample stringsare that they are generated independently, and that their length is at least L + 1,we use only the independence between the di�erent strings when bounding ourerror. We do not assume anything about the random variables related to ~P (s)when restricted to any one sample string, other than that their expected value is�(s). If the strings are known to be longer, then a more careful analysis can beapplied as described subsequently for the case of a single sample string.We now show that for an appropriate m0 the second property holds with proba-bility at least 1� �2 as well. Let s be a string in ��L. In the following lines, whenwe refer to appearances of s in the sample we mean in the sense de�ned by ~P . Thatis, we count only appearances of s which end at the Lth or greater symbol of asample string. For the ith appearance of s in the sample and for every symbol �,let Xi(�js) be a random variable which is 1 if � appears after the ith appearanceof s and 0 otherwise. If s is either a state or a su�x extension of a state, thenfor every �, the random variables fXi(�js)g are independent 0=1 random variableswith expected value P (�js). Let Ns be the total number of times s appears in thesample, and let Nmin = 2�222min ln 4j�jn�0� . If Ns � Nmin, then with probability atleast 1 � ��02n , for every symbol �, j ~P (�js) � P (�js)j � 12�2min. If s is a su�x ofseveral states s1; : : : ; sk, then for every symbol �,



30 DANA RON, YORAM SINGER, NAFTALI TISHBYP (�js) = kXi=1 �(si)P (s)P (�jsi) ; (C.1)(where P (s) =Pki=1 �(si)) and~P (�js) = kXi=1 ~P (si)~P (s) ~P (�jsi) : (C.2)Recall that �1 = (�2min)=(8n�0). If:(1) for every state si, j ~P (si) � �(si)j � �1�0;(2) for each si satisfying �(si) � 2�1�0, j ~P (�jsi)� P (�jsi)j � 12�2min for every �;then j ~P(�js) � P (�js)j � �2min, as required.If the sample has the �rst property required of a typical sample (i.e., 8s 2 Q,j ~P (s) � P (s)j � �1�0), and for every state s such that ~P (s) � �1�0, Ns � Nmin,then with probability at least 1� �4 the second property of a typical sample holdsfor all strings which are either states or su�xes of states. If for every string s whichis a su�x extension a state such that ~P (s) � (1 � �1)�0, Ns � Nmin, then forall such strings the second property holds with probability at least 1 � �4 as well.Putting together all the bounds above, if m0 � 12�21�20 ln 4n� +Nmin=(�1�0), then withprobability at least 1� � the sample is typical.A single sample string In this case the analysis is somewhat more involved. Weview our sample string generated according to M as a walk on the markov chaindescribed by RM (de�ned in Subsection 3). We may assume that the startingstate is visible as well since its contribution to ~P (�) is negligible. We shall needthe following theorem from [8] which gives bounds on the convergence rate to thestationary distribution of general ergodic Markov chains. This theorem is partiallybased on a work by Mihail [20], who gives bounds on the convergence in terms ofcombinatorial properties of the chain.Markov Chain Convergence Theorem [8] For any state s0 in the Markovchain RM , let RtM(s0; �) denote the probability distribution over the states in RM ,after taking a walk of length t starting from state s0. Then0@Xs2Q jRtM(s0; s)� �(s)j1A2 � (�2(UM ))t�(s0) :First note that by simply applying Markov's inequality, we get that with prob-ability at least 1 � �2n , j ~P (s) � �(s)j � �1�0, for each state s such that �(s) <(��1�0)=(2n). It thus remains to obtain a lower bound on m, so that the same istrue for each s such that �(s) � (��1�0)=(2n). We do this by bounding the varianceof the random variable related with ~P (s), and applying Chebishev's Inequality.Let



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 31t0 = ln �n3= 32�3�50�51�ln (1=�2(UM )) : (C.3)We next show that for every s satisfying �(s) � (��1�0)=(2n) , jRt0M(s; s) � �(s)j ��4n�21�20. By the theorem above and our assumption on �(s),�Rt0M(s; s) � �(s)�2 � 0@Xs02Q jRt0M(s; s0)� �(s0)j1A2 (C.4a)� (�2(UM ))t0�(s) (C.4b)� 2n��0�1 (�2(UM ))t0 (C.4c)= 2n��0�1 e�t0 ln(1=�2(UM)) (C.4d)= �2�41�4016n2 : (C.4e)Therefore, jRtM(s; s)� �(s)j � �4n�21�20.Intuitively, this means that for every two integers, t > t0, and i � t� t0, the eventthat s is the (i + t0)th state passed on a walk of length t, is `almost independent'of the event that s is the ith state passed on the same walk.For a given state s, satisfying �(s) � (��1�0)=(2n), let Xi be a 0=1 randomvariable which is 1 i� s is the ith state on a walk of length t, and Y = Pti=1Xi.By our de�nition of ~P , in the case of a single sample string, ~P (s) = Y=t, wheret = m � L � 1. Clearly E(Y=t) = �(s), and for every i, V ar(Xi) = �(s) � �2(s).We next bound V ar(Y=t).V ar�Yt � = 1t2V ar tXi=1Xi! (C.5a)= 1t2 0@Xi;j E(XiXj)�Xi;j E(Xi)E(Xj)1A (C.5b)= 1t2 0@ Xi;j s.t. ji�jj<t0E(XiXj) + Xi;j s.t. ji�jj�t0E(XiXj)1A � �2(s) (C.5c)� 2t0t �(s) + �4n�21�20�(s) � �2(s) : (C.5d)If we pick t to be greater than (4nt0)=(��21�20), then V ar(Y=t) < �2n�21�20, and usingChebishev's Inequality Pr[jY=t� �(s)j > �1�0] < �2n . The probability the aboveholds for any s is at most �2 . The analysis of the second property required of atypical sample is identical to that described in the case of a sample consisting ofmany strings.



32 DANA RON, YORAM SINGER, NAFTALI TISHBYLemma 2 If Learn-PSA is given a typical sample then:1. For every string s in T , if P (s) � �0 then s(�)̂s0(�) � 1 + �=2 , where s0 is thelongest su�x of s corresponding to a node in T̂ .2. jT̂ j � (j�j � 1) � jT j.Proof:1st Claim Assume contrary to the claim that there exists a string labeling a nodes in T such that P (s) � �0 and for some � 2 �s(�)̂s0(�) > 1 + �=2; (C.6)where s0 is the longest su�x of s in T̂ . For simplicity of the presentation, let usassume that there is a node labeled by s0 in �T . If this is not the case (su�x (s0)is an internal node in �T , whose son s0 is missing), the analysis is very similar. Ifs � s0 then we easily show below that our counter assumption is false. If s0 is aproper su�x of s then we prove the following. If the counter assumption is true,then we added to �T a (not necessarily proper) su�x of s which is longer than s0.This contradicts the fact that s0 is the longest su�x of s in T̂ .We �rst achieve a lower bound on the ratio between the two true next symbolprobabilities, s(�) and s0(�). According to our de�nition of ̂s0 (�),̂s0(�) � (1� j�jmin) ~P (�js0) : (C.7)We analyze separately the case in which s0 (�) � min, and the case in whichs0(�) < min. Recall that min = �2=j�j. If s0(�) � min, thens(�)s0(�) � s(�)~P (�js0) � (1� �2) (C.8a)� s(�)̂s0(�) � (1� �2)(1� j�jmin) (C.8b)> (1 + �2)(1� �2)2 ; (C.8c)where Inequality (C.8a) follows from our assumption that the sample is typical,Inequality (C.8b) follows from our de�nition of ̂s0 (�), and Inequality (C.8c) followsfrom the counter assumption (C.6), and our choice of min. Since �2 < �=12, and� < 1 then we get thats(�)s0(�) > 1 + �4 : (C.9)If s0(�) < min, then ̂s0(�) � s0(�), since ̂s0(�) is de�ned to be at least min.Therefore,



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 33s(�)s0(�) � s(�)̂s0(�) > 1 + �2 > 1 + �4 (C.10)as well. If s � s0 then the counter assumption (C.6) is evidently false, and we mustonly address the case in which s 6= s0, i.e., s0 is a proper su�x of s.Let s = s1s2 : : : sl, and let s0 be si : : : sl, for some 2 � i � l. We now showthat if the counter assumption (C.6) is true, then there exists an index 1 � j < isuch that sj : : : sl was added to �T . Let 2 � r � i be the �rst index for whichsr :::sl(�) < (1 + 7�2)min. If there is no such index then let r = i. The reasonwe need to deal with the prior case is clari�ed subsequently. In either case, since�2 < �=48, and � < 1, thens(�)sr:::sl(�) > 1 + �4 : (C.11)In other wordss(�)s2:::sl(�) � s2:::sl(�)s3:::sl(�) � : : : � sr�1 :::sl(�)sr :::sl(�) > 1 + �4 : (C.12)This last inequality implies that there must exist an index 1 � j � i� 1, for whichsj :::sl(�)sj+1 :::sl(�) > 1 + �8L : (C.13)We next show that Inequality (C.13) implies that sj : : : sl was added to �T . We dothis by showing that sj : : : sl was added to �S, that we compared ~P (�jsj : : : sl) to~P (�jsj+1 : : : sl), and that the ratio between these two values is at least (1 + 3�2).Since P (s) � �0 then necessarily~P (sj : : : sl) � (1� �1)�0 ; (C.14)and sj : : : sl must have been added to �S. Based on our choice of the index r, andsince j < r,sj:::sl(�) � (1 + 7�2)min: (C.15)Since we assume that the sample is typical,~P (�jsj : : : sl) � (1 + 6�2)min > (1 + �2)min ; (C.16)which means that we must have compared ~P (�jsj : : : sl) to ~P (�jsj+1 : : : sl).We now separate the case in which sj+1 :::sl(�) < min, from the case in whichsj+1 :::sl(�) � min. If sj+1 :::sl(�) < min then~P (�jsj+1 : : : sl) � (1 + �2)min : (C.17)Therefore,



34 DANA RON, YORAM SINGER, NAFTALI TISHBY~P (�jsj : : : sl)~P (�jsj+1 : : : sl) � (1 + 6�2)min(1 + �2)min � (1 + 3�2) ; (C.18)and sj : : : sl would have been added to �T . On the other hand, if sj+1 :::sl(�) � min,the same would hold since~P (�jsj : : : sl)~P (�jsj+1 : : : sl) � (1� �2)sj :::sl(�)(1 + �2)sj+1 :::sl(�) (C.19a)> (1� �2)(1 + �8L )(1 + �2) (C.19b)� (1� �2)(1 + 6�2)(1� �2) (C.19c)> 1 + 3�2 ; (C.19d)where Inequality C.19c follows from our choice of �2 (�2 = �48L). This contradictsour initial assumption that s0 is the longest su�x of s added to �T .2nd Claim: We prove below that �T is a subtree of T . The claim then followsdirectly, since when transforming �T into T̂ , we add at most all j�j � 1 siblings ofevery node in �T . Therefore it su�ces to show that we did not add to �T any nodewhich is not in T . Assume to the contrary that we add to �T a node s which is notin T . According to the algorithm, the reason we add s to �T , is that there exists asymbol � such that ~P (�js) � (1 + �2)min, and ~P (�js)= ~P (�jsu�x (s)) > 1 + 3�2,while both ~P (s) and ~P (su�x (s)) are greater than (1� �1)�0. If the sample stringis typical thenP (�js) � min ; ~P (�js) � P (�js) + �2min � (1 + �2)P (�js) ; (C.20)and ~P (�jsu�x (s)) � P (�jsu�x (s)) � �2min : (C.21)If P (�jsu�x(s)) � min then ~P (�jsu�x (s)) � (1� �2)P (�jsu�x(s)), and thusP (�js)P (�jsu�x(s)) � (1� �2)(1 + �2) (1 + 3�2) ; (C.22)which is greater than 1 since �2 < 1=3. If P (�jsu�x(s)) < min , since P (�js) �min , then P (�js)=P (�jsu�x(s)) > 1 as well. In both cases this ratio cannot begreater than 1 if s is not in the tree, contradicting our assumption.


