The Power of Amnesia: Learning Probabilistic
Automata with Variable Memory Length

DANA RON danar@cs.huji.ac.il
YORAM SINGER singer@cs.huji.ac.il
NAFTALI TISHBY tishby@cs.huji.ac.il

Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel

Abstract. We propose and analyze a distribution learning algorithm for variable memory length
Markov processes. These processes can be described by a subclass of probabilistic finite automata
which we name Probabilistic Suffiz Automata (PSA). Though hardness results are known for
learning distributions generated by general probabilistic automata, we prove that the algorithm
we present can efficiently learn distributions generated by PSAs. In particular, we show that
for any target PSA, the KL-divergence between the distribution generated by the target and the
distribution generated by the hypothesis the learning algorithm outputs, can be made small with
high confidence in polynomial time and sample complexity. The learning algorithm is motivated
by applications in human-machine interaction. Here we present two applications of the algorithm.
In the first one we apply the algorithm in order to construct a model of the English language,
and use this model to correct corrupted text. In the second application we construct a simple

stochastic model for E.coli DNA.

1. Introduction

Statistical modeling of complex sequences is a fundamental goal of machine learning
due to its wide variety of natural applications. The most noticeable examples of
such applications are statistical models in human communication such as natural
language, handwriting and speech [14], [21], and statistical models of biological
sequences such as DNA and proteins [17].

These kinds of complex sequences clearly do not have any simple underlying sta-
tistical source since they are generated by natural sources. However, they typically
exhibit the following statistical property, which we refer to as the short memory
property. If we consider the (empirical) probability distribution on the next symbol
given the preceding subsequence of some given length, then there exists a length
L (the memory length) such that the conditional probability distribution does not
change substantially if we condition it on preceding subsequences of length greater
than L.

This observation lead Shannon, in his seminal paper [29], to suggest modeling such
sequences by Markov chains of order L > 1, where the order is the memory length
of the model. Alternatively, such sequences may be modeled by Hidden Markov
Models (HMMs) which are more complex distribution generators and hence may
capture additional properties of natural sequences. These statistical models define
rich families of sequence distributions and moreover, they give efficient procedures

2 DANA RON, YORAM SINGER, NAFTALI TISHBY

both for generating sequences and for computing their probabilities. However, both
models have severe drawbacks. The size of Markov chains grows exponentially with
their order, and hence only very low order Markov chains can be considered in
practical applications. Such low order Markov chains might be very poor approxi-
mators of the relevant sequences. In the case of HMMs, there are known hardness
results concerning their learnability which we discuss in Section 1.1.

In this paper we propose a simple stochastic model and describe its learning
algorithm. It has been observed that in many natural sequences, the memory
length depends on the context and i1s not fized. The model we suggest 1s hence a
variant of order L Markov chains, in which the order, or equivalently, the memory, is
variable. We describe this model using a subclass of Probabilistic Finite Automata

(PFA), which we name Probabilistic Suffiz Automata (PSA).

Each state in a PSA is labeled by a string over an alphabet X. The transition
function between the states is defined based on these string labels, so that a walk
on the underlying graph of the automaton, related to a given sequence, always
ends in a state labeled by a suffix of the sequence. The lengths of the strings
labeling the states are bounded by some upper bound L, but different states may
be labeled by strings of different length, and are viewed as having varying memory
length. When a PSA generates a sequence, the probability distribution on the next
symbol generated is completely defined given the previously generated subsequence
of length at most L. Hence, as mentioned above, the probability distributions these
automata generate can be equivalently generated by Markov chains of order L, but
the description using a PSA may be much more succinct. Since the size of order L
markov chains is exponential in L, their estimation requires data length and time
exponential in L.

In our learning model we assume that the learning algorithm is given a sam-
ple (consisting either of several sample sequences or of a single sample sequence)
generated by an unknown target PSA M of some bounded size. The algorithm is
required to output a hypothesis machine M, which 1s not necessarily a PSA but
which has the following properties. M can be used both to efficiently generate a
distribution which is similar to the one generated by M, and given any sequence s,
it can efficiently compute the probability assigned to s by this distribution.

Several measures of the quality of a hypothesis can be considered. Since we are
mainly interested in models for statistical classification and pattern recognition,
the most natural measure is the Kullback-Leibler (KL) divergence. Our results
hold equally well for the variation (L) distance and other norms, which are upper
bounded by the KL-divergence. Since the KL-divergence between Markov sources
grows linearly with the length of the sequence, the appropriate measure is the
KL-divergence per symbol. Therefore, we define an e-good hypothesis to be an
hypothesis which has at most ¢ KL-divergence per symbol to the target source.

In particular, the hypothesis our algorithm outputs, belongs to a class of proba-
bilistic machines named Probabilistic Suffix Trees (PST). The learning algorithm
grows such a suffix tree starting from a single root node, and adaptively adds nodes

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 3

(strings) for which there is strong evidence in the sample that they significantly
affect the prediction properties of the tree.

We show that every distribution generated by a PSA can equivalently be gener-
ated by a PST which is not much larger. The converse is not true in general. We
can however characterize the family of PSTs for which the converse claim holds,
and in general, it is always the case that for every PST there exists a not much
larger PFA that generates an equivalent distribution. There are some contexts in
which PSAs are preferable, and some in which PSTs are preferable, and therefore
we use both representation in the paper. For example, PSAs are more efficient
generators of distributions, and since they are probabilistic automata, their well
defined state space and transition function can be exploited by dynamic program-
ming algorithms which are used for solving many practical problems. In addition,
there is a natural notion of the stationary distribution on the states of a PSA which
PSTs lack. On the other hand, PSTs sometimes have more succinct representations
than the equivalent PSAs; and there is a natural notion of growing them.

Stated formally, our main theoretical result is the following. If both a bound L,
on the memory length of the target PSA, and a bound n, on the number of states
the target PSA has, are known, then for every given 0 < e < 1 and 0 < 6 < 1,
our learning algorithm outputs an e-good hypothesis PST, with confidence 1 — 4,
in time polynomial in L, n, |X|, % and %. Furthermore, such a hypothesis can be
obtained from a single sample sequence if the sequence length is also polynomial
in a parameter related to the rate in which the target machine converges to its
stationary distribution. Despite an intractability result concerning the learnabil-
ity of distributions generated by Probabilistic Finite Automata [15] (described in
Section 1.1), our restricted model can be learned in a PAC-like sense efficiently.
This has not been shown so far for any of the more popular sequence modeling
algorithms.

We present two applications of the learning algorithm. In the first application
we apply the algorithm in order to construct a model of the English language, and
use this model to correct corrupted text. In the second application we construct a
simple stochastic model for E.coli DNA. Combined with a learning algorithm for
a different subclass of probabilistic automata [26], the algorithm presented here is
part of a complete cursive handwriting recognition system [30].

1.1. Related Work

The most powerful (and perhaps most popular) model used in modeling natural
sequences is the Hidden Markov Model (HMM). A detailed tutorial on the theory of
HMMs as well as selected applications in speech recognition is given by Rabiner [22].
A commonly used procedure for learning an HMM from a given sample is a maxi-
mum likelithood parameter estimation procedure that is based on the Baum-Welch
method [3], [2] (which is a special case of the EM (Expectation-Maximization) al-
gorithm [7]). However, this algorithm is guaranteed to converge only to a local
maximum, and thus we are not assured that the hypothesis it outputs can serve

4 DANA RON, YORAM SINGER, NAFTALI TISHBY

as a good approximation for the target distribution. One might hope that the
problem can be overcome by improving the algorithm used or by finding a new ap-
proach. Unfortunately, there is strong evidence that the problem cannot be solved
efficiently.

Abe and Warmuth [1] study the problem of {raining HMMs. The HMM training
problem is the problem of approximating an arbitrary, unknown source distribution
by distributions generated by HMMs. They prove that HMMs are not trainable
in time polynomial in the alphabet size, unless RP = NP. Gillman and Sipser [10]
study the problem of exactly inferring an (ergodic) HMM over a binary alphabet
when the inference algorithm can query a probability oracle for the long-term prob-
ability of any binary string. They prove that inference is hard: any algorithm for
inference must make exponentially many oracle calls. Their method is informa-
tion theoretic and does not depend on separation assumptions for any complexity
classes.

Natural simpler alternatives, which are often used as well, are order L Markov
chains [29], [11], also known as n-gram models. As noted earlier, the size of an
order L. Markov chain is exponential in L and hence, if we want to capture more
than very short term memory dependencies in the sequences, of substantial length
in the sequences, then these models are clearly not practical.

Hoffgen [12] studies families of distributions related to the ones studied in this
paper, but his algorithms depend exponentially and not polynomially on the order,
or memory length, of the distributions. Freund et. al. [9] point out that their
result for learning typical deterministic finite automata from random walks without
membership queries, can be extended to learning typical PFAs. Unfortunately,
there is strong evidence indicating that the problem of learning general PFAs is
hard. Kearns et. al. [15] show that PFAs are not efficiently learnable under the
assumption that there is no efficient algorithm for learning noisy parity functions
in the PAC model.

The machines used as our hypothesis representation, namely Probabilistic Suffix
Trees (PSTs), were introduced (in a slightly different form) in [23] and have been
used for other tasks such as universal data compression [23], [24], [32], [33]. Perhaps
the strongest among these results (which has been brought to our attention after the
completion of this work) and which is most tightly related to our result is [33]. This
paper describes an efficient sequential procedure for universal data compression for
PSTs by using a larger model class. This algorithm can be viewed as a distribution
learning algorithm but the hypothesis it produces is not a PST or a PSA and hence
cannot be used for many applications. Willems ef. al. show that their algorithm
can be modified to give the minimum description length PST. However, in case
the source generating the examples is a PST, they are able to show that this PST
convergence only in the limit of infinite sequence length to that source.

Vitter and Krishnan [31], [16] adapt a version of the Ziv-Lempel data compression
algorithm [34] to get a page prefetching algorithm, where the sequence of page
accesses 1s assumed to be generated by a PFA. They show that the page fault rate
of their algorithm converges to the page fault rate of the best algorithm that has full

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 5

knowledge of the source. This is true for almost all page access sequences (in the
limit of the sequence length). Laird and Saul [19] describe a prediction algorithm
which is similar in spirit to our algorithm and is based on the Markov tree or Directed
Acyclic Word Graph approach which is used for data compression [5]. They do not
analyze the correctnes of the algorithm formally, but present several applications
of the algorithm.

1.2. Overview of the Paper

The paper is organized as follows. In Section 2 we give basic definitions and nota-
tion and describe the families of distributions studied in this paper, namely those
generated by PSAs and those generated by PSTs. In Section 4 we discuss the re-
lation between the above two families of distributions. In Section 5 the learning
algorithm is described. Some of the proofs regarding the correctness of the learning
algorithm are given in Section 6. Finally, we demonstrate the applicability of the
algorithm by two illustrative examples in Section 7. In the first example we use
our algorithm to learn the structure of natural English text, and use the resulting
hypothesis for correcting corrupted text. In the second example we use our algo-
rithm to build a simple stochastic model for E.colt DNA. The detailed proofs of the
claims presented in Section 4 concerning the relation between PSAs and PSTs are
provided in Appendices A and B. The more technical proofs and lemmas regarding
the correctness of the learning algorithm are given in Appendix C.

2. Preliminaries
2.1. Basic Definitions and Notations

Let X be a finite alphabet. By X* we denote the set of all possible strings over X.
For any integer N, ¥V denotes all strings of length N, and X<V denotes the set
of all strings with length at most N. The empty string is denoted by e. For any
string s = s1...5;, s; € X, we use the following notations:

e The longest prefix of s different from s is denoted by prefiz(s) et $189...81_1.
e The longest suffix of s different from s is denoted by suffiz(s) def S9...81_18].

o The set of all suffixes of s is denoted by Suffiz*(s) = {86...91 | 1 < i <[}U{e}.
A string s’ is a proper suffix of s, if it a suffix of s but is not s itself.

o Let s' and s? be two strings in X*. If 5! is a suffix of s? then we shall say that

52 is a suffiz extension of st.

o A set of strings S is called a suffiz free set if Vs € S, Suffiz*(s) NS = {s}.

6 DANA RON, YORAM SINGER, NAFTALI TISHBY

2.2. Probabilistic Finite Automata and Prediction Suffix Trees
2.2.1. Probabilistic Finite Automata

A Probabilistic Finite Automaton (PFA) M is a 5-tuple (@, X, 7,7, @), where @) is a
finite set of states, ¥ is a finite alphabet, 7 : QQ x X — @ 1s the transition function, v :
Q xX — [0, 1] is the next symbol probabilily function, and 7 : @ — [0, 1] is the initial
probability distribution over the starting states. The functions v and 7 must satisfy
the following conditions: f(.)r. every ¢ € Q, ZUEE ¥(¢,0) =1, and quQ 7(q) = 1.
We assume that the transition function 7 is defined on all states ¢ and symbols
o for which y(¢,0) > 0, and on no other state-symbol pairs. 7 can be extended
to be defined on @ x ¥* as follows: 7(q,s1s2...81) = 7(7(¢,81...51-1),81) =
7(7(q, prefiz(s)), s1).

A PFA M generates strings of infinite length, but we shall always discuss prob-
ability distributions induced on prefixes of these strings which have some specified
finite length. If Pj; is the probability distribution A defines on infinitely long
strings, then Pi}, for any N > 0, will denote the probability induced on strings of
length N. We shall sometimes drop the superscript N, assuming that it is under-
stood from the context. The probability that M generates a string r = riry.. .7y
in &V is

N
Py = > 7@ [) . (1)

g €Q i=1

where ¢! = 7(¢*,).

2.2.2. Probabilistic Suffiz Automata

We are interested in learning a subclass of PFAs which we name Probabilistic Suffiz
Automata (PSA). These automata have the following property. Fach state in a
PSA M is labeled by a string of finite length in X*. The set of strings labeling the
states is suffix free. For every two states ¢!, ¢? € Q and for every symbol ¢ € &, if
(¢, 0) = ¢ and ¢ is labeled by a string s', then ¢? is labeled by a string s* which
is a suffix of s'-o. In order that 7 be well defined on a given set of strings S, not
only must the set be suffix free, but it must also have the following property. For
every string s in S labeling some state ¢, and every symbol ¢ for which y(¢, o) > 0,
there exists a string in S which is a suffix of so. For our convenience, from this
point on, if ¢ is a state in @) then ¢ will also denote the string labeling that state.
We assume that the underlying graph of M, defined by @ and 7(-,-), is strongly
connected, 1.e., for every pair of states ¢ and ¢’ there is a directed path from ¢ to
q'. Note that in our definition of PFAs we assumed that the probability associated
with each transition (edge in the underlying graph) is non-zero, and hence strong
connectivity implies that every state can be reached from every other state with
non-zero probability. For simplicity we assume M is aperiodic, i.e., that the greatest

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 7

common divisor of the lengths of the cycles in its underlying graph is 1. These two
assumptions ensure us that M is ergodic. Namely, there exists a distribution Ils
on the states such that for every state we may start at, the probability distribution
on the state reached after time ¢ as ¢ grows to infinity, converges to Il3;. The
probability distribution Il 1s the unique distribution satisfying

()= > Tu(d)d o), (2)

¢ s.t.7(q',0)=¢

and 1s named the stationary distribution of M. We ask that for every state ¢ in
@, the initial probability of ¢, #(¢q), be the stationary probability of ¢, Tar(q). Tt
should be noted that the assumptions above are needed only when learning from
a single sample string and not when learning from many sample strings. However,
for sake of brevity we make these requirements in both cases.

For any given L > 0, the subclass of PSAs in which each state is labeled by a
string of length at most L is denoted by L-PSA. An example 2-PSA 1s depicted in
Figure 1. A special case of these automata is the case in which @) includes allstrings
in ¥, An example of such a 2-PSA is depicted in Figure 1 as well. These automata
can be described as Markov chains of order L. The states of the Markov chain are
the symbols of the alphabet X, and the next state transition probability depends
on the last L states (symbols) traversed. Since every L-PSA can be extended to a
(possibly much larger) equivalent L-PSA whose states are labeled by all strings in
YL it can always be described as a Markov chain of order L. Alternatively, since
the states of an L-PSA might be labeled by only a small subset of 2<% and many
of the suffixes labeling the states may be much shorter than L, it can be viewed as
a Markov chain with variable order, or vartable memory.

Learning Markov chains of order L, 1.e., L-PSAs whose states are labeled by all
L strings, is straightforward (though it takes time exponential in L). Since the
‘identity’ of the states (i.e., the strings labeling the states) is known, and since
the transition function 7 is uniquely defined, learning such automata reduces to
approximating the next symbol probability function . For the more general case
of L-PSAs in which the states are labeled by strings of variable length, the task
of an efficient learning algorithm is much more involved since it must reveal the
identity of the states as well.

2.2.3. Prediction Suffiz Trees

Though we are interested in learning PSAs, we choose as our hypothesis class
the class of prediction suffiz trees (PST) defined in this section. We later show
(Section 4) that for every PSA there exists an equivalent PST of roughly the same
size.

A PST T, over an alphabet X is a tree of degree |X|. Each edge in the tree is
labeled by a single symbol in X, such that from every internal node there 1s exactly
one edge labeled by each symbol. The nodes of the tree are labeled by pairs (s,~;)

8 DANA RON, YORAM SINGER, NAFTALI TISHBY

where s is the string associated with the walk starting from that node and ending
in the root of the tree, and v, : ¥ — [0, 1] is the next symbol probability function
related with s. We require that for every string s labeling a node in the tree,
YisexVs(0) = 1.

As in the case of PFAs, a PST T generates strings of infinite length, but we con-
sider the probability distributions induced on finite length prefixes of these strings.
The probability that T' generates a string r = r172 ... 7y In =N is

PR (r) = WLy (ri) (3)

where s° = e, and for 1 < j < N — 1, s/ is the string labeling the deepest node
reached by taking the walk corresponding to r;r;_;1...7r; starting at the root of
T. For example, using the PST depicted in Figure 1, the probability of the string
00101,1s0.5x0.5x0.25x 0.5 x0.75, and the labels of the nodes that are used for the
prediction are s = e, s! =0, s =00, s> = 1, s* = 10. In view of this definition,
the requirement that every internal node have ezacily |X| sons may be loosened,
by allowing the omission of nodes labeled by substrings which are generated by the
tree with probability 0.

PSTs therefore generate probability distributions in a similar fashion to PSAs.
As in the case of PSAs, symbols are generated sequentially and the probability of
generating a symbol depends only on the previously generated substring of some
bounded length. In both cases there is a simple procedure for determining this
substring, as well as for determining the probability distribution on the next symbol
conditioned on the substring. However, there are two (related) differences between
PSAs and PSTs. The first is that PSAs generate each symbol simply by traversing a
single edge from the current state to the next state, while for each symbol generated
by a PST, one must walk down from the root of the tree, possibly traversing L edges.
This implies that PSAs are more efficient generators. The second difference is that
while in PSAs for each substring (state) and symbol, the next state is well defined, in
PSTs this property does not necessarily hold. Namely, given the current generating
node of a PST, and the next symbol generated, the next node is not necessarily
uniquely defined, but might depend on previously generated symbols which are not
included in the string associated with the current node. For example, assume we
have a tree whose leaves are: 1,00,010,110 (see Figure B.1 in Appendix B). If 1
is the current generating leaf and it generates 0, then the next generating leaf is
either 010 or 110 depending on the symbol generated just prior to 1.

PSTs, like PSAs, can always be described as Markov chains of (fixed) finite order,
but as in the case of PSAs this description might be exponentially large.

We shall sometimes want to discuss only the structure of a PST and ignore its
prediction property. In other words, we will be interested only in the string labels
of the nodes and not in the values of v,(-). We refer to such trees as suffiz trees. We
now introduce two more notations. The set of leaves of a suffix tree 7" is denoted
by L£(T), and for a given string s labeling a node v in 7', T'(s) denotes the subtree
rooted at v.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 9

m(10)=025 £ Y100)=0.25 T(10)=0.25 T(00)=0.25

T(1)=05

05

Figure 1. Left: A 2-PSA. The strings labeling the states are the suffixes corresponding to them.
Bold edges denote transitions with the symbol ‘1’, and dashed edges denote transitions with ‘0’.
The transition probabilities are depicted on the edges. Middle: A 2-PSA whose states are labeled
by all strings in {0,1}2. The strings labeling the states are the last two observed symbols before
the state was reached, and hence it can be viewed as a representation of a Markov chain of order 2.
Right: A predictionsuffix tree. The prediction probabilities of the symbols ‘0’ and ‘17, respectively,
are depicted beside the nodes, in parentheses. The three models are equivalent in the sense that
they induce the same probability distribution on strings from {0,1}*.

3. The Learning Model

The learning model described in this paper is motivated by the PAC model for
learning boolean concepts from labeled examples and is similar in spirit to that
introduced in [15]. We start by defining an e-good hypothesis PST with respect to
a given PSA.

Definition. Let M be a PSA and let T be a PST. Let Py and Pr be the two
probability distributions they generate respectively. We say that 7" is an e-good
hypothesis with respect to M, if for every N > 0,

1
~Dkr[PyllPr]<e |

N
where N
def Piy(r
Do [PYIPYTE S P tog)
7 ()
rexN

is the Kullback-Leibler divergence between the two distributions.

In this definition we chose the Kullback-Leibler (KL) divergence as a distance
measure between distributions. Similar definitions can be considered for other
distance measures such as the variation and the quadratic distances. Note that
the KL-divergence bounds the variation distance as follows [6]: Dgr[Pyi]|P2] >
P — P2||?. Since the L, norm bounds the L, norm, the last bound holds for
the quadratic distance as well. Note that the KL-divergence between distributions,
generated by finite order markov chains, is proportional to the length of the strings
over which the divergence is computed, when this length is longer than the order of
the model. Hence, to obtain a measure independent of that length it is necessary
to divide the KL-divergence by the length of the strings, N.

10 DANA RON, YORAM SINGER, NAFTALI TISHBY

A learning algorithm for PSAs is given the maximum length L of the strings
labeling the states of the target PSA M, and an upper bound n on the number of
states in M. The second assumption can be easily removed by searching for an upper
bound. This search is performed by testing the hypotheses the algorithm outputs
when it runs with growing values of n. The algorithm is also given a confidence
(security) parameter 0 < é < 1 and an approximation parameter 0 < ¢ < 1. We
analyze the following two learning scenarios. In the first scenario the algorithm
has access to a source of sample strings of minimal length L 4+ 1, independently
generated by M. In the second scenario it is given only a single (long) sample
string generated by M. In both cases we require that it output a hypothesis PST
T, which with probability at least 1 —§ is an e-good hypothesis with respect to M.

The only drawback to having a PST as our hypothesis instead of a PSA (or more
generally a PFA), is that the prediction procedure using a tree is somewhat less
efficient (by at most a factor of L). Since no transition function is defined, in order
to predict/generate each symbol, we must walk from the root until a leaf is reached.
As mentioned earlier, we show in Appendix B that every PST can be transformed
into an equivalent PFA which is not much larger. This PFA differs from a PSA
only in the way 1t generates the first L symbols. We also show that if the PST
has a certain property (defined in Appendix B), then it can be transformed into an
equivalent PSA.

In order to measure the efficiency of the learning algorithm, we separate the case
in which the algorithm is given a sample consisting of independently generated
sample strings, from the case in which it is given a single sample string. In the first
case we say that the learning algorithm 1s effictent if it runs in time polynomial
in L, n, |X], % and %. In order to define efficiency in the latter case we need to
take into account an additional property of the model — its mixing or convergence
rate. To do this we next discuss another parameter of PSAs (actually, of PFAs in
general).

For a given PSA, M, let Ry; denote the n x n stochastic transition matrix defined
by 7(-,-) and (-, -) when ignoring the transition labels. That is, if s' and s/ are
states in M and the last symbolin s/ is o, then Ry (s%,s7)is y(s*, o) if 7(s%, o) = s/,
and 0 otherwise. Hence, Ejs is the transition matrix of an ergodic Markov chain.

Let RM denote the time reversal of Rar. That is,

Mas(s))Ras (57, s%)

RM(Siasj): s (s?) ’

where Il is the stationary probability vector of Rys as defined in Equation (2).
Define the multiplicative reversiblization Upr of M by Uy = RMRM. Denote the
second largest eigenvalue of Upr by A2(Upr).

If the learning algorithm receives a single sample string, we allow the length of
the string (and hence the running time of the algorithm) to be polynomial not only
in L, n, |X], %, and %, but also in 1/(1 — A2(Uar)). The rationale behind this is
roughly the following. In order to succeed in learning a given PSA | we must observe
each state whose stationary probability is non-negligible enough times so that the

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 11

algorithm can i1dentify that the state is significant, and so that the algorithm can
compute (approximately) the next symbol probability function. When given several
independently generated sample strings, we can easily bound the size of the sample
needed by a polynomial in L, n, |X], %, and %, using Chernoff bounds. When
given one sample string, the given string must be long enough so as to ensure
convergence of the probability of visiting a state to the stationary probability. We
show that this convergence rate can be bounded using the expansion properties of
a weighted graph related to Ups [20] or more generally, using algebraic properties
of Ups, namely, its second largest eigenvalue [8].

4. Emulation of PSAs by PSTs

In this section we show that for every PSA there exists an equivalent PST which is
not much larger. This allows us to consider the PST equivalent to our target PSA|
whenever it is convenient.

THEOREM 1 For every L-PSA, M = (Q, X, 1,7, 7), there exists an equivalent PST
Tar, of mazimal depth L and at most L - |Q)]| nodes.

Proof: (Sketch) We describe below the construction needed to prove the claim.
The complete proof is provided in Appendix A.

Let Ths be the tree whose leaves correspond to the strings in . For each leaf s,
and for every symbol o, let v;(c) = 7(s,). This ensures that for every given string
s which is a suffix extension of a leaf in Ty, and for every symbol o, Py(o|s) =
Pr,,(c]s). Tt remains to define the next symbol probability functions for the internal
nodes of Thy. These functions must be defined so that Thy generates all strings

related to its nodes with the same probability as M.

For each node s in the tree, let the weight of s, denoted by ws, be ws Lef

D os'eQ, se Suffin™ s,)ﬂ'(S/). In other words, the weight of a leaf in T3y is the sta-
tionary probabiﬁity of the corresponding state in M ; and the weight of an internal
node labeled by a string s, equals the sum of the stationary probabilities over all
states of which s is a suffix (which also equals the sum of the weights of the leaves
in the subtree rooted at the node). Using the weights of the nodes we assign val-
ues to the 7,’s of the internal nodes s in the tree in the following manner. For
every symbol ¢ let y,(c) = Zs,ersesuﬁ%*(s,) lfv—ss"y(s’, o). The probability v, (o),
of generating a symbol ¢ following a string s, shorter than any state in M, 1s thus
a weighted average of y(s', o) taken over all states s’ which correspond to suffix
extensions of s. The weight related with each state in this average, corresponds
to its stationary probability. As an example, the probability distribution over the
first symbol generated by Tys, is ZSEQ 7(s)y(s,-). This probability distribution
i1s equivalent, by definition, to the probability distribution over the first symbol
generated by M.

Finally, if for some internal node in T}y, 1ts next symbol probability function is
equivalent to the next symbol probability functions of all of its descendants, then
we remove all its descendants from the tree. O

12 DANA RON, YORAM SINGER, NAFTALI TISHBY

An example of the construction described in the proof of Theorem 1 is illustrated
in Figure 1. The PST on the right was constructed based on the PSA on the left,
and is equivalent to it. Note that the next symbol probabilities related with the
leaves and the internal nodes of the tree are as defined in the proof of the theorem.

5. The Learning Algorithm

We start with an overview of the algorithm. Let M = (@, %, 7,7, 7) be the target
L-PSA we would like to learn, and let |Q] < n. According to Theorem 1, there
exists a PST T, of size bounded by L - |Q], which is equivalent to M. We use the
sample statistics to define the empirical probability function,]5(-), and using P, we
construct a suffix tree, T, which with high probability is a subtree of 1". We deﬁne
our hypothesis PST, T based on T and P,

The construction of T' is done as follovvs. We start with a tree consisting of a
single node (labeled by the empty string e) and add nodes which we have reason
to believe should be in the tree. A node v labeled by a string s 1s added as a
leaf to 7' if the following holds. The empirical probability of s, p(s), 1s non-
negligble, and for some symbol ¢, the empirical probability of observing ¢ following
s, namely p(0|5), differs substantially from the empirical probability of observing o
following suffiz(s), namely]5(U|suﬁ?:z?(5)). Note that suffiz(s) is the string labeling
the parent node of v. OQur decision rule for adding v, is thus dependent on the ratio
between P(c|s) and P(c|suffiz(s)). We add a given node only when this ratio is
substantially greater than 1. This suffices for our analysis (due to properties of the
KL-divergence), and we need not add a node if the ratio is smaller than 1.

Thus, we would like to grow the tree level by level, adding the sons of a given leaf
in the tree, only if they exhibit such a behavior in the sample, and stop growing the
tree when the above is not true for any leaf. The problem is that the node might
belong to the tree even though its next symbol probability function is equivalent
to that of its parent node. The leaves of a PST must differ from their parents (or
they are redundant) but internal nodes might not have this property. The PST
depicted in Figure 1 illustrates this phenomena. In this example, yo(-) = ve(+), but
both yoo(-) and 710(-) differ from yo(+). Therefore, we must continue testing further
potential descendants of the leaves in the tree up to depth L.

As mentioned before, we do not test strings which belong to branches whose
empirical count in the sample is small. This way we avoid exponential grow-up in
the number of strings tested. A similar type of branch-and-bound technique (with
various bounding criteria) is applied in many algorithms which use trees as data
structures (cf. [18]). The set of strings tested at each step, denoted by S, can be
viewed as a kind of potential frontier of the growing tree T, which is of bounded
size. After the construction of 1" is completed, we define T by adding nodes so
that all internal nodes have full degree, and defining the next symbol probability
function for each node based on P. These probability functions are defined so that
for every string s in the tree and for every symbol o, v;(o) is bounded from below
by “Ymin which is a parameter that is set subsequently. This is done by using a

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 13

conventional smoothing technique. Such a bound on 7,(o) is needed in order to
bound the KL-divergence between the target distribution and the distribution our
hypothesis generates.

The above scheme follows a fop-down approach since we start with a tree con-
sisting of a single root node and a frontier consisting only of its children, and
incrementally grow the suffix tree 7" and the frontier S. Alternatively, a bottom-up
procedure can be devised. In a bottom-up procedure we start by putting in S all
strings of length at most L which have significant counts, and setting 7' to be the
tree whose nodes correspond to the strings in S. We then trim 7' starting from
its leaves and proceeding up the tree by comparing the prediction probabilities of
each node to i1ts parent node as done in the top-down procedure. The two schemes
are equivalent and yield the same prediction suffix tree. However, we find the in-
cremental top-down approach somewhat more intuitive, and simpler to implement.
Moreover, our top-down procedure can be easily adapted to an online setting which
1s useful in some practical applications.

Let P denote the probability distribution generated by M. We now formally
define the empirical probability function]5, based on a given sample generated by
M. For a given string s,]5(5) is roughly the relative number of times s appears in
the sample, and for any symbol o,]5(U|5) is roughly the relative number of times
o appears after s. We give a more precise definition below.

If the sample consists of one sample string r of length m, then for any string s of
length at most L, define x;(s) to be 1 if #j_|;j41...7; = s and 0 otherwise. Let

m—1
~ 1
Pls) = —— 3" (s) ()
]:L
and for any symbol o, let

-1
2o Nj+1(50)

ST X6 (8)

If the sample consists of m’ sample strings r', ..., rml, each of length £ > L + 1,

P(o|s) = (5)

then for any string s of length at most L, define X; (s) to be 1if r;'—|8|+1 LT =S,
and 0 otherwise. Let
B 1 m' (-1
P(s)= ——— i’ 6
6= T ZZx<> ! (6)

and for any symbol o, let
! -1
. ity Z]’:L Xj+1(50)
- [— |
it Z]’:L X;(s)

For simplicity we assume that all the sample strings have the same length and that

P(als)

(7)

this length is polynomial in n, L, and ¥. The case in which the sample strings are

14 DANA RON, YORAM SINGER, NAFTALI TISHBY

of different lengths can be treated similarly, and if the strings are too long then we
can ignore parts of them.
In the course of the algorithm and in its analysis we refer to several parameters
which are all simple functions of ¢, n, L and |X]|, and are set as follows:
€
“ T B’

€9 €

Tmin. = 9] T BLID]
€

€
2n L log(1/%min) 2n L log(48L|%|/€)
€2 Ymin € log(48L|X|/¢€)

8ne 9216 L[Y

[—

€1 =

The size of the sample is set in the analysis of the algorithm.
A pseudo code describing the learning algorithm is given in Figure 2 and an
illustrative run of the algorithm is depicted in Figure 3.

Algorithm Learn-PSA

L. Initialize T and S: let T~consist of a single root node (corresponding to e), and
let S —{o|oeXand P(o) > (1 —e1)eo}.

2. While S # 0, pick any s € S and do:

(A) Remove s from S
(B) If there exists a symbol ¢ € ¥ such that

]5(U|5) > (14 €2)Vmin and]5(U|5)/ﬁ(a|suﬁ:p(5)) >1+43¢ ,

then add to T the node corresponding to s and all the nodes on the path
from the deepest node in 7T that is a suffix of s, to 5

(C) If |s| < L then for every o' € X, if p(a’s) > (1—¢1)eo, then add o'-s to S.
3. Initialize T' to be T.
4. Extend T by adding all missing sons of internal nodes.
5. For each s labeling a node in T, let
Ys(o) = P(o]s")(1 = [Z7min) + Fmin

where s is the longest suffix of s in 7.

Figure 2. Algorithm Learn-PSA

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 15

e(o.ao.s)
5

0 (0604) 1 (0406)

1 (04,06)

rooox
(06,0.4) 00 01 (0.60.4)

(0.4,0.6) (0.4,0.6)

[y oA yooA y oA

00 10 01 1 (0604) 00 10 01 11
(0604) (0604) (0406) (04,06) (06,04) (0406) (0.406)
14
000 (0.80.2)

1(0.4,06)

1 14
(0.6,0.4) 10 01 1
(0604) (0406) (0.406)

(0.6,0.4)

10.80.2)

(o.s,o.) (0.3,0)

y)
(0.8,0.2) (0.8,0.2)
1000

Figure 3. An illustrative run of the learning algorithm. The prediction suffix trees created along
the run of the algorithm are depicted from left to right and top to bottom. At each stage of the
run, the nodes from T are plotted in dark grey while the nodes from S are plotted in light grey.
The alphabet is binary and the predictions of the next bit are depicted in parenthesis beside each
node. The final tree is plotted on the bottom right part and was built by adding to T (bottom
left) all missing children. Note that the node labeled by 100 was added to the final tree but is not
part of any of the intermediate trees. This can happen when the probability of the string 100 is
small.

16 DANA RON, YORAM SINGER, NAFTALI TISHBY

6. Analysis of the Learning Algorithm

In this section we state and prove our main theorem regarding the correctness and
efficiency of the learning algorithm Learn-PSA, described in Section 5.

THEOREM 2 For every target PSA M, and for every given security parameter 0 <
6 < 1, and approzimation parameter 0 < € < 1, Algorithm Learn-PSA ouiputs a
hypothesis PST, T, such that with probability at least 1 — 6:

1. T is an e-good hypothesis with respect to M.
2. The number of nodes in T is at most |S|- L times the number of states in M.

If the algorithm has access to a source of independently generated sample strings,
then its running time s polynomial in L, n, |E|,% and %. If the algorithm has
access to only one sample string, then its running time is polynomial in the same
parameters and in 1/(1 — Aa(Ung)).

In order to prove the theorem above we first show that with probability 1 — 4,
a large enough sample generated according to M 1s typical to M, where typical is
defined subsequently. We then assume that our algorithm in fact receives a typical
sample and prove Theorem 2 based on this assumption. Roughly speaking, a sample
is typical if for every substring generated with non-negligible probability by M | the
empirical counts of this substring and of the next symbol given this substring, are
not far from the corresponding probabilities defined by M.

Definition. A sample generated according to M is typical if for every string s €
Y=L the following two properties hold:

1. If s € Q then |ﬁ(5) —7w(s)| < er€p;
2. If]5(5) > (1 — €1)€g then for every o € X, |p(0|5) — P(o|s)| < €2Ymin;

Where €y, €1, €2, and 7,4, were defined in Section 5.

LEMMA 1

1. There exists a polynomial my in L, n, |X|, %, and %, such that the probability

that a sample of m’ > my(L, n, |E|,%, %) strings each of length at least L + 1
generated according to M 1is typical is at least 1 — 6.

2. There exisls a polynomial mg in L, n, |X], %, %, and 1/(1 —Xa(Upr)), such that
the probability that a single sample string of length m > mo(L, n, |2, %, %, 1/(1—
A2(Unr))) generated according to M is typical is at least 1 — 6.

The proof of Lemma 1 1s provided in Appendix C.

Let T be the PST equivalent to the target PSA M, as defined in Theorem 1. In
the next lemma we prove two claims. In the first claim we show that the prediction

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 17

properties of our hypothesis PST T, and of T', are similar. We use this in the proof
of the first claim in Theorem 2, when showing that the KL-divergence per symbol
between 7" and M is small. In the second claim we give a bound on the size of T
in terms of 7', which implies a similar relation between 7" and M (second claim in
Theorem 2).

LEMMA 2 If Learn-PSA s given a typical sample then:

vs(0)
751(0')
longest suffiz of s corresponding to a node in T.

1. For every string s in T, if P(s) > € then <1+¢/2 , where s’ is the

2 1T < (2] = 1)- 7).

Proof: (Sketch, the complete proofs of both claims are provided in Appendix C.)

In order to prove the first claim, we argue that if the sample is typical, then
there cannot exist such strings s and s’ which falsify the claim. We prove this
by assuming that there exists such a pair, and reaching contradiction. Based on
our setting of the parameters €5 and 7,,;,, we show that for such a pair; s and
', the ratio between 7y,(c) and 7, (o) must be bounded from below by 1 + €/4.
If s = s, then we have already reached a contradiction. If s # s’ then we can
show that the algorithm must add some longer suffix of s to 7', contradicting the
assumption that s is the longest suffix of s corresponding to a node in 7. In order
to bound the size of T', we show that T' is a subtree of 7. This suffices to prove
the second claim, since when transforming 7 into 7', we add at most all |Z| — 1
siblings of every node in 7. We prove that T is a subtree of T, by arguing that in
its construction, we did not add any string which does not correspond to a node
in 7. This follows from the decision rule according to which we add nodes to 7.

O

Proof of Theorem 2: According to Lemma 1, with probability at least 1 — ¢
our algorithm receives a typical sample. Thus according to the second claim in
Lemma 2, |T] < (|Z] — 1) - |T| and since |T| < L - |Q], then |T| < |Z|- L - |Q] and
the second claim in the theorem is valid.

Let r = riry . ..7N, where r; € X, and for any prefix #*) of r, where () = ry .. .1y,
let 5[] and 5[r(!)] denote the strings corresponding to the deepest nodes reached
upon taking the walk r;...r; on T and T respectively. In particular, s[r(o)] =
§[r(0)] — e. Let P denote the probability distribution generated by T. Then

L ot

N
Hi:l Pys[r(’_l)](ri)

1
= —ZP(T)Jog N
N renN Hi:l 7§[r(’—1)](ri)

(8b)

18 DANA RON, YORAM SINGER, NAFTALI TISHBY

- % S Pr)-Y log Toprtmy(r1) (8¢)

S = Yapu-0y(ri)
1 Vs[r(’—l)](ri)
== I P(r) -log —————
N ; %: Yipr-07(77)
resN s,

P(s[ri=D])<eo

Vs[r(’_l)](ri)
+ P(r) - log ———— . 8d
R Ol (s

resh s.t.

P(s[rG=1])>eq
For every 1 < ¢ < N, the first term in the parenthesis in Equation (8d) can be
bounded as follows. For each string r, the worst possible ratio between 'ys[r(,_l)](ri)
and Ysp,6-07(73), 18 1/7min. The total weight of all strings in the first term equals
the total weight of all the nodes in 7" whose weight is at most €y, which is at most
nLeg. The first term is thus bounded by nLeglog(1/9min). Based on Lemma 2, the
ratio between 7,[,i-1)1(7;) and ¥;p,-1))(r;) for every string r in the second term in
the parenthesis, is at most 1 4+ ¢/2. Since the total weight of all these strings is
bounded by 1, the second term is bounded by log(1 + ¢/2). Combining the above
with the value of ¢; (that was set in Section 5 to be ¢/ (2nL log(1/ymin))), we get
that,

iDKL[PNHPN] < Low [nLeo log + log(1+¢/2)] < ¢ . (9)
Using a straightforward implementation of the algorithm, we can get a (very
rough) upper bound on the running time of the algorithm which is of the order of
the square of the size of the sample times L. In this implementation, each time we
add a string s to S or to T, we perform a complete pass over the given sample to
count the number of occurrences of s in the sample and its next symbol statistics.
According to Lemma 1, this bound is polynomial in the relevant parameters, as
required in the theorem statement. Using the following more time-efficient, but less
space-efficient implementation, we can bound the running time of the algorithm by
the size of the sample times L. For each string in S, and each leaf in T we keep a set
of pointers to all the occurrences of the string in the sample. For such a string s, if
we want to test which of its extensions, s should we add to S or to 7', we need only
consider all occurrences of s in the sample (and then distribute them accordingly
among the strings added). For each symbol in the sample there is a single pointer,
and each pointer corresponds to a single string of length ¢ for every 1 < < L. Thus

the running time of the algorithm is of the order of the size of the sample times L.
|

7. Applications

A slightly modified version of our learning algorithm was applied and tested on
various problems such as: correcting corrupted text, predicting DNA bases [25], and

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 19

part-of-speech disambiguation resolving [28]. We are still exploring other possible
applications of the algorithm. Here we demonstrate how the algorithm can be used
to correct corrupted text and how to build a simple model for DNA strands.

7.1. Correcting Corrupted Text

In many machine recognition systems such as speech or handwriting recognizers,
the recognition scheme is divided into two almost independent stages. In the first
stage a low-level model is used to perform a (stochastic) mapping from the observed
data (e.g., the acoustic signal in speech recognition applications) into a high level
alphabet. If the mapping is accurate then we get a correct sequence over the high
level alphabet, which we assume belongs to a corresponding high level language.
However, it is very common that errors in the mapping occur, and sequences in the
high level language are corrupted. Much of the effort in building recognition systems
is devoted to correct the corrupted sequences. In particular, in many optical and
handwriting character recognition systems, the last stage employs natural-language
analysis techniques to correct the corrupted sequences. This can be done after a
good model of the high level language is learned from uncorrupted examples of
sequences in the language. We now show how to use PSAs in order to perform such
a task.

We applied the learning algorithm to the bible. The alphabet was the english
letters and the blank character. We removed Jenesis and it served as a test set.
The algorithm was applied to the rest of the books with . = 30, and the accuracy
parameters (¢;) were of order O(v/N), where N is the length of the training data.
This resulted in a PST having less than 3000 nodes. This PST was transformed
into a PSA in order to apply an efficient text correction scheme which 1s described
subsequently. The final automaton constitutes both of states that are of length 2,
like ‘qu’ and ‘xe’, and of states which are 8 and 9 symbols long, like ‘shall be’
and ‘there was’. This indicates that the algorithm really captures the notion of
variable memory that is needed in order to have accurate predictions. Building
a Markov chain of order L in this case is clearly not practical since it requires

|S|E = 27° = 7625597484987 states!

Let 7 = (r1,72,...,7r¢) be the observed (corrupted) text. If an estimation of the
corrupting noise probability is given, then we can calculate for each state sequence
7 =1(90,91,92,---,qt), ¢ € @, the probability that 7 was created by a walk over
the PSA which constitutes of the states g. For 0 < ¢ < ¢, let X; be a random
variable over @), where X; = ¢ denotes the event that the ith state passed was g.
For 1 < ¢ < tlet Y; be a random variable over X, where Y; = o denotes the event
that the ith symbol observed was o. For ¢ € Q't! let X = ¢ denote the joint
event that X; = ¢; for every 0 < i <t, and for 7 € ©!, let Y = 7 denote the joint
event that Y; = r; for every 1 < ¢ < ¢. If we assume that the corrupting noise is
1.1.d and is independent of the states that constitute the walk, then the most likely

20 DANA RON, YORAM SINGER, NAFTALI TISHBY

state sequence, qarr, 18

qur = arg max P (X =q|Y =7) =arg max P (Y =7|X =¢) P(X =¢) (10a)

geQitt geqQtt!
t
= arg max PY,=r|X=g X
s {(fLr o)
t
(7"((]0) H P(X; =q|Xio1 = qi—l)) } (10b)
=1

t
= arg Hé%)t({ log (P(Y; = ri|Xi = q;) + log(m(qo)) +
4 i=1

Zlog(P (Xi = ;| Ximy = qH))} : (10¢)

where for deriving the last Equality (10c) we used the monotonicity of the log
function and the fact that the corruption noise is independent of the states. Let
the string labeling ¢; be s1,...,s;. Then P(Y; = r|X; = ¢;) is the probability
that r; 18 an uncorrupted symbol if r; = s;, and 1s the probability that the noise
process flipped s; to be r; otherwise. Note that the sum (10¢) can be computed
efficiently in a recursive manner. Moreover, the maximization of Equation (10a) can
be performed efficiently by using a dynamic programming (DP) scheme [4]. This
scheme requires O(|Q| x t) operations. If |@] is large, then approximation schemes
to the optimal DP, such as the stack decoding algorithm [13] can be employed. Using
similar methods it 1s also possible to correct errors when insertions and deletions
of symbols occur as well.

We tested the algorithm by taking a text from Jenesis and corrupting it in two
ways. First, we altered every letter (including blanks) with probability 0.2. In the
second test we altered every letter with probability 0.1 and we also changed each
blank character, in order to test whether the resulting model is powerful enough to
cope with non-uniform noise. The result of the correction algorithm for both cases
as well as the original and corrupted texts are depicted in Figure 4.

We compared the performance of the PSA we constructed to the performance
of Markov chains of order 0 — 3. The performance is measured by the negative
log-likelihood obtained by the various models on the (uncorrupted) test data, nor-
malized per observation symbol. The negative log-likelihood measures the amount
of ‘statistical surprise’ induced by the model. The results are summarized in Ta-
ble 1. The first four entries correspond to the Markov chains of order 0 — 3, and the
last entry corresponds to the PSA. The order of the PSA is defined to be logs, (|Q]).
These empirical results imply that using a PSA of reasonable size, we get a better
model of the data than if we had used a much larger full order Markov chain.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 21

Original Text:

and god called the dry land earth and the gathering together of the waters called
he seas and god saw that it was good and god said let the earth bring forth grass
the herb yielding seed and the fruit tree yielding fruit after his kind

Corrupted text (1):

and god cavsed the drxjland earth ibd shg gathervng together oj the waters
cflled re seas aed god saw thctpit was good ann god said let tae earth bring
forth gjasb tse hemb yielpinl peed and thesfruit tree sielxing fzuitnafter his kind
Corrected text (1):

and god caused the dry land earth and she gathering together of the waters called
he sees and god saw that it was good and god said let the earth bring forth grass
the memb yielding peed and the fruit tree fielding fruit after his kind

Corrupted text (2):
andhgodpcilledjthesdryjlandbeasthcandmthelgatceringhlogetherjfytrezaatersoczlled
xherseasaknddgodbsawwthathitqwasoqoohanwzgodcsaidhletdtheuejrthriringmforth
hbgrasstthexherbyieldingzseedmazdctcybfruitttreeayieldinglfruztbaftherihiskind
Corrected text (2):

and god called the dry land earth and the gathering together of the altars called
he seasaked god saw that it was took and god said let the earthriring forth grass
the herb yielding seed and thy fruit treescielding fruit after his kind

Figure 4. Correcting corrupted text.

Table 1. Comparison of full order Markov chains versus a PSA (a Markov
model with variable memory).

	Fixed Order Markov	PSA
Model Order	o 1 2 3	184
Number of States	1 27 729 19683	432

| Negative Log-Likelihood | 0.853 0.681 0.560 0.555 | 0.456 |

7.2. Building A Simple Model for E.coli DNA

The DNA alphabet is composed of four nucleotides denoted by: 4,C,T,G. DNA
strands are composed of sequences of protein coding genes and fillers between those
regions named intergenic regions. Locating the coding genes is necessary, prior
to any further DNA analysis. Using manually segmented data of E. coli [27] we
built two different PSAs, one for the coding regions and one for the intergenic
regions. We disregarded the internal (triplet) structure of the coding genes and the
existence of start and stop codons at the beginning and the end of those regions.

22 DANA RON, YORAM SINGER, NAFTALI TISHBY

The models were constructed based on 250 different DNA strands from each type,
their lengths ranging from 20 bases to several thousands. The PSAs built are rather
small compared to the HMM model described in [17]: the PSA that models the
coding regions has 65 states and the PSA that models the intergenic regions has
81 states.

We tested the performance of the models by calculating the log-likelihood of the
two models obtained on test data drawn from intergenic regions. In 90% of the cases
the log-likelihood obtained by the PSA trained on intergenic regions was higher
than the log-likelihood of the PSA trained on the coding regions. Misclassifications
(when the log-likelihood obtained by the second model was higher) occurred only for
sequences shorter than 100 bases. Moreover, the log-likelihood difference between
the models scales linearly with the sequence length where the slope is close to
the KL-divergence between the Markov models (which can be computed from the
parameters of the two PSAs), as depicted in Figure 5. The main advantage of PSA
models is in their simplicity. Moreover, the log-likelihood of a set of substrings of
a given strand can be computed in time linear in the number of substrings. The
latter property combined with the results mentioned above indicate that the PSA
model might be used when performing tasks such as DNA gene locating. However,
we should stress that we have done only a preliminary step in this direction and
the results obtained in [17] as part of a complete parsing system are better.

25 *
D
o 20 + 4
o
k2
a 15 B
= *
(=]
o * *
=
T 107 L 1
< *
) * x - X *
gy
0 (- HFey
(0] 100 200 300 400 500 600
Seguence Length

Figure 5. The difference between the log-likelihood induced by a PSA trained on data taken from
intergenic regions and a PSA trained on data taken from coding regions. The test data was taken
from intergenic regions. In 90% of the cases the likelihood of the first PSA was higher.

Acknowledgements

We would like to thank Anders Krogh and David Haussler for letting us use their
E. coli DNA data and for helpful discussions. Special thanks to Kenn Rudd for
supplying the E. coli sequences used in the DNA experiments. We also would like
to thank Ronitt Rubinfeld and Yoav Freund for their helpful comments. Thanks to
Lee Giles for providing us with the software for plotting finite state machines. This
research has been supported in part by a grant from the Israeli Ministry of Science
and Arts and by the Bruno Goldberg endowment fund. Dana Ron would like to

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 23

thank the support of the Eshkol fellowship. Yoram Singer would like to thank the
Clore Foundation for its support.

References

1. N. Abe and M. Warmuth. On the computational complexity of approximating distributions
by probabilistic automata. Machine Learning, 9:205-260, 1992.

2. L. E. Baum. An inequality and associated maximization technique in statistical estimation
for probabilistic functions of markov chains. Inequalities, 3:1-8, 1972.

3. L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occuring in
the statistical analysis of probabilistic functions of markov chains. Annals of Mathematical
Statistics, 41(1):164-171, 1970.

4. R. Bellman. Dynamic Programming. Princeton University Press, 1957.

5. A. Blumer. Applications of DAWGSs to data compression. In A. Capocelli, editor, Se-
quences: Combinatorics, compression, security, and transmition, pages 303-311. Springer-
Verlag, 1990.

6. T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

7. A.P. Dempster, N.M Laird, and D.B. Rubin. Maximum-likelihood from incomplete data via
the EM algorithm. J. Royal Stat. Soc., B39:1-38, 1977.

8. J.A. Fill. Eigenvalue bounds on convergence to stationary for nonreversible Markov chains,
with an application to exclusion process. Annals of Applied Probability, 1:62-87, 1991.

9. Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R.E. Schapire, and L. Sellie. Efficient learning
of typical finite automata from random walks. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, pages 315-324, 1993.

10. D. Gillman and M. Sipser. inference and minimization of hidden markov chains. In Proceed-
mngs of the Seventh Annual Workshop on Computational Learning Theory, pages 147—158,
1994.

11. G. I. Good. Statistics of language: Introduction. In A. R. Meetham and R.A. Hudson,
editors, Encyclopedia of Linguistics, Information and Control, pages 567-581. Pergamon
Press, Oxford, England, 1969.

12. K.-U. Hoffgen. Learning and robust learning of product distributions. In Proceedings of the
Sizth Annuwal Workshop on Computational Learning Theory, pages 97-106, 1993.

13. F. Jelinek. A fast sequential decoding algorithm using a stack. IBM J. Res. Develop.,
13:675-685, 1969.

14. F. Jelinek. Self-organized language modeling for speech recognition. Technical report, IBM
T.J. Watson Research Center, 1985.

15. M. Kearns, Y.Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, and L. Sellie. On the learnabil-
ity of discrete distributions. In The 25th Annual ACM Symposium on Theory of Computing,
1994.

16. P. Krishnan and J. S. Vitter. Optimal prediction for prefetching in the worst case. Technical
Report CS-1993-26, Duke University, 1993.

17. A. Krogh, S.I. Mian, and D. Haussler. A hidden markov model that finds genes in E. coli
DNA. Technical Report UCSC-CRL-93-16, University of California at Santa-Cruz, 1993.

18. E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. STAM
Journal on Computing, 22(6):1331-1348, 1993.

19. P. Laird and R. Saul. Discrete sequence prediction and its applications. Machine Learning,
15:43-68, 1994.

20. M. Mihail. Conductance and convergence of Markov chains - A combinatorial treatment of
expanders. In Proceedings 30th Annual Conference on Foundations of Computer Science,
1989.

21. A. Nadas. Estimation of probabilities in the language model of the IBM speech recognition
system. IEEE Trans. on ASSP, 32(4):859-861, 1984.

22. L.R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEFE, 1989.

24 DANA RON, YORAM SINGER, NAFTALI TISHBY

23. J. Rissanen. A universal data compression system. IEEE Trans. Inform. Theory, 29(5):656—
664, 1983.

24. J. Rissanen. Complexity of strings in the class of Markov sources. ITEEFE Trans. Inform.
Theory, 32(4):526-532, 1986,

25. D.Ron, Y. Singer, and N. Tishby. The power of amnesia. In Advances in Neural Information
Processing Systems, volume 6. Morgan Kaufmann, 1993.

26. D.Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic finite
automata. In Proc. of the 8th Annual Conf. on Computational Learning Theory, 1995.

27. K.E. Rudd. Maps, genes, sequences, and computers: An FEscherichia coli case study. ASM
News, 59:335-341, 1993.

28. H. Schiitze and Y. Singer. Part-of-Speech tagging using a variable memory Markov model.
In Proceedings of ACL 32°nd, 1994.

29. C.E. Shannon. Prediction and entropy of printed english. Bell Sys. Tech. Jour., 30(1):50-64,
1951.

30. Y. Singer and N. Tishby. An adaptive cursive handwriting recognition system. Technical
Report CS-TR-22, Hebrew University, 1995.

31. J. S. Vitter and P. Krishnan. Optimal prefetching via data compression. In Proceedings of
the Thirty-Second Annual Symposium on Foundations of Computer Science, pages 121-130,
1991.

32. M.J. Weinberger, A. Lempel, and J. Ziv. A sequential algorithm for the universal coding of
finite-memory sources. IEEE Trans. Inform. Theory, 38:1002-1014, May 1982.

33. F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method:
Basic properties. IEEE Trans. Inform. Theory, 1993. Submitted for publication.

34. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inform. Theory, 24:530-536, Sept. 1978.

Appendix A
Proof of Theorem 1

Theorem 1 For every L-PSA M = (Q, X, 1,7, 7), there exists an equivalent PST
Tar, of mazimal depth L and at most L - |Q)]| nodes.

Proof: Let Ths be the tree whose leaves correspond to the strings in @ (the
states of M). For each leaf s, and for every symbol o, let v;(0) = 7(s,0). This
ensures that for every string which 1s a suffix extension of some leaf in Tjs, both
M and Ty generate the next symbol with the same probability. The remainder of
this proof is hence dedicated to defining the next symbol probability functions for
the internal nodes of Ths. These functions must be defined so that Thy generates
all strings related to nodes in Ty, with the same probability as M.

For each node s in the tree, let the weight of s, denoted by ws, be defined as
follows

w, & 3 w(s') (A.1)
$'EQ st sE€ESuffiz*(s’)

In other words, the weight of a leaf in Tjs is the stationary probability of the
corresponding state in M; and the weight of an internal node labeled by a string s,

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 25

equals the sum of the stationary probabilities over all states of which s is a suffix.
Note that the weight of any internal node is the sum of the weights of all the leaves
in its subtree, and in particular we = 1. Using the weights of the nodes we assign
values to the 7;’s of the internal nodes s in the tree in the following manner. For
every symbol o let

Yelo) = 3 Do) (A.2)

W
$'EQ st sE€ESuffiz*(s’)

According to the definition of the weights of the nodes; it is clear that for every
node s, y5(-) is in fact a probability function on the next output symbol as required
in the definition of prediction suffix trees.

What is the probability that M generates a string s which is a node in Ty (a
suffix of a state in Q)7 By definition of the transition function of M, for every
s € @, if s = 7(s°, 5), then s’ must be a suffix extension of s. Thus Py(s) is the
sum over all such s’ of the probability of reaching s’, when s° is chosen according
to the initial distribution 7 (-) on the starting states. But if the initial distribution
is stationary then at any point the probability of being at state s’ is just w(s), and

Py(s) = > w(s") = w; . (A.3)
$'EQ s.t. sESuffix*(s’)

We next prove that Pr,,(s) equals w; as well. We do this by showing that for every
s =s1...5 in the tree, where |s| > 1, ws = Wprefin(s)Yprefiz(s)(51). Since we = 1, it
follows from a simple inductive argument that Pp,,(s) = w;.

By our definition of PSAs, w(-) is such that for every s € Q, s = s1 ...y,

w(s) = > m(s" (s’ s1) (A.4)
s st T(s! 51)=s

Hence, if s 1s a leaf in T3 then

—~

ws = 7(s) = Z wyys (1)

s'€L(Thr) st. s€Suffix*(s'sy)

N

= Z WsYst (s1)

s'€L(Ta(prefiz(s)))

—~
Z

—~

é wpreﬁ:c(s)'.ypreﬁ:v(s)(sl)) (A5)
where (a) follows by substituting w,s for w(s") and 7,/ (s;) for v(s’, s;) in Equation
(A.4), and by the definition of 7(-, -); (b) follows from our definition of the structure
of prediction suffix trees; and (c) follows from our definition of the weights of internal
nodes. Hence, if s is a leaf, ws = Wprefin(s)Yprefiz(s)(51) as required.

If s is an internal node then using the result above and Equation (A.2) we get
that

Ws = E Wg!

s'€L(Ta(s))

N2

26 DANA RON, YORAM SINGER, NAFTALI TISHBY

= Z Wprefin(s') Yprefin(s') (S1)
s'€L(Th(s))

= wpreﬁ:c(s)"}/preﬁx(s)(sl) . (A6)

It is left to show that the resulting tree is not bigger than L times the number
of states in M. The number of leaves in Ty equals the number of states in M, i.e.
|£(T)| = |Q]- If every internal node in Ty is of full degree (i.e. the probability Tas
generates any string labeling a leaf in the tree is strictly greater than 0) then the
number of internal nodes is bounded by |@Q] and the total number of nodes is at
most 2|@|. In particular, the above is true when for every state s in M, and every
symbol o, ¥(s,o) > 0. If this is not the case then we can simply bound the total
number of nodes by L -|Q|. [|

Appendix B
Emulation of PSTs by PFAs

In this section we show that for every PST there exists an equivalent PFA which
is not much larger and which is a slight variant of a PSA. Furthermore, if the PST
has a certain property, defined below and denoted by Propertyx, then it can be
emulated by a PSA.

Property* For every string s labeling a node in the tree, T

Pr(s)=Y_ Pr(os) .

cEX

Before we state our theorem, we observe that Property* implies that for every
string r,

Pr(r)=Y_ Pr(or) (B.1)

This 1s true for the following simple reasoning. If r is a node in 7', then Equal-
ity (B.1) is equivalent to Property*. Otherwise let » = ryra, where ry is the longest
prefix of r which is a leaf in 7.

Pr(r) = Pr(r1)- Pr(ra|r) (B.2a)
= ZPT(UH)PT(@IH) (B.2b)
= ZPT(UH)PT(@IUH) (B.2c¢)

= ZPT(O'T) , (B.2d)

where Equality (B.2¢) follows from the definition of PST’s.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 27

THEOREM 3 For every PST, T, of depth L over X there exists an equivalent PFA,
My, with at most L -|L(T)| states. Furthermore, if Propertyx holds for T, then it
has an equivalent PSA.

Proof: In the proof of Theorem 1, we were given a PSA M and we defined the
equivalent suffix tree Tjs to be the tree whose leaves correspond to the states of the
automaton. Thus, given a suffix tree 7', the natural dual procedure would be to
construct a PSA My whose states correspond to the leaves of T'. The first problem
with this construction is that we might not be able to define the transition function
7 on all pairs of states and symbols. That is, there might exist a state s and a
symbol o such that there is no state s’ which is a suffix of so. The solution is to
extend T to a larger tree 7" (of which T is a subtree) such that 7 is well defined
on the leaves of T”. It can easily be verified that the following is an equivalent
requirement on 7": for each symbol o, and for every leaf s in 77, so is either a
leaf in the subtree T"(o) rooted at o, or is a suffix extension of a leaf in T7'(s). In
this case we shall say that 7" covers each of its children’s subtrees. Viewing this
in another way, for every leaf s, the longest prefiz of s must be either a leaf or
an internal node in 7’. We thus obtain 7" by adding nodes to T until the above
property holds.

The next symbol probability functions of the nodes in 7" are defined as follows.
For every node s in T'N'T’ and for every o € X, let vi(0) = v;(o). For each new
node s’ = s} ...s;in 7" — T, let v.,(0) = 7,(0), where s is the longest suffix of s’
in T (i.e. the deepest ancestor of s’ in T'). The probability distribution generated
by T is hence equivalent to that generated by 7. ;From Equality (B.1) it directly
follows that if Property* holds for 7', then it holds for 7" as well.

Based on 7" we now define My = (@, X, 7,7, 7). If Property* holds for T, then
we define My as follows. Let the states of M7 be the leaves of 7" and let the
transition function be defined as usual for PSAs (i.e. for every state s and symbol
o, 7(s,0) is the unique suffix of so.) Note that the number of states in My is at
most L times the number of leaves in T, as required. This is true since for each
original leaf in the tree T, at most L — 1 prefixes might be added to T”. For each
s € @ and for every o € X, let y(s,0) = v.(c), and let w(s) = Pr(s). It should
be noted that Mrp is not necessarily ergodic. It follows from this construction that
for every string r which is a suffix extension of a leaf in 7", and every symbol o,
Pury(o|r) = Pr(ol|r). It remains to show that for every string » which is a node
in 1", Py (r) = Pri(r) (= Pr(r)). For a state s € @, let Pj; (r) denote the
probability that r is generated assuming we start at state s. Then,

Py, (r) = ZW(S)PJ@T(T) (B.3a)

SEQ

= > 7(s)Parr(r]s) (B.3b)

SEQ

= > Pr(s)Pr(rls) (B.3c)

sEL(T)

28 DANA RON, YORAM SINGER, NAFTALI TISHBY

= Z PT/(ST) (B3d)

sEL(T!)
= PT/(T) s (B3e)

where Equality (B.3b) follows from the definition of PSAs, Equality (B.3¢) follows
from our definition of x(-), and Equality (B.3e) follows from a series of applications
of Equality (B.1).

If T does not have Property*, then we may not be able to define an initial distri-
bution on the states of the PSA My such that for every string » which is a node
in 7", Par, (r) = Ppi(r). We thus define a slight variant of Mp as follows. Let the
states of Mp be the leaves of T” and all their prefizes, and let 7(-,-) be defined as
follows: for every state s and symbol o, 7(s,0) is the longest suffix of so. Thus,
My has the structure of a prefiz tree combined with a PSA. If we define 7(-, -) as
above, and let the empty string, e, be the single starting state (i.e., 7(e) = 1), then,
by definition, M7 is equivalent to 7T

An illustration of the constructions described above is given in Figure B.1.
|

(0.2,0.8) (oAs,oAz)

Figure B.1. Left: A Prediction suffix tree. The prediction probabilities of the symbols ‘0’ and ‘1’,
respectively, are depicted beside the nodes, in parentheses. Right: The PFA that is equivalent to
the PST on the left. Bold edges denote transitions with the symbol ‘1’ and dashed edges denote
transitions with ‘0’. Since Propertyx holds for the PST, then it actually has an equivalent PSA
which is defined by the circled part of the PFA. The initial probability distribution of this PSA
is: w(01) = 3/11, 7(00) = 2/11, =(11) = 3/11, m(010) = 3/22, 7(110) = 3/22. Note that states
‘11" and ‘01’ in the PSA replaced the node "1’ in the tree.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 29

Appendix C

Proofs of Technical Lemmas and Theorems

Lemma 1

1. There exists a polynomial my in L, n, |X|, %, and %, such that the probability

that a sample of m’ > my(L, n, |E|,%, %) strings each of length at least L + 1
generated according to M 1is typical is at least 1 — 6.

2. There exisls a polynomial mg in L, n, |X], %, %, and 1/(1 —Xa(Upr)), such that

the probability that a single sample string of length m > mo(L, n, |2, %, %, 1/(1—
A2(Unr))) generated according to M is typical is at least 1 — 6.

Proof: Before proving the lemma we would like to recall that the parameters €y,
€1, €2, and Yynin , are all polynomial functions of 1/¢, n, L, and ||, and were defined
in Section b.

Several sample strings We start with obtaining a lower bound for m’, so that the
first property of a typical sample holds. Since the sample strings are generated
independently, we may view p(s), for a given state s, as the average value of m’
independent random variables. Each of these variables is in the range [0, 1] and
its expected value is 7(s). Using a variant of Hoeffding’s inequality we get that if
m' > ﬁ In 47", then with probability at least 1 — 2 |ﬁ(5) —7(s)| < e1€p. The

2n>

probability that this inequality holds for every state is hence at least 1 — %.

We would like to point out that since our only assumptions on the sample strings
are that they are generated independently, and that their length is at least L + 1,
we use only the independence between the different strings when bounding our
error. We do not assume anything about the random variables related to]5(5)
when restricted to any one sample string, other than that their expected value is
7(s). If the strings are known to be longer, then a more careful analysis can be
applied as described subsequently for the case of a single sample string.

We now show that for an appropriate m’ the second property holds with proba-
bility at least 1 — % as well. Let s be a string in <% In the following lines, when
we refer to appearances of s in the sample we mean in the sense defined by P. That
18, we count only appearances of s which end at the Lth or greater symbol of a
sample string. For the ¢th appearance of s in the sample and for every symbol o,
let X;(o|s) be a random variable which is 1 if ¢ appears after the éth appearance
of s and 0 otherwise. If s is either a state or a suffix extension of a state, then
for every o, the random variables {X;(c|s)} are independent 0/1 random variables
with expected value P(o|s). Let N; be the total number of times s appears in the
sample, and let Ny, = 52722 In 2= g Ns > Npin, then with probability at

€gb

2 'min ~
least 1 — 20 for every symbol o, |P(c|s) — P(cls)| < 2€3Ymin. If 5 is a suffix of

2n
several states s, ..., s, then for every symbol o,

30 DANA RON, YORAM SINGER, NAFTALI TISHBY

Recall that €; = (€2vmin)/(8neg). If:

(1) for every state s’ |]5(52) —7(s%)] < e1€0;

(2) for each s' satisfying 7(s%) > 2¢;¢o, |]5(U|5i) — P(o|s%)] < %ez'ymm for every o;
then |P(c|s) — P(o]s)| < €a¥min, as required.

If the sample has the first property required of a typical sample (i.e., Vs € Q,
|ﬁ(5) — P(s)| < €1€0), and for every state s such that]5(5) > 160, Ny > Nopin,
then with probability at least 1 — % the second property of a typical sample holds
for all strings which are either states or suffixes of states. If for every string s which
is a suffix extension a state such that]5(5) > (1 —e1)eg, Ns > Npin, then for
all such strings the second property holds with probability at least 1 — % as well.
Putting together all the bounds above, if m’ > 25%53 In 47” + Npin /(€1€0), then with

probability at least 1 — é the sample is typical.

A single sample string In this case the analysis is somewhat more involved. We
view our sample string generated according to M as a walk on the markov chain
described by Rps (defined in Subsection 3). We may assume that the starting
state is visible as well since its contribution to ﬁ() is negligible. We shall need
the following theorem from [8] which gives bounds on the convergence rate to the
stationary distribution of general ergodic Markov chains. This theorem is partially
based on a work by Mihail [20], who gives bounds on the convergence in terms of

combinatorial properties of the chain.

Markov Chain Convergence Theorem [8] For any state so in the Markov
chain Ry, let RYy;(s0,-) denote the probability distribution over the states in Ry,
after taking a walk of length t starting from state so. Then

2

D IRa(s0,8) —w(s)| | <

SEQ

(Aa2(Unm))*
m(s0)

First note that by simply applying Markov’s inequality, we get that with prob-
ability at least 1 — %, |ﬁ(5) — 7(s)] < 1€, for each state s such that #(s) <
(6e1€0)/(2n). Tt thus remains to obtain a lower bound on m, so that the same is
true for each s such that w(s) > (8e1€p)/(2n). We do this by bounding the variance
of the random variable related with p(s), and applying Chebishev’s Inequality.

Let

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 31

_In (n3/ 32833 €3)
D= O (G3)

We next show that for every s satisfying «(s) > (ée1¢0)/(2n), |R§\‘}I(5, s)—m(s)] <
5 2.2

i-€i€g. By the theorem above and our assumption on 7(s),

2

2
(Rig(s,s) —7(s))” < | D |Riy(s,s) — w(s)] (C.4a)
s'eQ
to
< Q) (C.4b)
7(s)
2n ‘o
L) (C.40)
_ o 2n /e (Ua)
= 660616 (C.4d)
§2cted
= Ten? (C.de)

Therefore, |RY,(s,s) — m(s)| < Zelel.

Intuitively, this means that for every two integers, ¢ > tg, and ¢ < ¢t —{g, the event
that s is the (¢ 4+ ¢p)th state passed on a walk of length ¢, is ‘almost independent’
of the event that s is the ith state passed on the same walk.

For a given state s, satisfying w(s) > (ée1¢g)/(2n), let X; be a 0/1 random
variable which i1s 1 #ff s 1s the ith state on a walk of length ¢, and ¥ = 22:1 X;.
By our definition of P, in the case of a single sample string,]5(5) = Y/t, where
t =m—L—1. Clearly E(Y/t) = 7(s), and for every i, Var(X;) = n(s) — 72(s).
We next bound Var(Y/t).

vor (4) = dvar () (C50

1
= 5 | 2B = D B(X)E(Y;) (C5b)
1,7 1,f
1
-2 Z E(XiXj) + Z E(X;X;) | — 7*(s) (C.5c)
i,j st [i=j|<to ij st |i—j|>t0
< Z0r(s) + cein(s) — 7(s) (C.5d)
- it 4dn 1+0) .

If we pick ¢ to be greater than (4ntg)/(8efe?), then Var(Y/t) < s=efe?, and using
Chebishev’s Inequality Pr[|Y/t — 7(s)| > e1€g] < o=. The probability the above
holds for any s is at most g. The analysis of the second property required of a
typical sample is identical to that described in the case of a sample consisting of
many strings. []

32 DANA RON, YORAM SINGER, NAFTALI TISHBY

Lemma 2 [f Learn-PSA is given a typical sample then:

js(o)

751(0'
longest suffiz of s corresponding to a node in T.

1. For every string s in T, if P(s) > € then <1+4¢€/2 , where s’ is the

~—

2 |7 < (/- 1)+ 7).

Proof:
Ist Claim Assume contrary to the claim that there exists a string labeling a node
sin T such that P(s) > ey and for some o € X

> 1+¢/2, (C.6)

where s’ is the longest suffix of s in T. For simplicity of the presentation, let us
assume that there is a node labeled by s’ in T. If this is not the case (suffiz(s’)
is an internal node in 7', whose son s’ is missing), the analysis is very similar. If
s = s’ then we easily show below that our counter assumption is false. If s’ is a
proper suffix of s then we prove the following. If the counter assumption is true,
then we added to T' a (not necessarily proper) suffix of s which is longer than s'.
This contradicts the fact that s’ is the longest suffix of s in 7.

We first achieve a lower bound on the ratio between the two true next symbol
probabilities, v;(¢) and 75 (). According to our definition of 4, (-),

Ys1(0) > (1= [Slymin) P(ols') . (C.7)

We analyze separately the case in which v,/ (0) > 4min, and the case in which
Y5 () < Ymin . Recall that ymin = €2/|Z|. I ¥5/(¢) > Yimin, then

vs(0) 7s(0) (1=« a

o) = Proley T (5
7s(o) (1] —e¢ _ .

0 (=)= [Shn) (C:80)

> (1+§)(1_62)2 , (C.8¢)

where Inequality (C.8a) follows from our assumption that the sample is typical,
Inequality (C.8b) follows from our definition of 4,/ (¢), and Inequality (C.8¢) follows
from the counter assumption (C.6), and our choice of . Since €2 < €/12, and
€ < 1 then we get that

7s(o) €
(@) > 14—4 . (C.9)

If 75/ (0) < Ymin, then 35 (o) > y5:(0), since F5/(c) is defined to be at least Ymin.
Therefore,

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 33

75 (o)

¥s (o) € €
>1+=->1+- C.10
vs:(0) ()

e (o) 2 4

as well. If s = s’ then the counter assumption (C.6) is evidently false, and we must
only address the case in which s # s’ i.e., s’ is a proper suffix of s.

Let s = s1s5...5;, and let s’ be s;...s;, for some 2 < ¢ < [. We now show
that if the counter assumption (C.6) is true, then there exists an index 1 < j < ¢
such that s; ...s; was added to T. Let 2 < r < i be the first index for which
Ys,..5,(0) < (1 4 T€2)Ymin. If there is no such index then let r = i. The reason
we need to deal with the prior case 1s clarified subsequently. In either case, since
€9 < ¢/48, and € < 1, then

7s(0) €
—_— > 14 - C.11
@ T (€10
In other words
'}/s(o') 752...81(0-) 75r_1~~~81(0) €
. I N C.12
Tl @ e ale) T (o) 1 (C12)

This last inequality implies that there must exist an index 1 < j < ¢ — 1, for which

75'...51(0') €
LRI I C13
T () 3L (C13)

We next show that Inequality (C.13) implies that s; ...s; was added to T. We do
this by showing that s;...s; was added to S, that we compared p(0'|5]' ...81) to
p(0'|5]'+1 ...s1), and that the ratio between these two values is at least (1 + 3e2).
Since P(s) > € then necessarily

P(sj...s1) > (1 —e1)eq (C.14)

and s; ...s; must have been added to S. Based on our choice of the index r, and
since j < r,

'}/sj...sl(o') > (1+7€2)7mm~ (015)
Since we assume that the sample is typical,
P(alsj...51) > (14 6€2)%min > (1 + €2)Ymin (C.16)

which means that we must have compared P(c|s; ...s;) to P(c|sj1...51).
We now separate the case in which ’ysj+1...s,(a) < Ymin, from the case in which
75j+1...sl(0') Z Ymin - If 75j+1...sl(0') < Ymin then

P(alsjyr-.-51) < (1+€2)Ymin - (C.17)

Therefore,

34 DANA RON, YORAM SINGER, NAFTALI TISHBY

P(als; ...s1) S (1 +6€2)Ymin
P(O’|5]'+1 .. .51) - (1 + 62)7min

> (1 +3e2) , (C.18)

and s; ...s; would have been added to T'. On the other hand, if v, . s (0) > Ymin,
the same would hold since

p(0'|5]' ...87) S (1 —€2)7s,..5(0)

p(0'|5]'+1...51) T (IFe)Ys4.5(0) (C.19a)
(1—e)(1+5%)

 (I+e) (C.19b)
(1 —€2)(1+ 6ea)

. (1—e2) (C.19¢)

> 1Hie (C.19d)

where Inequality C.19¢ follows from our choice of € (e2 = z57). This contradicts
our initial assumption that s’ is the longest suffix of s added to T

2nd Claim: We prove below that 7' is a subtree of 7. The claim then follows
directly, since when transforming 7" into T, we add at most all |X| — 1 siblings of
every node in 7. Therefore it suffices to show that we did not add to T any node
which is not in 7. Assume to the contrary that we add to T a node s which is not
in 7. According to the algorithm, the reason we add s to 7T, is that there exists a
symbol o such that]5(U|5) > (14 €2)Ymin, and]5(U|5)/ﬁ(a|suﬁ:p(s)) > 1+ 3eo,
while both P(s) and P(suffiz(s)) are greater than (1 — ¢;)eo. If the sample string
is typical then

P(ols) > ymin » P(ols) < P(als) + c2vmin < (14 e2)P(als) (C.20)
and

]5(U|suﬁ€:p(5)) > P(o|suffiz(s)) — €2Vmin - (C.21)
If P(o|suffiz(s)) > Ymin then]5(U|suﬁ€:p(5)) > (1 —e2)P(o|suffiz(s)), and thus

Pl (1—a)
P(o|suffiz(s)) — (1+€2)
which is greater than 1 since e2 < 1/3. If P(o|suffiz(s)) < Ymin , since P(cls) >

Ymin , then P(o|s)/P(o|suffiz(s)) > 1 as well. In both cases this ratio cannot be
greater than 1 if s is not in the tree, contradicting our assumption. []

(1+3e2) | (C.22)

