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Review
Glossary

Bootstrapping: a method that assesses the uncertainty of a statistical estimate

through recalculation of the statistic using repeated, random sampling of the

original data set.

Commercial pathway database: a collection of pathway annotation data that is

available for private purchase by investigators.

Covariate: a variable that is possibly predictive of the outcome under study; for

example, genetic analyses often attempt to account for the effects of variables

such as age and gender to precisely determine statistical relationships between

genetic factors and phenotypes.

Freeware pathway database: a collection of pathway annotation data that is

publically available without cost to the user.

Genome-wide association study (GWAS): a large-scale study that assays

genetic variants across the entire genome along with quantitative or

categorical phenotype status to detect genotype–phenotype associations.

Genomic inflation: the systematic increase of association statistics from a

genome-wide study owing to population stratification or other confounding

factors.

Genotype imputation: the process of probabilistically predicting genotypes

that are not directly assayed (by not being represented on that genotyping

platform or via localized experimental failure) with a particular array.

Granularity: a description of the scale or level of detail in a set of data.

Linkage disequilibrium (LD): the non-random association of alleles at two or

more loci; in other words, the occurrence of combinations of alleles at different

frequencies than would be expected through a random formation of

haplotypes.

Permutation: the process of calculating the distribution of a test statistic under

the null hypothesis through repeatedly rearranging the labels in a data set; for

example, in case-control studies, phenotype statuses of subjects are randomly

rearranged to assess the distribution of an association statistic under the null

hypothesis of no significant association between a marker and phenotype status.
Genome-wide data sets are increasingly being used to
identify biological pathways and networks underlying
complex diseases. In particular, analyzing genomic data
through sets defined by functional pathways offers the
potential of greater power for discovery and natural
connections to biological mechanisms. With the bur-
geoning availability of next-generation sequencing, this
is an opportune moment to revisit strategies for path-
way-based analysis of genomic data. Here, we synthe-
size relevant concepts and extant methodologies to
guide investigators in study design and execution. We
also highlight ongoing challenges and proposed solu-
tions. As relevant analytical strategies mature, path-
ways and networks will be ideally placed to integrate
data from diverse -omics sources to harness the exten-
sive, rich information related to disease and treatment
mechanisms.

The search for pathways in complex diseases: a seminal
moment
Since 2005, over 1000 human genome-wide association
study (GWAS) publications have described genetic associa-
tions to a wide range of diseases and traits [1]. However,
extending GWAS findings to mechanistic hypotheses about
development and disease has been a major ongoing chal-
lenge. In particular, the focus on single loci has been
confounded by two insights: (i) most GWAS-implicated
common alleles and differentially expressed genes on ex-
pression arrays have exhibited modest effect sizes; and (ii)
genes function within biological pathways and interact
within biological networks [2]. As such, genome-wide data
sets are increasingly viewed as foundations for discovering
pathways and networks relevant to phenotypes [3]. This
trend is vital, given that pathway mechanisms are natural
sources for developing strategies to diagnose, treat and
prevent complex diseases. In this context, it is not surpris-
ing that pathway-based analyses have exploded in use
during the past 3–5 years (Figure 1).
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In pathway analysis, gene sets corresponding to biologi-
cal pathways (Box 1) are tested for significant relationships
with a phenotype. Primary data for pathway analysis are
commonly sourced from genotyping or gene expression
arrays, although in theory any data elements that could
be mapped to genes or gene products could be used. Impor-
tantly, analyzing genomic data through functionally de-
rived gene sets can reveal larger effects that are otherwise
concealed from gene- or single nucleotide polymorphism
(SNP)-based analysis. For example, high-profile studies in
breast cancer [4], Crohn’s disease [5] and type 2 diabetes [6]
demonstrate that functionally related genes can collective-
ly influence disease susceptibility, even if individual loci do
Replication: the repetition of a research study in an independent sample to

verify first-line results and to determine whether effects can be generalized

beyond the initial sample.
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Figure 1. PubMed citations for ‘pathway analysis’ from 2001 to 2011. The use of pathway analysis has grown exponentially in the past 3–5 years. This explosion in use has

followed major developments (shown in boxes) in characterizing the human genome and in performing genome-wide studies of complex diseases and traits. Data points

represent the total number of references displayed through a PubMed search for ‘pathway analysis’, using date limits of January 1, 2001 and December 31 of the calendar

year denoted on the x-axis. Abbreviations: GWAS, genome-wide association study; NHGRI, National Human Genome Research Institute; SNP, single nucleotide

polymorphism.
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not exhibit genome-wide significant association. As such,
pathway analysis represents a potentially powerful and
biologically oriented bridge between genotypes and phe-
notypes.

Despite their popularity and potential, strategies for
pathway-based studies have progressed in the absence of
guidelines, leading to ambiguity regarding optimal meth-
ods, high variability in results and barriers to further appli-
cation. With surging interest in pathway analysis and the
emergence of next-generation sequencing data, which will
inevitably broaden its application, this is an ideal moment
for a critical synthesis of current approaches and an out-
lining of targets for future development. Here, we clarify
fundamental concepts about pathways and networks and
their relationships to study design and execution. We also
review extant strategies to detect pathway–phenotype as-
sociation and highlight methodological challenges. Finally,
we describe how pathways and networks are ideal vehicles
for leveraging multi-omics data for discovery.

Selecting an overall study design
Broadly, there are two approaches to pathway-based geno-
mic studies. Candidate pathway analysis is hypothesis
driven: pathways are preselected based on prior knowledge
and insight. Although the number of candidate pathways
may vary with study goals (e.g. different effects may be
seen within a large, complex pathway compared with
numerous, smaller pathways), this approach is marked
by its use of a biologically targeted subset of genomic data.
The other approach, genome-wide pathway analysis
(GWPA), interrogates a complete genomic data set through
pathways representing an extensive range of biology.
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Notably, the line between ‘targeted’ and ‘extensive’ biolog-
ical coverage is not precisely drawn. Although methods
limited to GWPA have been used on data sets with only
1000 genes (approximately 5% of the total number of
human genes) [7], the optimal point of delineation between
these two approaches warrants further examination.

There are several advantages to the candidate pathway
approach. Focusing the scope of analysis can enable other-
wise intensive procedures, such as genotype imputation
and manual pathway curation; by maximizing annotation
coverage and quality, these procedures can bridge differ-
ences in genotyping platforms across cohorts for replica-
tion or meta-analysis. Unfortunately, targeted biological
coverage may fail to detect unexpected relationships, such
as the association between inflammatory pathways and
age-related macular degeneration [8]. Furthermore, poor
annotation of one pathway can be particularly limiting
when only a few pathways are assessed. These traits make
candidate pathway analysis most appropriate where
computational resources are limited and where specific
pathways are of a priori interest.

By contrast, GWPA maximally utilizes the available
genomic data. As a result, this approach can more readily
detect unexpected relationships, including those across
diseases operating in different body systems [9]. However,
GWPA is computationally intensive, requiring more strin-
gent corrections for multiple comparisons and making
procedures, such as imputation, more challenging. Al-
though strategies to reduce the dimensionality of ge-
nome-wide data for pathway analysis are in active
development [10,11], they will need to be evaluated further
ahead of widespread use. Finally, GWPA benefits from



Box 1. Fundamental concepts about biological pathways and networks

Although unstated notions pre-date it, the first explicit description of a

pathway as the events by which intermediates are processed in a

defined sequence was provided in 1973 [84]. Recently, broader

notions of pathways as collections of biologically related genes [24]

have attempted to fit evolving scientific theories and analyses. A

systematic conceptualization of biological pathways (Figure Ia) posits

that pathways are vector driven toward an essential goal (i.e. their

constituents as a whole are directed to a common, specific end point).

Viewed this way, molecular pathways have an essential goal of basic

biochemical action on molecules or compounds. Overarching this are

cellular pathways that regulate global cellular status and organ and/or

system pathways that execute broader physiological functions. The

constituents of pathways are typically connected through known or

proposed mechanisms. Of note, the particular constituents of a

pathway may be context dependent, specifically, in relation to the

biological outcome an investigator wishes to study.

In addition, two other types of pathway are important in the study

of genetically complex diseases (Figure Ia). Disease pathways have an

essential goal of the pathogenesis of a disease and its features. For

example, the Alzheimer’s disease pathway plausibly includes com-

ponents from the organ and/or system pathway of memory, which

itself has cellular and molecular underpinnings. By contrast, inter-

vention pathways are defined within the setting of a therapy that

targets disease features or pathogenesis, as in a pathway-based study

of cisplatin sensitivity in ovarian cancer [85]. Importantly, disease and

intervention pathways may include constituents with documented

associations to a phenotype, but whose precise mechanistic roles are

not yet known.

Networks can also collect genes and other biological elements for

quantitative and visual assessment of relationships [86]. Unlike

pathways, biological networks are not vector driven toward an

essential outcome (Figure Ib). Instead, networks are characterized

by nodes that are connected by edges representing defined relation-

ships. In a particular network, nodes may represent almost any

biological element, including genes, gene products, non-gene DNA

sequences, pathways, diseases, therapies, or combinations thereof.

Common examples of network relationships include binding in

protein interaction networks and regulation by common factors in

gene interaction networks. Finally, statistical networks display

relationships, such as correlation, that are inferred from computa-

tional analyses [70]. A central outstanding question involves under-

standing the degree of connection between statistically inferred

networks and biological networks [87]. Software platforms for

network analysis include IPA (Ingenuity Systems, http://www.ingen-

uity.com/) and Cytoscape (http://www.cytoscape.org/); two recent

reviews discuss these and other network-based tools in detail [88,89].
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Figure I. A primer on biological pathways and networks. (a) The major types of biological pathway are shown along with a representation of their relationships among

each other. Each type of pathway is defined by its essential goal. Molecular pathways have an essential goal of basic biochemical action (biosynthesis, biodegradation,

translocation, transformation, activation or inactivation) on molecules or compounds. Cellular pathways regulate global cellular status, whereas organ and/or system

pathways execute higher-order physiological functions. (b) Pathways and networks, although complementary sets of biological elements, differ in key respects.

Pathways can include directional regulation (shown in red and green) and branching, but are nevertheless vector driven to an essential outcome. Although elements in

pathways are typically connected mechanistically, network elements are connected through shared relationships that may not indicate an action. As such, networks are

not vector driven from a starting point to an essential outcome. Networks can be divided into subnetworks (shown in blue) exhibiting all elements connected to a central

node (‘A’ in this example) or into modules (shown in purple) that exhibit a high density of connections.
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systematic follow-up to deal with the often high overlap of
genes across multiple pathways and to evaluate results in
view of prior knowledge.

Obtaining input genomic and pathway annotation data
Pathway analyses can utilize raw genotype data for indi-
vidual subjects [6,12,13] or a list of P-values relating genes
or SNPs to a phenotype [14–16]. Pathway-based tools for
raw genotypes do not effectively include covariates but can
naturally correct for linkage disequilibrium (LD) through
permutation. By contrast, P-value distributions are read-
ily accessible via other researchers and can be generated
with application of covariates, but require corrections for
LD based on reference populations. Investigators should
consider their resources and study goals when selecting
the most appropriate genomic data source.
In parallel, a pathway analysis is only as good as the
functional information underlying its pathway definitions.
Prominent pathway annotation databases exhibit diverse
features (Table 1; also see the online resource Pathguide
[17]). The ideal choice of database depends on several
variables and their impact on study goals. For example,
freeware databases are commonly used because of their
ease of access, transparency of features and visibility in
publications. Commercial databases may require a signifi-
cant investment; however, they are typically linked to
user-friendly statistical analysis software and often in-
clude high-quality pathway graphics that can be exported
to manuscripts. Investigators should weigh the relative
importance of these factors during selection.

Pathway curation methods can also impact analyses.
Most databases rely on expert review for pathway curation;
325
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Table 1. Prominent pathway annotation databases

Name Curationa Major features URL

Biocarta M Driven by user input with expert review of some pathways http://www.biocarta.com/

DAVID M/E Augments and integrates annotations from other databases http://david.abcc.ncifcrf.gov/

GO M/E Largest database; hierarchical structure; can filter data by

evidence codes

http://www.geneontology.org/

Ingenuity M/E Large collection of canonical pathways; high-quality pathway

maps

http://www.ingenuity.com/

Kyoto Encyclopedia

of Genes and

Genomes (KEGG)

M Reference pathways (mosaics from several organisms) and

organism-specific annotations; pathway maps link to closely

related genes

http://www.genome.jp/kegg/

MetaCore M Extensive disease pathways; can edit pathway maps for

publication

http://www.genego.com/

MetaCyc M Metabolic pathways; can visualize connections among

pathways

http://metacyc.org/

Molecular Signatures

Database (MSigDB)

M/E Can download pathways from several other databases as a

collection for input to analytical software; novel groupings

(e.g. motif gene sets)

http://www.broadinstitute.org/gsea/

msigdb/index.jsp/

PANTHER M Can predict protein functions from sequence and

evolutionary data

http://www.pantherdb.org/

Pathway Interaction

Database (PID)

M/E Broad range of cellular pathways with special focus on cancer

signaling; can generate interaction maps from a list of genes

http://pid.nci.nih.gov/

Reactome M Pathways are extensively cross-referenced to PubMed,

HapMap and other resources; can overlay expression or

other data onto pathway maps

http://www.reactome.org/ReactomeGWT/

entrypoint.html/

ResNet Series M/E Regular updates through web server; optional user editing or

text scanning of user documents; links to reference articles

http://www.ariadnegenomics.com/

aAbbreviations: M, manual; M/E, manual and electronic.
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however, users of these databases should be aware of their
update intervals and criteria used as evidence for inclusion
in pathways. Alternatively, electronic curation uses text-
searching algorithms to infer functional relationships. Al-
though these inferred annotations can be useful for hy-
pothesis generation, their accuracy is unreliable [18],
making them unsuited to many pathway analyses. Finally,
targeted manual curation can be particularly appropriate
when an investigator has expertise in a biological realm
that is poorly annotated in databases. Although potentially
time-consuming, manual curation can synthesize recent
results with established relationships to produce novel
candidate pathways [19,20] or gene sets representing posi-
tive controls for pathway analysis [21].

Lastly, the biological coverage of pathway annotations
should be considered. Across databases, similarly named
pathways can exhibit vast differences in constitution,
whereas differently named pathways can exhibit signifi-
cant overlap. As a result, investigators should attempt to
match study goals with database coverage. For example,
specialized, high-granularity databases are most useful for
candidate studies of intricate signaling pathways, whereas
canonical pathway collections (representing well-estab-
lished pathways) provide a broad biological scope that is
well suited for screening-oriented studies.

This collective diversity of features is a major factor in
explaining why different databases can yield divergent
results from the same input data [22]. As such, an early
discussion of pathway analysis recommended the use of
multiple databases for each analysis [23]. This approach
can balance the relative characteristics of each database
used and can yield a measure of validation when different
databases yield similar results. However, this strategy is
most effective when it is supplemented by a systematic
326
review of the results. Alternatively, further analyses can
reveal broader findings that drive association signals
across multiple smaller pathways: for example, one study
analyzed pathway sets obtained through hierarchical clus-
tering and identified an association between the canonical
MAPK (mitogen-activated protein kinase) signaling path-
way and breast cancer [4].

Preparing data for association testing
Systematic processing of input genomic data and pathway
annotation data is vital for pathway analyses. Although
some relevant methods are actively evolving, optimized
approaches to major issues can minimize variation in
results and interpretation.

Pathway size

Most pathway analyses place constraints on pathway size:
small pathways can exhibit false positive associations
because of large single-gene or single-SNP effects [24],
whereas large pathways are more likely to show associa-
tion by chance alone [22]. The most common minimum
threshold for pathway size appears to be ten genes
[4,6,13,25]. It is important for analysts to note that this
threshold may exclude highly specific and potentially in-
formative functional sets, including those involving protein
complexes and DNA sequence motifs. Frequently used
maximum thresholds for pathway size include 100 [4]
and 200 [6,25] genes. Notably, in the latter two studies,
upper limits of 300 [6] and 400 [25] genes did not alter the
results. However, larger pathways are relatively rare and
often derive their size from being more general in scope;
thus, their exclusion may not significantly affect analyses
or downstream biological interpretation. Overall, investi-
gators should consider their study goals when applying

http://www.biocarta.com/
http://david.abcc.ncifcrf.gov/
http://www.geneontology.org/
http://www.ingenuity.com/
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such thresholds and should evaluate results in that con-
text. Although future efforts might develop size-dependent
statistical corrections, at present the reporting of pathway
size and related summary statistics (e.g. [26]) alongside
association data can aid interpretation.

Pathway overlap

Genes and their products typically act in multiple path-
ways [2], and each role is potentially important to a disease
or treatment mechanism. As a result, analyses can expect
to have some degree of pathway overlap. However, high
pathway overlap can obscure the true source of an associ-
ation signal. Although this problem can exist with any
pathway analysis, Gene Ontology (GO) annotations are
particularly susceptible because of the large, hierarchical
structure of the database [27]. Some studies have restrict-
ed analysis of GO terms to certain levels in the hierarchy
[13,28], whereas a new Bayesian method incorporates the
structure of the hierarchy as prior information into its
pathway association metric [29]. However, users of these
approaches should be aware that the information content
at particular GO levels is unpredictable [30]. Pathway
overlap can also be addressed during post-analysis to
prioritize related pathways for further exploration. Extant
strategies include hierarchical clustering in a study of
breast cancer [4], overlap-based network creation in the
visualization tool ‘Enrichment Map’ [31] and the listing of
overlapping pathways alongside results in the analytical
software PARIS [32].

Assigning data elements to genes

Genomic data have historically been integrated into path-
ways by mapping assayed elements to genes. For SNP-
based genotyping arrays, this is not straightforward be-
cause many array SNPs are not located in known coding or
regulatory regions. In one study, all SNPs that were not
mapped to a single gene through a reference genome build
were discarded, but this resulted in a loss of more than 25%
of assayed SNPs [33]. Alternatively, each unmapped SNP
can be assigned to its nearest gene [34]. However, evolving
theories suggest that sequences are not associated to genes
based on closest proximity, and may not even be solely
associated to one gene [35,36]. Hence, many studies assign
unmapped SNPs to all genes within a distance window,
ranging from 10 kb to 500 kb [13,25,26,37]. Studies taking
this approach should be aware that some SNPs may not be
functionally related to their assigned gene(s). In addition,
SNPs that map to multiple genes in the same pathway can
yield spurious pathway association. This issue is particu-
larly important for genes (such as the major histocompati-
bility complex/human leukocyte antigen (MHC/HLA)
genes) that cluster in the genome and belong to the same
pathway, because variants in those genomic regions can
potentially map to all genes in the pathway. Finally, given
the importance of SNP-to-gene mapping for pathway anal-
yses, investigators should be aware that imputation can
increase gene coverage by characterizing SNP genotypes
that are not directly available in a particular data set.
Imputation can be particularly useful for bridging differ-
ences in genotyping platforms across cohorts for replica-
tion and meta-analysis, and can also enable investigation
of rare alleles and copy number variants (CNVs) that are
less represented on standard platforms [38].

Calculating gene significance and accounting for LD

Most pathway analysis tools utilize one association signal
per gene. Whereas expression arrays yield a single P-value
for each gene, SNP arrays include multiple signals per
gene, some of which are correlated. As such, some studies
use the minimum SNP-level P-value within a gene as the
operative signal [4,25,33,34]; however, this approach will
not detect additive effects among SNPs with moderate
individual association. For methods that combine SNP-
level signals, including those based on the truncated prod-
uct method [14], LD must be accounted for to prevent
highly correlated SNPs from biasing gene-level signifi-
cance. Strategies to accomplish this include discarding
SNPs that depart from LD at a pre-set threshold
[25,26,39] and adapting principal component analysis to
extract the most independent signals within a gene
[10,11,26]; unfortunately, these methods can eliminate
substantial information. Alternatively, the SNP ratio test
[40] and the ‘set-based analysis’ in PLINK [41] use pheno-
type permutation to correct naturally for biases introduced
by LD and gene size; however, these tools require raw
genotype data and are computationally demanding, mak-
ing them better suited for studies of candidate pathways
with relatively few genes. Notably, recently developed
methods that accept P-values as input and account for
LD through simulations [42,43] or genotype permutation
[32] are computationally efficient and may represent new
paradigms as their power is honed and evaluated.

Analytical methods to detect pathway–phenotype
relationships
Following data processing, analytical methods can be ap-
plied to test for significant pathway–phenotype relation-
ships. Prominent examples of pathway-based analytical
tools and their salient features are provided in Table 2.
Notably, one class of tools uses text mining of published
abstracts to identify potential pathway–phenotype rela-
tionships. These tools query a list that may include SNPs
meeting a P-value threshold, genes from candidate path-
ways, or pathways themselves, among other possibilities.
Text-mining approaches have efficiently identified poten-
tial interactions among genes associated with neurodegen-
erative brain changes [20] and have equally been applied to
generate a candidate pathway based on regulation or
interaction with BRCA2 (breast cancer 2, early onset) [44].

By contrast, pathway-enrichment tools assess for a sta-
tistically significant distribution of association within a
pathway. Competitive enrichment methods compare the
collective association within a pathway to the collective
signal among genes not in the pathway [45]. As a result,
competitive methods are not suitable for candidate pathway
analyses that do not have an appropriate complement of
data from outside of the candidate pathways. Meanwhile,
self-contained enrichment methods test the signal within a
pathway against simulated data sets that are expected to
have no significant phenotype association [45,46]. Self-con-
tained methods can be challenging to use in a screening-
oriented GWPA because of the computational demand of
327



Table 2. Examples of publically available pathway-based analytical tools

Name Typea Input data Analytical method Corrections included Refs

Chilibot TM Word list Searches PubMed abstracts for relationships among word list;

can distinguish biological concepts (e.g. activation or inhibition)

N/A [90]

GenGen C Raw genotype

data

Uses best P-value as gene-wide score and calculates rank-based

Kolmogorov–Smirnov-like pathway statistic with permutation

LD, pathway size,

gene size, FDR

[49]

GeSBAP C Gene or

SNP P-values

Uses best P-value as gene-wide score and performs rank-based

Fisher’s exact test to detect pathway enrichment

FDR [91]

GRAIL TM SNPs or

genomic regions

For multiple disease-associated regions, identifies functionally

related genes that probably highlight causal pathways

Number of genes

per region

[92]

GRASS SC Raw genotype

data

Uses principal component analysis to select representative

eigenSNPs for each gene for pathway-based ridge regression

LD, gene size, FDR [93]

GSA-SNP C SNP P-values Uses -log (kth best P-value) as gene-wide score and calculates a

z-score, iGSEA or MAXMEAN statistic for the pathway

Pathway size, FDR [52]

GSEA-P C Gene P-values Calculates rank-based Kolmogorov–Smirnov-like pathway statistic

with phenotype permutation

LD, pathway size, FDR [94]

GSEA-SNP SC Raw genotype

data

Uses all SNPs for a pathway MAX-test (maximum of Cochran–

Armitage trend tests under three genetic models) with permutation

LD, pathway size,

gene size, FDR

[50]

MAGENTA C SNP P-values Modified approach based on GSEA-SNP for meta-analytic data LD, gene size, FDR [95]

PARIS SC SNP P-values Identifies the significant genomic features within a pathway and

performs genomic permutation to assess pathway significance

LD, pathway size,

gene size, FDR

[32]

PLINK set test SC Raw genotype

data

For SNPs passing a P-value threshold, calculates the average test

statistic for the independent SNPs within a pathway

LD, pathway size,

gene size, FDR

[41]

SNP ratio test SC Raw genotype

data

Calculates the ratio of significant SNPs to all SNPs in a pathway

and uses phenotype permutation to calculate empirical P-value

LD, pathway size,

gene size, FDR

[40]

aAbbreviations: C, competitive enrichment; SC, self-contained enrichment; TM, text-mining.
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generating simulated data sets. In addition, self-contained
approaches are particularly susceptible to false positives
through genomic inflation, as each pathway is evaluated
independently from any other data on the source assay.
Although one study [47] normalized all association statistics
to a genomic inflation factor calculated by PLINK, best
practices in this area have not yet been settled. Competitive
tests are more robust in controlling genomic inflation, but
they can also relinquish power in data sets with diffuse
association signals [45]. As such, the optimal method
depends on study goals, data set properties and computa-
tional resources.

Among extant competitive enrichment methods, three
analytical frameworks predominate. In the first of these,
threshold-based approaches, hypergeometric, chi-square or
Fisher’s exact test statistics are used to identify pathways
that are overrepresented among the ‘significant’ markers
under study. Notably, the threshold for ‘significance’ is
arbitrary and can affect results [48]; observed SNP-level
thresholds have ranged from P < 0.05 [37] to P < 5�10�8
[34]. By contrast, rank-based approaches order all of the
markers being studied by their significance and then test for
pathways that have lower rankings than the overall distri-
bution. Whereas the rank-based tools GenGen [49] and
GSEA-SNP [50] use a Kolmogorov–Smirnov-like running
sum that gives greater weight to more significant markers,
others rely on MAXMEAN-related statistics as potentially
powerful and efficient alternatives [51–53]. Compared with
threshold-based methods, rank-based approaches more nat-
urally account for differences in significance among markers
[24] but may also be heavily influenced by a few highly
significant markers [54]. Finally, z-score methods infer
enrichment based on deviation from a normal distribution
that accounts for the size of each pathway [52,55]; although
these methods are sensitive and fast, their error rates have
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not been well characterized. Self-contained enrichment
methods use even more diverse statistical methods to com-
bine the P-values within a pathway into an aggregated
measure (Table 2). However, in the absence of large-scale
power comparisons among related methods across several
well-characterized data sets, the choice of a particular en-
richment tool may be less important than understanding the
relative strengths and limitations of these broader catego-
ries.

An alternative to enrichment methods are module-
based approaches, which examine sets defined by other
biological characteristics for meaningful pathways con-
tained therein. For example, one study used hierarchical
clustering to form modules of coexpressed genes across
multiple inflammatory diseases; subsequent analysis of
these modules suggested a role for interferon-inducible
signaling in TB [56]. Gene modules can also be defined
through protein interaction networks, as in a study that
associated genetic variants in glutamate pathways to brain
glutamate concentration in multiple sclerosis [57]. Impor-
tantly, recent studies are combining enrichment and mod-
ule-based methods to point to broader findings. For
example, network analysis of enriched pathways revealed
major roles for antigen presentation and interferon signal-
ing in rheumatoid arthritis [58].

Finally, developing strategies are targeting specific
pathway-based challenges. For example, machine-learn-
ing approaches [11,59] attempt to identify the most infor-
mative subsets of genes within pathways for association.
Networks have been effective in studies of rare variants,
as with the identification of a synaptogenesis gene net-
work affected by rare copy number variants (CNVs) in
autism [60]. Pathway-based methods for studying rare
variants using genomic region-based mapping and self-
contained tests are also evolving [61,62]. Indeed, the
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appeal of pathways and networks will continue to expand
as their associated tools progress to analyze a variety of
data through user-friendly platforms.

Post-analysis considerations
Following pathway analysis, appropriate data reporting
and interpretation are imperative. Currently, bias intro-
duced by gene size is less commonly addressed than is bias
from pathway size. In particular, large genes containing
many SNPs are more likely to contain significant SNPs by
chance alone [63]; for analyses, this can favor pathways
containing large genes. Analytical tools that use permuta-
tions naturally control for gene size by comparing the
actual association data with the distribution of association
statistics generated from randomly permuted data sets
expected to reflect chance-based confounding effects. Other
approaches [41,42] allow users to restrict analysis to a
subset of the most significant SNPs in each gene: for large
genes, this may eliminate some spuriously associated
SNPs and thus limit their impact on the pathway analysis.
As a minimum, studies should discuss the potential
impacts of gene and pathway size on their results. Other
sources of bias that should be addressed include the capac-
ity for strongly associated markers to drive pathway asso-
ciation and the possible effects of SNPs being assigned to
multiple genes.

Correction for multiple comparisons must also be ap-
plied to pathway P-values to control for false positives. As
in other areas of statistical genomics, optimizing methods
for correction is a work in progress. Bonferroni-related
methods seem too conservative for pathway analyses be-
cause they do not allow for dependence across pathways.
False discovery rate (FDR) approaches [64] are frequently
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salient information from diverse studies on a particular
disease. These targeted resources are particularly up-to-
date and can facilitate collaboration within highly investi-
gated diseases. Functional annotation of genes is also
becoming prominent. These annotations draw on experi-
mental data that indicates function, location of action, or
physiological region of association [69], and can allow
investigators to develop candidate pathways related to
localized anatomical or physiological derangements.
Extensions of this concept across disciplines will probably
be a prime area of advancement.

In future pathway analysis platforms, computational
efficiency will be highly valued, given the impressive gran-
ularity of next-generation sequencing data. In addition,
investigators may wish to use different genomic data sets,
pathway annotation databases and analytical parameters,
depending on study resources and goals; as such, tools that
are flexible to various study approaches will maximize
their impact. Finally, given that genes constitute only
1–2% of the human genome, strategies to leverage both
genic and non-genic data for pathway analysis may provide
increased power to detect meaningful functional sets.

Meanwhile, complementary methods can extend the
biological reach of pathway-based results. For example,
it is not yet understood whether gene interactions are more
likely within a given pathway or across different pathways
in a network. A comparative study of epistasis in pathways
and networks, perhaps utilizing novel techniques for its
detection within population data [70–73], could inform
future strategies in this area. A related area of develop-
ment involves using known protein interactions to gener-
ate subnetworks from enriched pathways; these
subnetworks can highlight novel candidate genes [74] or
regulatory relationships [75] from significant pathways.

Nevertheless, the ongoing development of pathway-
based tools would benefit from further empirical evalua-
tion of current approaches. For example, a creative meta-
analysis might examine how various association metrics
affect the likelihood of replication of findings. In addition,
testing association methods against well-calibrated posi-
tive and negative control data sets might illuminate their
relative capabilities. Notably, one study employed multiple
pathway analysis algorithms using an extensively ex-
plored Crohn’s disease data set [76]; however, the algo-
rithms chosen were highly disparate in their null
hypotheses and approaches to LD, making it difficult to
compare their results uniformly. Alternatively, multi-site
collaborations might simultaneously analyze several large
data sets using a small number of analytical tools in the
same conceptual category; comparisons of the results
would advance the underlying science and critically eval-
uate tools against closely related options.

Finally, methods for integrating different types of asso-
ciation signal are being developed. A nascent view proposes
that combining genome-wide expression and genotyping
data into a joint quantitative signal can increase power for
discovery [6,37,77,78]. One particularly attractive feature
of this view is that it augments structure (genotype) with
function (expression). Indeed, one study demonstrated that
SNPs correlated with gene expression changes [expression
quantitative trait loci (eQTLs)] were more likely to show
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disease association than were other SNPs from a GWAS
array [79]. Relatedly, visualization tools can graphically
overlay association metrics onto other data to prioritize
markers. Visualization has been used to integrate SNP
association with quantitative imaging phenotypes [80],
among other examples.

Pathways and networks: bridging multi-omics data
As pathway analysis of genomic data has exploded in use,
its methods have matured, its results are beginning to
meet its potential and points of consensus are emerging for
its continued application and future development. In the
coming years, we anticipate that pathways and networks
will assume a farther-reaching role in view of the need to
integrate multi-omics data through systems biology
approaches [81,82]. A variety of large-scale strategies
are being used to study complex diseases, including
genomic, transcriptomic, proteomic and metabolomic
approaches, and data from all of these sources can be
analyzed through pathways and networks representing
coordinated functions and relationships. Importantly, al-
though gene associations do not always indicate therapeu-
tic targets [83], pathways and networks implicated by
analyses at multiple levels would be prime targets for
therapies. Integrating large-scale data assayed through
diverse strategies related to structure and function would
provide a fertile process for exploring connections between
replicable, statistical association and meaningful biology.
As such, the role of pathways and networks as the hub for
this integration will be vital in the years to come.
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