
Markov chain Monte Carlo algo-
rithms are ubiquitous across scien-
tific disciplines as a computational
means for studying large, compli-

cated data sets. The idea is to simulate a random
walk that moves among configurations in a large
set. Even though each configuration might have
only a small set of nearest neighbors, eventually the
Markov chain underlying the random walk will
converge to a useful distribution over the entire
space of configurations.

The mathematical foundations underlying the de-
sign of these algorithms can be found in probability
theory. The field of stochastic processes gives con-
ditions prescribing when a Markov chain will con-
verge to a unique stationary distribution and how to
determine what that distribution is. Designing a
Markov chain that converges quickly to the desired
distribution provides a useful tool for sampling.

Over the past 15 years, a flurry of activity has led
to breakthroughs in our understanding of how to
provide rigorous bounds on the convergence rates
of Markov chains and ultimately design provably

efficient sampling algorithms. This tutorial is in-
tended to give an introduction to some of the key
ideas underlying these results; for additional infor-
mation, there are many useful surveys.1–4

Two of the most notable success stories based on
these rigorous methods are estimating the volume
of a convex body5 and estimating the permanent of
a matrix.1,6,7 The exact versions of both of these
problems are #P-complete, the complexity class of
hard counting problems. In a seminal paper, Valiant
defined the class #P in the context of counting the
number of perfect matchings in a graph;8 this is
precisely the problem of calculating the permanent
of the adjacency matrix of a bipartite graph. The
solutions to the approximate version rely heavily
on randomly sampling—in the first case, points in
the convex body, and in the second, perfect match-
ings of the graph. Jerrum, Valiant, and Vazirani es-
tablished the intimate connection between random
sampling and approximate counting for a wide class
of problems known as self-reducible.9 In this intro-
duction to Markov chains, we will concentrate
solely on the sampling aspects of Monte Carlo ex-
periments, forgoing the many beautiful applica-
tions of sampling, including approximate counting.

The Basics of Sampling
Markov chains are useful when we have a finite set
of configurations � from which we would like to
sample. The idea behind designing a Markov chain

30 COMPUTING IN SCIENCE & ENGINEERING

Rapidly Mixing Markov Chains
with Applications in Computer
Science and Physics

M O N T E C A R L O
M E T H O D S

Monte Carlo algorithms often depend on Markov chains to sample from very large data
sets. A key ingredient in the design of an efficient Markov chain is determining rigorous
bounds on how quickly the chain “mixes,” or converges, to its stationary distribution. This
survey provides an overview of several useful techniques.

DANA RANDALL

Georgia Institute of Technology

1521-9615/06/$20.00 © 2006 IEEE

Copublished by the IEEE CS and the AIP

MARCH/APRIL 2006 31

is first to connect the state space so that each con-
figuration has a small number of nearest neighbors.
Then, starting at some arbitrary initial configuration
x0 � �, the Markov chain defines a random walk
along the edges of this graph, walking from one con-
figuration in � to another. A familiar example of this
is opening a brand-new deck of cards, so the initial
configuration is completely ordered, and then per-
forming a series of random shuffles until the deck is
well mixed. Another example is a tourist wandering
aimlessly in an unknown city, making random deci-
sions about how to proceed at each intersection.

The sampling problems considered here are
motivated by statistical physics and have simple
combinatorial descriptions. Let us consider, for
example, how to design a chain for randomly sam-
pling independent sets of some finite graph. An
independent set on a graph G = (V, E) is a subset
of vertices I � V such that no two vertices in I are
connected by an edge in E. When the graph is a
region of the two-dimensional Cartesian lattice,
an independent set is a configuration of the hard-
core lattice gas model from physics in which mol-
ecules (vertices) have non-negligible mass that
precludes any two from occupying adjacent sites
in the lattice.

One simple way to connect the state space to de-
fine a Markov chain is to allow transitions between
independent sets I and I� that have Hamming dis-
tance �(I, I�) � 1 (that is, the number of vertices in
which the two independent sets differ is at most 1).
The Markov chain starts at some initial state I0—
say, the empty set—and we denote the indepen-
dent set at time t by It. During each step of the
simulation, the chain proceeds by choosing a ver-
tex v uniformly from V; if v � It, then we remove
it and let It+1 = I\{v}, whereas if v � It, we can add
it and set It+1 = I � {v}, provided this leads to a valid
independent set. In the case that we can’t add v be-
cause a neighbor is present, then we do nothing
and set It+1 = It. The transition probabilities of this
chain are

Chains like this, which make only local changes
during each move of the chain, are commonly re-
ferred to as Glauber dynamics.10 Notice that Pt(x, y)
is then the probability of being at state y after t
steps of the chain if we start at x. The following de-
finition and lemmas formalize why this is a good
candidate chain.

Definition 1: A Markov chain is ergodic if it is
1. irreducible, that is, for all x, y � �, there is a

t such that Pt(x, y) > 0, and
2. aperiodic, that is, for all x, y � �, gcd{t: Pt(x, y)

> 0} = 1, where gcd is the greatest common
divider.

We can see that our chain on independent sets is
irreducible because we can get from any configu-
ration to the empty independent set by successively
removing vertices, and hence we can move between
any two arbitrary configurations. Moreover, the
chain is aperiodic because most configurations have
self-loop probabilities—that is, moves that keep the
configuration unchanged (these occur whenever
vertices can’t be added without violating the inde-
pendence requirement).

For chains that aren’t aperiodic, self-loops can be
added at every vertex at a small constant cost to the
algorithm’s running time. Such a chain that has
self-loop probabilities of 1/2 everywhere is called a
lazy chain. Ergodicity is a useful minimum require-
ment for defining a Markov chain.

Lemma 1: Any finite, ergodic Markov chain con-
verges to a unique stationary distribution �—that
is, for all x, y � �, we have that limt�� Pt(x, y) = �(y).

To reason about the limiting probability distrib-
ution, known as the stationary distribution, we rely
on the detailed balance condition given in Lemma 2.
Any chain that satisfies detailed balance for some �
is called time-reversible.

Lemma 2: Let M be an ergodic Markov chain on
a finite-state state space � with transition prob-
abilities P(,). If � : � � [0, 1] is any function
satisfying the detailed balance condition,

� (x)P(x, y) = � (y)P(y, x),

and if it also satisfies
x��� (x) = 1, then � is the
unique stationary distribution of M.

For the independent set chain, the transition
probabilities are symmetric—that is, P(I, I�) =
P(I�, I) for all I, I� � �. It follows from Lemma 2

P I I
n

P I J

I I

J I

(,)
/ ,
,

(,),

(,)
′ =

− ∑

⎧

⎨
⎪

⎩
⎪

′ =

≠

1
0
1

if ϕ 11
1
,

(,) ,
.

if
if
ϕ I I
I I

′ >
= ′

The sampling problems considered here are

motivated by statistical physics and have simple

combinatorial descriptions.

32 COMPUTING IN SCIENCE & ENGINEERING

and the ergodicity of the chain that the stationary
distribution must be uniform.

Two questions immediately present themselves.
First, how do we modify this chain to sample
from a more complicated distribution? Second,
for how long do we have to simulate the walk be-
fore we can trust that our samples are chosen
from a distribution that is very close to the sta-
tionary distribution? The celebrated Metropolis
algorithm gives a standard way of approaching
the first of these questions, and is simply based on
a careful consideration of Lemma 2. The second
question is the subject of the remaining part of
this article and requires much more sensitive con-
sideration.

The Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm11—a remark-
ably simple, yet tremendously robust idea—is the
starting point for anyone interested in sampling. It
tells us how to assign the transition probabilities of
any Markov chain so that so it will converge to any
chosen distribution. In 2000, Computing in Science
& Engineering selected it as one of the 10 most im-
portant algorithms.12

The Metropolis Algorithm
Starting at x, repeat:

1. Pick a neighbor y of x in � uniformly with
probability 1/2�, where � is the maximum
number of neighbors of any vertex.

2. Move to y with probability

.

3. With all remaining probability, stay at x.

Using detailed balance, it’s easy to verify that if the
state space is connected, then � must be the sta-
tionary distribution. Often, an additional factor of
1/2 is added to step 2 to ensure that the chain is
aperiodic at a cost of slowing the chain slightly.
This is known as the lazy chain.

Returning to our example of independent sets,
let’s now assume that we wish to sample from the
weighted distribution

� (I) = �|I|/Z,

where Z =
I�� �|I�| is the normalizing constant.
We’ll justify why this is a natural weighting toward
the end of the article. As before, we connect pairs of
independent sets if they have Hamming distance 1.
Let I and I � be two such sets, where v � I and

I � = I � {v}, for some vertex v. Because |I �| = |I| + 1,
the stationary probabilities satisfy �(I �) = ��(I).

The Metropolis algorithm says that we should
define the transitions so that

,

while

.

Notice that the normalizing constant Z drops out
of the equation! This is quite fortuitous because we
typically don’t have a direct way of calculating it.
Considering each of the cases where � > 1 or � � 1,
we see that P and � always satisfies detailed balance.
This means that using these modified transition
probabilities will allow the chain to converge to the
correct stationary distribution.

This leaves our main question: how long do we
have to simulate the chain to get a provably good
sample?

The Mixing Time
The time a Markov chain takes to converge to its
stationary distribution, known as the mixing time of
the chain, is measured in terms of the total variation
distance between the distribution at time t and the
stationary distribution. A comparison of rates of
convergence based on different measures of dis-
tance appears elsewhere.3,13

Definition 2: Letting P t(x, y) denote the t-step
probability of going from x to y, the total varia-
tion distance at time t is

.

This is just the L1 norm, with the 1/2 introduced
so that the distance is always at most 1. We now
have

Definition 3: For � > 0, the mixing time � (�) is

� (�) = min{t : ||Pt�, �||tv � �, ∀t� t}.

We say a Markov chain is rapidly mixing if the mix-
ing time is bounded by a polynomial in n and
log e–1, where n is the size of each configuration in
the state space.

It is well-known from probability theory that the
spectral gap of the Markov chain’s transition ma-
trix provides a good bound on the mixing rate of a
chain. In particular, if we let �0, �1, …, �|�|–1 be the
eigenvalues of the transition matrix P, where

P P x y yt
tv x

t

y
, max (,) ()π π= −

∈ ∈
∑

Ω Ω

1
2

P I I
n

(,) min(,)′ = −1
2

1 1λ

P I I
n

(,) min(,)′ = 1
2

1 λ

min ,
()
()

1
π
π

y
x

⎛
⎝⎜

⎞
⎠⎟

MARCH/APRIL 2006 33

1 = �0 > |�1| |�i| for all i 2, then the spectral gap
is Gap(P) = 1 – |�1|. Theorem 1 relates the spec-
tral gap with the chain’s mixing time.9

Theorem 1: Let �* = minx�� � (x). For all � > 0, we
have

and

.

Notice that the lazy chain with self-loop probabil-
ities of 1/2 everywhere has only non-negative
eigenvalues; this follows from the fact that the
eigenvalues of the lazy chain will satisfy

= (1 + �i)/2 and |�i| � 1 for all i.
Although this view of mixing is extremely useful

for card-shuffling applications and walks on sym-
metric groups, it tends to be less useful for the more
complicated state spaces that arise in computer sci-
ence. In particular, for most algorithmic applications,
the size of the state space is exponentially large—we
typically don’t have a compact, mathematical repre-
sentation for the adjacency matrix, so it’s far too dif-
ficult to determine the eigenvalues of the transition
matrix. We are therefore left with the challenging
task of finding sophisticated, indirect methods to es-
tablish the efficiency of our chains.

Coupling
One of the most popular methods for bounding
mixing times is coupling, both because of its ele-
gance and its simplicity. This was first introduced
to computer science in the context of sampling
spanning trees14 and has since seen many more ap-
plications.

Definition 4: A coupling is a Markov chain on
� � � defining a stochastic process (Xt, Yt)�

t=0
with the properties:

1. Each of the processes Xt and Yt is a faithful
copy of M (given initial states X0 = x and
Y0 = y).

2. If Xt = Yt, then Xt+1 = Yt+1.

Condition 1 means that each process, viewed in
isolation, is just simulating the probabilities as pre-
scribed by the original chain—yet the coupling up-
dates them simultaneously so that they will tend to
coalesce, or move closer together, according to
some notion of distance. Once the pair of configu-
rations agrees, Condition 2 guarantees they agree
from that time forward. The coupling (or expected

coalescence) time can provide a good bound on the
mixing time of M if it is a carefully chosen coupling.

Definition 5: For initial states x, y, let

T x,y = min{t : Xt = Yt � X0 = x, Y0 = y},

and let ET x,y denote its expectation. Then we
define the coupling time to be T = maxx,yET x,y.

Theorem 2 relates the mixing time and the cou-
pling time.15

Theorem 2: The mixing time satisfies
�(e) � �Te ln e–1�, where e is the base of the natural
logarithm.

Let’s consider a toy problem of choosing a ran-
dom vertex in the n-dimensional hypercube,
� = {0, 1}n. A natural Markov chain MCcube per-
forms a simple random walk along the edges of the
hypercube by iteratively flipping a randomly cho-
sen bit. However, we consider instead the so-called
“lazy” version of the chain, which keeps the con-
figuration unchanged with probability 1/2 at each
move of the chain. We need to add some self-loop
probabilities because the hypercube is bipartite
and won’t be aperiodic unless we add self-loop
probabilities. The lazy chain also turns out to be
more conducive to a coupling argument.

MCcube

Starting at the vertex X0 = (0, ..., 0), repeat:

1. Pick (i, b) � {1, ..., n} � {0, 1}.
2. Let Xt+1 be Xt with the ith bit changed to b.

Letting �(,) be the Hamming distance, the
transition matrix of this chain is

It’s easy to check that this chain is ergodic and sym-
metric, hence the stationary distribution is uniform.

To couple, we start with any two vertices X0 and Y0

P X Y
n X Y

X Y(,)
/ ,
/ ,
,

(,) ,
,=

⎧

⎨
⎪

⎩
⎪

=
=

1 2
1 2
0

1if
if
o

ϕ

ttherwise.

λ̂i

{ ˆ }λi

τ ε
λ ε

()
(| |)

log≥
−

⎛
⎝⎜

⎞
⎠⎟

1
2 1

1
21

τ ε
λ π ε

()
| |

log
*

≤
−

⎛
⎝⎜

⎞
⎠⎟

1
1

1

1

One of the most popular methods for bounding

mixing times is coupling, both because of its

elegance and its simplicity.

34 COMPUTING IN SCIENCE & ENGINEERING

on the hypercube and update them simultaneously by
choosing the same pair (i, b). It is straightforward to
see that the two configurations will coalesce as soon
as we update each bit at least once. By the coupon col-
lector’s theorem, this takes O(n ln n) steps, in expec-
tation. Appealing to Theorem 3, we have a bound on
the mixing time. The logarithmic dependence on e–1

is typical for mixing rates and the O(n ln n) is optimal.

Theorem 3: The Markov chain MCcube has mix-
ing time �(e) = O(n ln (ne–1)).

In general, coupling proofs are a little more com-
plicated because typically the distance between con-
figurations can also increase, whereas on the
hypercube it only decreases or remains unchanged.
The strategy in this case is to consider the random
walk performed by the random variable representing
the distance. If we show that distance is merely de-
creasing in expectation, then we have a drift toward
zero that still allows us to prove a chain is rapidly mix-
ing. Typically, as the distance approaches zero, fewer
moves will decrease the distance, so the coupon-col-
lecting theorem suggests we should again expect an
O(n ln n) coupling time. Next, we’ll see a more real-
istic example in the context of sampling k-colorings
that achieves this bound. The proof will use the more
refined method of path coupling, although it can be
easily replicated using a direct coupling argument.

Path Coupling
Although coupling is potentially a powerful tech-
nique, it is often prohibitively cumbersome to mea-
sure the expected change in distance between two
arbitrary configurations. The method of path cou-
pling, introduced by Bubley and Dyer, greatly sim-
plifies this approach by showing that we really need
only consider pairs of configurations that are close ac-
cording to some metric on the state space.16 Often the
metric used is the Hamming distance measuring the
number of places in which two configurations differ.
Because close configurations tend to agree in most
positions, measuring the expected change in distance
becomes much more palatable. Every path-coupling
argument can also be made directly using coupling,
but usually this would require much more work.

The idea behind path coupling is to consider a
small set U � � � � of pairs of configurations that
are “close” according to some distance metric �.
For now, we can think of the pairs of configurations
with Hamming distance 1. Suppose we’ve shown
that the expected change in distance is decreasing
for all the pairs in U. To now reason about arbitrary
configurations X, Y � �, we define a shortest path
z0 = X, z1, ..., zr = Y of length r from X to Y, where

(zi, zi+1) � U for all 0 � i < r. If U is defined appro-
priately, then � (X, Y) =
i=0

r–1 � (zi, zi+1), and we’re
finished: by linearity of expectation, the expected
change in distance between X and Y along this path
is the sum of the expected change between the pairs
(zi, zi+1), and each of these has been shown to be at
most zero. Of course, after the update, there might
be a shorter path between the new configurations
X � and Y �, but this just causes the new distance to
be even smaller.

The following version of the path-coupling the-
orem formalizes the intuition.

Theorem 4: (Dyer and Greenhill17) Let � be an
integer-valued metric defined on � � �, which
takes values in {0, …, B}. Let U be a subset of
� � � such that for all (xt, yt) � � � � there ex-
ists a path xt = z0, z1, .., zr = yt between xt and yt
such that (zi, zi+1) � U for 0 � i < r and

.

Let M be a Markov chain on � with transition
matrix P. Consider any random function f: � � �
such that Pr[f(x) = y] = P(x, y) for all x, y � �, and
define a coupling of the Markov chain by
(xt, yt) � (xt+1, yt+1) = (f(xt), f(yt)).

1. If there exists � < 1 such that E[�(xt+1, yt+1)]
� ��(xt, yt), for all (xt, yt) � U, then the mix-
ing time satisfies

.

2. If � = 1 (that is, E[�� (xt, yt)] � 0, for all
xt, yt � U), let � > 0 satisfy Pr[� (xt+1, yt+1)
� � (xt, yt)] � for all t such that xt � yt.
The mixing time of M then satisfies

.

We now demonstrate the technique of path cou-
pling on a Markov chain MCcol for sampling k-col-
orings of a graph G. This local chain is another
example of Glauber dynamics.

MCcol

Starting at t0, repeat t times:

1. With probability 1/2, do nothing.
2. Pick (v, c) � V � {1, ..., k}.
3. If v can be recolored with color c, recolor it;

otherwise do nothing.

τ
α

() lne
B

e≤
⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
⎡
⎢

⎤
⎥

−e 2
1

τ
β

()
ln()

e
Be≤
−

−1

1

ϕ ϕ(,) (,)z z x yi i t t
i

r

+
=

−
=∑ 1

0

1

MARCH/APRIL 2006 35

We can easily verify that this Markov chain con-
verges to the uniform distribution over k-colorings.
To couple, we start with two arbitrary colorings X0 and
Y0. Our first attempt at a reasonable coupling suggests
that we should choose the same pair (v, c) to update
each of Xt and Yt at every step. This coupling is
enough to demonstrate that MCcol is rapidly mixing
when the number of colors is large enough, although
an even better coupling has been used.15 Theorem 5
demonstrates the simplicity of the technique.

Theorem 5: The Markov chain MCcol on k-col-
orings has mixing time �(e) = O(n ln (ne–1)) on
any n-vertex graph with maximum degree d
whenever k 3d + 1.

Proof: Let x0 and y0 be two starting configura-
tions. To couple, we choose (v, c) � v � {1, ..., k}
uniformly at each time t. We then update each
of xt and yt by recoloring vertex v color c, if pos-
sible, thus defining xt+1 and yt+1.

To apply path coupling, let �: � � � � Z be a
metric defined by the minimum-length path-con-
nected configurations at Hamming distance 1. In
other words, for any x, y � �, let x = z0, z1, ..., z� = y
be the shortest path such that zi and zi+1 are color-
ings that differ at a single vertex, and set �(x, y) = �.
When the number of colors used is much larger
than the largest degree of G, it is a simple exercise
to verify that �(x, y) � B = 2n, for any x and y, where
n = |V|.

Let U be the set of pairs of colorings at distance
1. To apply Theorem 4, we need to consider
E[��(r, s)] for any (r, s) � U. Suppose w is the ver-
tex that is colored differently in r and s. Let’s con-
sider three cases:

• Case 1: w = v. If w = v, then any color c not cur-
rently used by any of the neighbors of w in r and s
will be a move accepted by both processes, in
which case r and s will agree in the next step. At
least k – d such colors exist. If, on the other hand,
c agrees with a color used by at least one of the
neighbors of w in the two configurations, then
both processes will reject the move. Together, this
tells us that if w = v, then E[��(xt, yt)] � – (k – d)/kn.

• Case 2: (w, v) � E. If w is a neighbor of v, then
the distance between r and s will remain un-
changed unless c is the color of v in either r or s.
In each of these two cases, the move will be ac-
cepted by at most one of the two processes and
the distance can increase; it can, of course, be re-
jected by both, in which case r and s remain un-
changed and at distance 1. There are at most two
bad choices for c, so E[��(r, s)] � 2/kn. This

bound holds for each of the d neighbors of w.
• Case 3: w � v and (w, v) � E. If w has distance at

least 2 from v in the graph G, then any proposed
move will be accepted by both processes in the
coupling, or rejected by both processes. In either
case the expected change in the distance is 0.

Putting these pieces together, we find

,

which is negative when k 3d + 1. This gives us the
bound

,

hence, Theorem 4 gives us O(n ln (ne–1)) mixing
time. QED

Although coupling is a very attractive technique
when there exists a distance metric that contracts
in expectation during every step of the coupled
chain, this is, of course, a lot to expect. Several ob-
servations have allowed us to get more mileage out
of this tantalizingly simple method. Jerrum, for ex-
ample, noticed that using a smarter coupling allows
us to show that MCcol in fact mixes rapidly when
k > 2d.18 The improvement stems from a careful
look at the moves that potentially increase the dis-
tance between r and s; this is precisely when the
vertex we are updating is a neighbor of the vertex
in which the two colorings differ. The improved
coupling pairs the choices (v, c) and (v, c �) that are
blocked because of the difference in the color of w
in r and s. This modification halves the number of
potentially bad moves. Alternatively, we can some-
times change the distance function or even the
Markov chain to facilitate a coupling proof. Luby,
Randall, and Sinclair modified a natural Markov
chain to sample tilings of certain lattice regions and
three-colorings of the two-dimensional grid.19

More recent extensions of coupling include an-
alyzing “macromoves” consisting of several steps
of the Markov chain. The main idea is that if we
wait until most of the sites in the lattice have been
updated at least once, we can most likely avoid
worst-case pairs of configurations that give pes-
simistic bounds on the coupling time.20–23

Canonical Paths and Flows
In contrast to coupling, which localizes our analy-
sis of a Markov chain to its behavior on pairs of con-
figurations, the method of canonical paths and flows

τ ()
ln

e
ne

kn

≤
−

−1

1
1

E r s
k d
kn

d
kn

d k
kn

[(,)]
()∆ ≤ − − + = −ϕ 2 3

36 COMPUTING IN SCIENCE & ENGINEERING

captures the chain’s global behavior. It demonstrates
that slow (exponential time) mixing is characterized
by a “bottleneck,” which is a set of edges that to-
gether have small stationary probability and whose
removal disconnects the state space into two sets of
exponentially larger size (also known as a “small
cut”). It is not surprising that the presence of a bot-
tleneck implies slow mixing because we can see that
it will take exponential time to move from one side
of the cut to the other; what is surprising is that it’s
the only obstacle. To show that a chain is rapidly
mixing, then, it’s enough to show that there is no
small cut. The rich method of canonical paths pro-
vides a tool to argue this for an arbitrary cut.

Min Cut
The conductance, introduced by Sinclair and Jer-
rum, is a reasonably good measure of the mixing
rate of a chain.24 For any set , let

,

where Q(x, y) = �(x)P(x, y) is regarded as the “ca-
pacity” of the edge (x, y) and � (S) =
x�S � (x) is the
weight of the cut set. Note that by detailed balance
Q(x, y) = Q(y, x). We now define the conductance as

.

If a Markov chain has low conductance, then a
small cut in the state space will cause a bottleneck
in the mixing time. Theorem 6 establishes the con-
verse as well.

Theorem 6: For any Markov chain with conduc-
tance �, we have

,

where Gap(P) = 1 – |�1| is the spectral gap.24

Together with Theorem 1 relating the gap and the
mixing time, this tells us that a Markov chain is rapidly
mixing provided the conductance isn’t too small.

Max Flow
It will be convenient to reformulate the idea of
conductance in terms of flows, which also allows us
to get a slightly sharper bound on the mixing rate.
First, think of the graph G with vertex set � and
edges along all transitions (x, y), such that P(x, y) > 0.
Because the conductance is just a minimum cut in
g, we can naturally reinterpret it as a maximum flow

along the edges, appealing to the duality between
min cut and max flow.

For each ordered pair of distinct vertices x, y � �,
we define a canonical path �xy in the graph G from x
to y. Then, for any such collection of paths
� = {�xy : x, y � �, x � y}, we define the congestion

. (1)

We can think of each path from x to y as carrying
�(x)�(y) units of flow. The congestion � measures
the maximum ratio of the total load routed through
any edge e to its capacity Q(e). Low congestion im-
plies the absence of bottlenecks in the graph, and
we’ve just seen that this characterizes fast mixing.

Let = min��(�)�(�), where �(�) is the maxi-
mum length of a path in �.

Theorem 7: (Sinclair25) For an ergodic, reversible
Markov chain with stationary distribution � and
self-loop probabilities P(y, y) ��� for all states
y � X, we have

.

To demonstrate how to use this technique, we
revisit the toy example of sampling a random ver-
tex in a hypercube using the chain MCcube defined
earlier. We now need to establish paths � (x, y) be-
tween any pair of vertices x and y using edges of the
hypercube. The obvious choice is to walk through
the bits of x and successively flip any bit that differs
in x and y. After at most n steps, we will have visited
all of the bits in x and we will reach y.

To determine the congestion �(�) defined in
Equation 1, we consider an arbitrary edge e = (u, v)
on the hypercube. To bound �(�), we first have to
consider
�(x, y)�e �(x)�(y). Because the stationary
distribution is uniform, all paths will be carrying
the same load, so we just have to count the number
of paths that use (u, v).

Suppose that (u, v) � E and u and v differ in the
ith bit. How many paths can be routed through this
edge? It’s easy to see that the first i + 1 bits of v must
agree with the end of the path y because we’ve al-
ready adjusted these as we flip the bits. On the
other hand, we haven’t yet adjusted the final n – i
bits of v, so these must agree with x. Summing up,
we have that x = (x1, ..., xi–1, ui, vi+1, vi+1, ..., vn) and
y = (v1, v2, ..., vi, yi+1, ..., yn). There are 2n–1 ways to
assign the bits x1, ..., xi–1, yi+1, ..., yn, so this is exactly
the number of paths that use the edge e. Hence,

.π π
γ

() () () ()x y n n n

exy

= =− − − +

∋
∑ 2 2 21 2 1

τ ρ πx e x e() (log () log)≤ +− −1 1

ρ

ρ π π
γ

() max
()

() ()Γ =
∋
∑

e eQ e
x y

xy

1

Φ Φ
2

2
2≤ ≤Gap P()

Φ Φ=
≤

min
: () /S S

Sπ 1 2

Φ
Σ

S
x S y SQ x y

S
= ∈ ∉, (,)

()π

S ⊂Ω

MARCH/APRIL 2006 37

We can also see that on this simple chain,
Q(e) = �(u)P(u, v) = 1/2n 1/2n for every edge e. Hence,

�(�) = n2n+1 	 2–(n+1) = n.

Finally, because every path � has length at most n,
Theorem 7 tells us

�(e) � n2(n ln 2 + lne–1).

Notice that for this example, flows give a weaker
bound than we were able to attain using coupling.
The simplicity of the hypercube example and the
relatively weak bound should not be misleading—
for many important applications flows provide the
best bounds to date. In the next section, for exam-
ple, we see how the ideas laid out here in the con-
text of the hypercube can be extended to sampling
matchings in a graph.

Complementary Paths
One of the first applications of canonical paths and
flows was analyzing a Markov chain used to sample
the set of matchings in a graph.24 Given a constant
	 > 0, we will be interested in sampling from the
distribution

,

where Z =
M���	|M�| is the normalizing constant.
The Markov chain MCmatch updates a matching M
at each step by choosing an edge e = (u, v) � E uni-
formly. Then, if e � M, we remove it with proba-
bility min(1, 	–1). If e � M and both u and v are
unmatched in M, we add it with probability
min(1,). If exactly one endpoint u or v is matched
using an edge e�, we remove e� and add e instead.
Finally, if both u and v are matched, we do noth-
ing. It’s easy to verify that this Metropolis chain
converges to the desired distribution.

This problem is much more challenging than
the hypercube example for several reasons. First,
the distribution isn’t uniform, so we now have to
be careful to measure the amount of flow along
each path. Second, we must be careful in this
case how we define the paths to make sure that
we always have a valid matching or we won’t be
in state space. Nonetheless, the analysis we set
up for the hypercube is the main mechanism
used here once the proper canonical paths are
chosen.

Let x and y be any two matchings in G. If we take
the symmetric difference x � y, we find a collec-
tion of alternating cycles and paths in G. We will
order them in some fixed manner. To define the

canonical path from x to y, we take the first com-
ponent and alternate removing edges from x and
adding edges from y until the component is
“processed.” Then, we move on to the next com-
ponents, in order, and process them similarly. Like
the hypercube example, at any intermediate point
along this path, the components that we have al-
ready processed will agree with y and the compo-
nents that we have not yet processed will agree with
x. But what is the total flow through some particu-
lar edge (u, v)?

Here is an ingenious insight that lets us sketch
the idea behind the more sophisticated use of the
paths argument. Let’s simultaneously consider a
path that starts at y and ends at x. Notice that be-
cause x � y = y � x, this complementary path is
working through the exact same set of alternating
cycles and paths and in the same order. After
roughly the same number of steps it took to reach
the edge (u, v), our complementary path will reach
an edge e� = (u�, v�). However, on this edge, the
components we’ve already processed will agree
with x and those we have not yet processed will
agree with y. Intuitively, this means that from
(u, v) and (u�, v�), we should be able to reconstruct
x and y. Of course, this assumes that we know the
cycle structure of x � y, but u � u� also tells us
this information!

Our final concern should be making sure that
we don’t route too many paths that have large
weight through edges with very small capacity. It
turns out that the total number of edges in u and
u� will always be very close to the number of edges
in x and y. This is enough to get a polynomial
bound on the congestion, and therefore the mix-
ing time, of the chain. These ideas are formalized
elsewhere.9,24

Auxiliary Methods
When direct methods such as coupling and flows
fail to provide good bounds on the mixing time of
a Markov chain, indirect methods have proven
quite useful. They allow us to analyze related
chains instead, and then infer the fast mixing of
the chain in which we are interested from the fast
mixing of the related chains. We merely outline
the general techniques here, and refer the inter-
ested reader to the cited papers for details of the
theorems.

Comparison
The comparison method of Diaconis and Saloff-
Coste26 tells us ways in which we can slightly mod-
ify a Markov chain without qualitatively changing
the mixing time. This will also allow us to add ad-

π µ
()

| |
M

Z

M
=

38 COMPUTING IN SCIENCE & ENGINEERING

ditional transition edges or to amplify some of the
transition probabilities, which has proven to be a
useful tool.

Let P̃ and P represent two reversible Markov
chains on the same state space � with the same sta-
tionary distribution �. The comparison method al-
lows us to relate the mixing times of these two
chains. The idea is that the mixing time, � P̃(
), of P̃
is known (or bounded) and we desire to obtain a
bound for the mixing time, �P(
), of P. For each
pair of configurations x, y such that P̃(x, y) > 0, we
construct a canonical path from x to y using moves
in P. This allows us to relate the congestion of the
two chains.

This approach has been used to get good bounds
on several natural Markov chains arising in com-
puter science, such as matchings on lattices and tri-
angulations of convex point sets.27

Decomposition
Madras and Randall28 introduced the decomposition
method as a top-down approach to analyzing mix-
ing times. Decomposition allows the state space to
be broken down into pieces; it relates the mixing
time of the original chain to the mixing times of re-
stricted Markov chains, each of which is forced to
stay within one of the pieces, and a measure of the
flow between these sets. This method tells us how
to reduce the problem of bounding the mixing of a
complicated chain to that of bounding the mixing
times of several much simpler chains. In addition,
it allows us to attempt a hybrid approach toward

analyzing the smaller pieces, perhaps using cou-
pling to bound the restricted chains and canonical
paths and thus bound the flow between the pieces.

Martin and Randall29 presented a related de-
composition theorem based on a disjoint partition
of the state space that seems more conducive to ap-
plications, and this has been further generalized by
Jerrum et al.30 Decomposition has played a central
role in several applications in statistical physics and
computing.28,29,31,32

Commonly Studied Models
Many of the combinatorial models that arise in the
context of sampling fall under a common um-
brella. Here, we present a unifying framework that
draws parallels between these models as they arise
in computer science and statistical physics. The in-
timate connections with physics have provided a
bilateral dialogue that has helped shape the design
of good sampling algorithms, the methods used to
analyze these algorithms, and even the intuition
for when a Markov chain should be fast or slow.
We start by restating several familiar models in the
context of generating functions. Table 1 explains
some of the common terms used in statistical
physics, occasionally taking some liberties with the
translations.

Independent Sets
Let G be any graph and let � be the set of inde-
pendent sets in G. We can think of each inde-
pendent set as a map from V to {0, 1}, where f(v)
= 1 if v is in the independent set and f(v) = 0 oth-
erwise. In addition, we can assign weights X0 and
X1 to control the desirability of having a vertex
in or out of an independent set, and define a
weight

.

Notice that when X0 = 1 and X1 is an integer, this
corresponds to having X1 particles at each vertex as
candidates for the independent set. If we choose to
sample independent sets according to this weight
function, we get the following probability measure
on �:

.

Letting � = X1, we find

. (2)π λ
λ

()
| |

| |I
I

I
I=

′∈
′Σ Ω

π ()
()

()
I

w I
w II

=
′′∈Σ Ω

w I X f v
v V

() ()=
∈
∏

Statistical physics Computer science

Monomer-dimer coverings Matchings
Dimer coverings Perfect matchings
Hard-core lattice gas model Independent sets
Spin Bit
Ground states Highest probability

configurations
Ground states of the Potts model Vertex colorings
Partition function Normalizing constant
Connectivity Degree
Activity or fugacity Vertex weight
Interaction Edge weight
Ferromagnetism Positive correlation
Antiferromagnetism Negative correlation
Mean-field Complete graph Kn
Bethe lattice Complete regular tree
Polynomial mixing Rapid mixing
Rapid mixing O(n log n) mixing

Table 1. A lexicon of terms.

MARCH/APRIL 2006 39

When � � R+ is large, we favor dense indepen-
dent sets, and when � is small, we favor sparse ones.

Colorings
We represent the set of k-colorings of a graph G
using similar notation. Let f :V � {1, ..., k}, let � be
the set of proper k-colorings of G, and let X0, ..., Xk
be weights associated with each of the colors. For
any C � �, let

,

where ci is the number of vertices in C colored with
color i. When Xi = 1 for all i, this is the uniform dis-
tribution over proper k-colorings.

Matchings
Let f : E � {0, 1} and let � be the set of matchings
on a graph G of any size. As before, we let X0 and
X1 be weights. Then, for any M � �,

,

if we let X0 = 1 and let 	 = X1. When 	 is integral,
we see that w(M) weights matchings as though G
were a multigraph with 	 parallel edges replacing
each true edge. We find

.

“Pairwise Influence” Models
The final model we consider is a generalization of
the problem instances just mentioned and is based
on pairwise interactions. For any n-vertex graph
G = (V, E), we let � = {1, ..., q}n, where f : V � {1, …, q}
assigns a value from the set {1, ..., q} to each vertex
in the graph. We define a symmetric set of weights
{Xi,j = Xj,i} for each pair i, j � {1, …, q} and weight
each configuration � � � by

.

Again,

.

By adjusting the values for Xi,j we can favor
configurations such that the values on the end-
points of edges tend to agree or disagree. For ex-

ample, letting Xi,j = 1 for all i � j and letting
Xi,j = 0 whenever i = j, the probability distribution
arising from the pairwise influence model is pre-
cisely the uniform distribution on the set of
proper q-colorings.

A Unifying Framework
A minor change in notation lets us connect these
problem instances to models well studied in statis-
tical physics. This simple observation has allowed
combinatorial and computational work on these
models to flourish.

In statistical physics, models are defined to
represent simple physical systems. Just like a
spring relaxing, systems tend to favor configura-
tions that minimize energy, and this preference
is controlled by temperature. The energy func-
tion on the space of configurations is determined
by a so-called Hamiltonian H(�). Because we’re
trying to minimize energy, we assign configura-
tions weights

w(�) = e–�H(�),

where � = 1/T is inverse temperature. Thus, for low
values of �, the differences between the energy of
configurations are dampened, whereas at large �,
these differences are magnified. The likelihood of
each configuration is then

�(�) = w(�)/Z,

where Z =
�w(�) is the normalizing constant
known as the partition function. This distribution
� is known as the Gibbs (or Boltzmann) distribu-
tion. Taking derivatives of the generating function
Z (or ln Z) with respect to the appropriate vari-
ables allows us to calculate many of the interesting
thermodynamic properties of the system, such as
specific heat and free energy.

For example, if we let our state space be the set
of independent sets of a graph, then we define
Hamiltonian as

,

where � is the Kronecker delta that takes on value
1 if v � I and 0 otherwise. The probability distri-
bution is given by

�(I) = e–�H(�)/Z,

where Z is the partition function. Setting � = e�,
we see that this is precisely the same distribution

H I Iv I
v V

() | |= − = −∈
∈
∑ δ

π σ σ
ττ

()
()

()
=

∈

w
wΣ Ω

w X f u f v
u v u v E

() (), ()
, :(,)

σ =
∈

∏

π µ
µ

()
| |

| |M
M

M
M=

′∈
′Σ Ω

w M X f e
e E

() ()=
∈
∏

w C X Xf v i
c

i

k

v V

i() ()= =
=∈
∏∏

1

40 COMPUTING IN SCIENCE & ENGINEERING

given earlier in Equation 2. Note that the minus
sign in the Hamiltonian that is immediately can-
celled by the exponent of e is merely suggestive
of the fact that we’re trying to favor configura-
tions of minimum energy. This model is known
as the hard-core lattice gas model in statistical
physics under the premise that gas particles oc-
cupy area, and two particles can’t be very close.
This model has what is known as a hard con-
straint because the probability of two particles
occupying neighboring sites is zero.

Another common model from statistical physics
is the Ising model, an example of a model with a
soft constraint; certain configurations are given
very small weight, but all configurations occur
with positive probability. Given a graph G on n
vertices, our state space is defined by the 2n ways
of assigning spins +1 or –1 to each of the vertices.
In the ferromagnetic Ising model, the Hamilton-
ian is defined so as to favor configurations that
tend to have equal spins on the endpoints of its
edges; the antiferromagnetic Ising model favors
configurations with unequal spins on the end-
points of its edges.

In the ferromagnetic case, for � � {±1}n, we
have

,

where D(�) is the number of edges (u, v) � E such
that �u � �v and A(�) is the number of edges (u,
v) such that �u = �v. Then the Gibbs distribution is

�(�) = e–�H(�)/Z,

where Z =
� �{0,1}n e–�H(�). Rewriting this expres-
sion, we have

Notice that this is a special case of the pairwise in-
fluence model with q = 2, X00 = X11 = e–2� and
X01 = X10 = 1.

The pairwise influence model specializes to an-
other interesting physics model for larger q. Tak-
ing Xi,j = 1 whenever i � j and Xi,j = � whenever
i = j gives us a more general system known as the
Potts model. When � > 1, we have the ferromagnetic
case favoring positive correlations on edges, and

when � < 1, we have the antiferromagnetic case fa-
voring negative correlations.

The physics interpretation for each of these fa-
miliar models reveals deeper insights into their
structure. For each, we expect fast mixing at high
temperature and slow mixing at low temperature.
For instance, consider the independent set model
on any bipartite graph. At sufficiently high tem-
perature, independent sets will tend to be sparse,
and we can use a coupling argument to show that
Glauber dynamics (the local chain) is rapidly mix-
ing. At sufficiently low temperature, independent
sets will be dense and will lie predominantly on ei-
ther side of the bipartition, revealing an exponen-
tially small cut in the state space.

I n addition to helping us appreciate the di-
chotomy underlying the behavior of Markov
chains based on local updates, the physical
interpretation can also aid our design of bet-

ter sampling algorithms. It’s known, for example,
that locally defined chains are not efficient for sam-
pling Ising configurations at low temperature, so
this suggests that we should look for alternate al-
gorithms based on nonlocal chains. Jerrum and
Sinclair found such an algorithm for estimating the
partition function of any Ising model at any tem-
perature,34 and Randall and Wilson showed that
this can always be used to sample Ising configura-
tions at any temperature, even when there is an ex-
ternal magnetic field.35 These results demonstrate
that the interplay between statistical physics and
computer science can bring to light new ideas in
the world of sampling, and suggest many promis-
ing directions for future research.

Acknowledgments
An earlier version of this article appeared in the
Proceedings of the 44th IEEE Symposium on the
Foundations of Computer Science (IEEE CS Press, 2003,
pp. 4–15). This work was supported in part by the US
National Science Foundation under grants CCR-0515105
and DMS-0505505.

References
1. M.R. Jerrum and A.J. Sinclair, “The Markov Chain Monte Carlo

Method: An Approach to Approximate Counting and Integra-
tion,” Approximation Algorithms for NP-Hard Problems, D.S.
Hochbaum, ed., PWS Publishing, 1997, pp. 482–520.

2. R. Kannan, “Markov Chains and Polynomial Time Algorithms,”
Proc. 35th IEEE Symp. Foundations of Computer Science, IEEE CS
Press, 1994, pp. 656–671.

3. L. Lovász and P. Winkler, “Mixing Times,” Microsurveys in Discrete
Probability, vol. 41, DIMACS Series in Discrete Mathematical and
Theoretical Computer Science, D. Aldous and J. Propp, eds., Am.
Mathematical Soc., 1998, pp. 85–134.

π σ
β β σ

τ
β β()

(| |) | ()|

{ , }
(| |) |=
−

∈
−

e e

e e

E A

E
n

2

0 1
2Σ AA

A

A
e

e
n

()|

| ()|

{ , }
| ()|

()

()
.

τ

β σ

τ
β τ=

−

∈
−

2

0 1
2Σ

H D Au v
u v E

() | ()| | ()|
(,)

σ σ σ σ σ= − = −
∈

∑

MARCH/APRIL 2006 41

4. A.J. Sinclair, “Convergence Rates for Monte Carlo Experiments,”
Numerical Methods for Polymeric Systems, S.G. Whittington, ed.,
IMA Volumes in Mathematics and Its Applications, Am. Mathe-
matical Soc., 1997, pp. 1–18.

5. M.E. Dyer, A. Frieze, and R. Kannan, “A Random Polynomial
Time Algorithm for Approximating the Volume of a Convex
Body,” Proc. 24th ACM Symp. Theory of Computing, ACM Press,
1992, pp. 26–38.

6. A.J. Sinclair, Algorithms for Random Generation and Counting: A
Markov Chain Approach, Birkhauser, 1993.

7. M.R. Jerrum, A.J. Sinclair and E. Vigoda, “A Polynomial-Time Ap-
proximation Algorithm for the Permanent of a Matrix with Non-
Negative Entries,” Proc. 33rd ACM Symp. Theory of Computing,
ACM Press, 2001, pp. 712–721.

8. L.G. Valiant “The Complexity of Computing the Permanent,”
Theoretical Computer Science, vol. 8, 1979, pp. 189–201.

9. M.R. Jerrum, L.G. Valiant, and V.V. Vazirani, “Random Genera-
tion of Combinatorial Structures from a Uniform Distribution,”
Theoretical Computer Science, vol. 43, 1986, pp. 169–188.

10. R. Glauber, “Time Dependent Statistics of the Ising Model,” J.
Mathematical Physics, vol. 4, 1963, pp. 294–307.

11. N. Metropolis et al., “Equation of State Calculations by Fast Com-
puting Machines,” J. Chemical Physics, vol. 21, 1953, pp.
1087–1092.

12. I. Beichl and F. Sullivan, “The Metropolis Algorithm,” Computing
in Science & Eng., vol. 2, no. 1, 2000, pp. 65–69.

13. D. Aldous and J. Fill, “Reversible Markov Chains and Random
Walks on Graphs,” in preparation, 2005; www.stat.berkeley.edu/
users/aldous/RWG/book.html.

14. A. Broder, “Generating Random Spanning Trees,” Proc. 30th IEEE
Symp. Foundations of Computer Science, IEEE CS Press, 1989, pp.
442–447.

15. D. Aldous, “Random Walks on Finite Groups and Rapidly Mixing
Markov Chains,” Seminaire de Probabilites XVII, Lecture Notes in
Mathematics, vol. 986, 1981/82, pp. 243–297.

16. R. Bubley and M. Dyer, “Faster Random Generation of Linear Ex-
tensions,” Discrete Mathematics, vol. 201, 1999, pp. 81–88.

17. M. Dyer and C. Greenhill, “A More Rapidly Mixing Markov Chain
for Graph Colorings,” Random Structures and Algorithms, vol. 13,
1998, pp. 285–317.

18. M.R. Jerrum, “A Very Simple Algorithm for Estimating the Num-
ber of k-Colorings of a Low-Degree Graph,” Random Structures
and Algorithms, vol. 7, 1995, pp. 157–165.

19. M. Luby, D. Randall, and A.J. Sinclair, “Markov Chains for Planar
Lattice Structures,” SIAM J. Computing, vol. 31, 2001, pp.
167–192.

20. M.E. Dyer and A. Frieze, “Randomly Colouring Graphs with
Lower Bounds on Girth and Maximum Degree,” Proc. 42nd
Symp. Foundations of Computer Science, 2001, pp. 579–587.

21. M.E. Dyer et al., “An Extension of Path Coupling and Its Appli-
cation to the Glauber Dynamics for Graph Colorings,” SIAM J.
Computing, vol. 30, 2001, pp. 1962–1975.

22. M. Molloy, “The Glauber Dynamics on Colorings of a Graph with
High Girth and Maximum Degree,” Proc. 34th ACM Symp. The-
ory of Computing, ACM Press, 2002, pp. 91–98.

23. T.P. Hayes and E. Vigoda, “A Non-Markovian Coupling for Ran-
domly Sampling Colorings,” Proc. 44th IEEE Symp. Foundations of
Computing, IEEE Press, 2003.

24. A.J. Sinclair and M.R. Jerrum, “Approximate Counting, Uniform
Generation and Rapidly Mixing Markov Chains,” Information and
Computation, vol. 82, 1989, pp. 93–133.

25. A.J. Sinclair, “Improved Bounds for Mixing Rates of Markov
Chains and Multicommodity Flow,” Combinatorics, Probability
and Computing, vol. 1, 1992, pp. 351–370.

26. P. Diaconis and L. Saloff-Coste, “Comparison Theorems for Re-
versible Markov Chains,” Annals of Applied Probability, vol. 3,

1993, pp. 696–730.

27. D. Randall and P. Tetali, “Analyzing Glauber Dynamics by Com-
parison of Markov Chains,” J. Mathematical Physics, vol. 41,
2000, pp. 1598–1615.

28. N. Madras and D. Randall, “Markov Chain Decomposition for
Convergence Rate Analysis,” Annals of Applied Probability, vol. 12,
2002, pp. 581–606.

29. R.A. Martin and D. Randall, “Sampling Adsorbing Staircase Walks
Using a New Markov Chain Decomposition Method,” Proc. 41st
IEEE Symp. Foundations of Computer Science, IEEE CS Press, 2000,
pp. 492–502.

30. M.R. Jerrum et al., “Elementary Bounds on Poincaré and Log-
Sobolev Constants for Decomposable Markov Chains,” Annals of
Applied Probability, vol. 14, 2004, pp. 1741–1765.

31. C. Cooper et al., “Mixing Properties of the Swendsen-Wang
Process on the Complete Graph and Narrow Grids,” J. Mathe-
matical Physics, vol. 41, 2000, pp. 1499–1527.

32. D. Randall, “Decomposition Methods and Sampling Circuits in
the Cartesian Lattice,” Proc. 5th Symp. Mathematical Foundations
of Computer Science, LNCS 1256, J. Sgall, A. Pultr, and P. Kolman,
eds., Springer-Verlag, 2001, pp. 72–84.

33. M.R. Jerrum and A.J. Sinclair, “Polynomial-Time Approximation
Algorithms for the Ising Model,” SIAM J. Computing, vol. 22,
1993, pp. 1087–1116.

34. D. Randall and D.B. Wilson, “Sampling Spin Configurations of an
Ising System,” Proc. 10th ACM/SIAM Symp. Discrete Algorithms,
ACM Press, 1999, pp. 959–960.

Dana Randall is an associate professor in the College of
Computing and an adjunct professor in the School of
Mathematics, Georgia Institute of Technology. Her re-
search interests include theoretical computer science, ran-
domized algorithms, combinatorics, and statistical
physics. Randall has a PhD in computer science from the
University of California, Berkeley. She has been the recip-
ient of an NSF career award and an Alfred E. Sloan fel-
lowship. Contact her at randall@cc.gatech.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

