
REVIEWS

We have recently seen the completion of the human
genome sequence1,2, the deposition of millions of
SNPs into public databases3, rapid improvements in
SNP genotyping technology and the initiation of the
International HapMap Project4. These advances have
set the stage for genome-wide ASSOCIATION STUDIES, in
which a dense set of SNPs across the genome is geno-
typed to survey the most common genetic variation for
a role in disease or to identify the heritable QUANTITATIVE

TRAITS that are risk factors for disease. As yet, no com-
prehensive, well-powered study has been published.
Proponents of genome-wide association studies suggest
that such studies will identify many variants that con-
tribute to common disease, although the size of the
resulting data sets will raise significant issues of analysis
and interpretation. Other researchers have called into
question the necessity and usefulness of this still expen-
sive approach5,6.

It is therefore crucial to understand the circum-
stances under which genome-wide association studies
might be an appropriate approach; what constitutes a
well-powered, reasonably comprehensive genome-wide
association study; the limitations of what such studies
will be able to discover; and how to interpret their
results. Here, we review the rationale for genome-wide
association studies and discuss issues of their power, effi-
ciency, comprehensiveness, interpretation and analysis.

We also outline different possible approaches to such
studies and examine some of the technical and analyti-
cal issues that might hinder their success.

Why genome-wide association studies?
The many possible approaches to mapping the genes
that underlie common disease and quantitative traits fall
broadly into two categories: CANDIDATE-GENE studies, which
use either association or resequencing approaches,
and genome-wide studies, which include both LINKAGE

MAPPING and genome-wide association studies. The main
approaches and their advantages and disadvantages are
summarized in TABLE 1. In this review, we discuss these
approaches and present arguments as to why genome-
wide association studies might be advantageous for
identifying the genetic variants associated with com-
mon disease. One fundamentally different approach,
ADMIXTURE MAPPING, is not discussed here but has been
described elsewhere7–10.

Limitations of linkage studies. Genome-wide linkage
analysis is the method traditionally used to identify dis-
ease genes, and has been tremendously successful for
mapping genes that underlie monogenic ‘Mendelian’
diseases11. For linkage analysis to succeed, markers that
flank the disease gene must segregate with the disease in
families. Variants that cause monogenic disorders are
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ASSOCIATION STUDY

A genetic variant is genotyped in
a population for which
phenotypic information is
available (such as disease
occurrence, or a range of
different trait values). If a
correlation is observed between
genotype and phenotype, there
is said to be an association
between the variant and the
disease or trait.

QUANTITATIVE TRAIT

A biological trait that shows
continuous variation (such as
height) rather than falling into
distinct categories (such as
diabetic or healthy). The genetic
basis of these traits generally
involves the effects of multiple
genes and gene–environment
interactions. Examples of
quantitative traits that
contribute to disease are body
mass index, blood pressure and
blood lipid levels.

CANDIDATE GENE

A gene for which there is evidence
of its possible role in the trait or
disease that is under study.

LINKAGE MAPPING

Where genes are mapped by
typing genetic markers in
families to identify regions that
are associated with disease or
trait values within pedigrees
more often than are expected by
chance. Such linked regions are
more likely to contain a causal
genetic variant.
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below) are still required to progress from a broad region
of linkage — usually exceeding 10 cM (~10 million
bases) — to the causal gene or genes within this region.

Importantly, linkage analysis is also much less power-
ful for identifying common genetic variants that have
modest effects on disease28–31. Most common diseases
and clinically important quantitative traits have complex
architectures (reviewed in REF. 32 in the same issue of this
journal), for which the phenotype is determined by the
sum total of, and/or interactions between, multiple
genetic and environmental factors32. Therefore, any indi-
vidual genetic variant will generally have a relatively
small effect on disease risk. The typical frequencies of
variants that underlie common disease are largely
unknown, but common variants (with frequencies of
>1%) have been proposed to influence disease suscepti-
bility1,13,33,34.As most of the sequence differences between
any two chromosomes are accounted for by common
variants35,36, it is plausible that common variants might
contribute to those common diseases in which suscepti-
bility alleles might not be under intense negative selec-
tion13. Indeed, there are now several examples of com-
mon variants that contribute to common disease, most
of which increase the risk of disease by two-fold or less
when examined in large populations16,18,37–46. It is clear
that some of these well-established disease-susceptibility
alleles could never be detected by linkage analysis. For
example, the Pro12Ala variant in the peroxisome prolif-
erative activated receptor-γ gene (PPARG), which affects
the risk of type 2 diabetes, would only be detected using
linkage studies of over one million affected sib pairs41.
Consistent with this calculation, none of the numerous
genome-wide linkage studies of type 2 diabetes identi-
fied the PPARG region as a region of significant link-
age47,48. Because it is reasonable to suppose that common
alleles, as well as rare alleles, will contribute to common

often rare (probably because negative selection reduces
the frequencies of variants that cause diseases character-
ized by early-onset morbidity and mortality12,13), so each
segregating disease allele will be found in the same
10–20 cM chromosomal background within each fam-
ily. Furthermore, because Mendelian diseases are, by
definition, caused by highly PENETRANT variants, markers
within 10–20 cM of the disease-causing alleles will co-
segregate with disease status.

Genome-wide linkage analysis has also been car-
ried out for many common diseases and quantitative
traits, for which the aforementioned characteristics of
Mendelian diseases might not apply. In some cases,
genomic regions that show significant linkage to the dis-
ease have been identified, leading to the discovery of
variants that contribute to susceptibility to diseases such
as inflammatory bowel disease (IBD)14–17, schizophre-
nia18 and type 1 diabetes19. However, for most common
diseases, linkage analysis has achieved only limited suc-
cess20, and the genes discovered usually explain only a
small fraction of the overall HERITABILITY of the disease.
For example, variants known to affect the risk of IBD
together explain an excess risk to siblings of just over
two-fold, compared with a total excess risk of ~30-fold21,
indicating that many other causal genes are yet to be dis-
covered. The lack of success so far can be attributed to
various factors. These include the low heritability of
most complex traits; the inability of the standard set of
microsatellite markers — which are spaced 10 cM apart
— to extract complete information about inheri-
tance22–25; the imprecise definition of phenotypes26; and
inadequately powered study designs6. Linkage analysis
using dense marker sets22–25, larger sample sizes27 and
larger pedigrees6 might well be more productive.
However, even if statistically significant evidence of link-
age is obtained, extensive candidate gene studies (see

Table 1 | Approaches to identifying variants underlying complex traits and common diseases

Potential advantages Association* Resequencing* Linkage‡ Admixture‡ Missense SNPs‡ Association‡ Resequencing‡

No prior information regarding – – + + + + +
gene function required

Localization to small genomic + + – – + + +
region

Inexpensive + – + + +/– – Prohibitive

Families not required + + – + + + +

No assumptions necessary + – + + – + +
regarding type of variant involved

Not susceptible to effects of –/+ –/+ + + –/+ –/+ –/+
stratification§

No requirement for variation of + + + – + + +
allele frequency among populations

Sufficient power to detect common + – –/+ + + + +
alleles (MAFs>5%) of modest effect 

Ability to detect rare alleles (MAFs<1%) – + + – – – +

Reasonable track record for + –/+ +/– N/A N/A N/A N/A
common diseases

Tools for analysis available + + + + + +/– –

*Candidate-gene studies. ‡Genome-wide studies. §Association and resequencing studies are immune to stratification if they use family-based designs. Symbols indicate
whether the potential advantage in the left column applies completely (+), partially (+/–), weakly (–/+) or not at all (–). MAF, minor allele frequency; N/A, not yet attempted. 
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The genome-wide association approach. We define a
genome-wide association approach as an association
study that surveys most of the genome for causal genetic
variants. Because no assumptions are made about the
genomic location of the causal variants, this approach
could exploit the strengths of association studies with-
out having to guess the identity of the causal genes. The
genome-wide association approach therefore represents
an unbiased yet fairly comprehensive option that can be
attempted even in the absence of convincing evidence
regarding the function or location of the causal genes.

Due to the expense and labour involved, the extension
of candidate-gene studies to a genome-wide approach
has not, until now, been feasible. However, recent
advances have moved genome-wide association stud-
ies from the futuristic to the realistic. In the sections
that follow, we briefly review these advances and dis-
cuss different strategies for undertaking genome-wide
association studies.

What has made these studies possible?
Genome-wide association studies require knowledge
about common genetic variation and the ability to
genotype a sufficiently comprehensive set of variants in
a large patient sample. The dbSNP database now con-
tains nearly 9 million SNPs, including most of the ~11
million SNPs with minor allele frequencies of 1% or
greater that are estimated to exist in the human
genome54. Importantly, genotyping technology has con-
siderably improved and become cheaper in recent years.
One recent review of SNP genotyping technology cited
‘large-scale’ studies that involved nearly a hundred
thousand genotypes55; the lowest prices were generally
around 0.50 US$ per genotype. By contrast, the
HapMap project (discussed in more detail below) plans
to include information on ~300 million genotypes, and
the United States National Institutes of Health recently
solicited proposals to determine an additional 600 mil-
lion genotypes at 0.01 US$ per genotype. This cost is
approaching that required to make genome-wide asso-
ciation studies feasible; once this falls to 0.001 US$ per
genotype, such studies could become routine (for exam-
ple, 500,000 genotypes could be typed for only 500 US$
per individual). Some of the high-throughput genotyp-
ing technologies that have been commercially developed
are listed in TABLE 2.

Another crucial advance towards enabling efficient
genome-wide studies is the determination of LD patterns
on a genome-wide scale through the HapMap project4,
which, as discussed below, will be particularly useful for
methods that use markers selected on the basis of LD.

Markers for genome-wide association studies
LD-based markers. To be useful, markers tested for asso-
ciation must either be the causal allele or highly corre-
lated (in LD) with the causal allele56,57. Most of the
genome falls into segments of strong LD, within which
variants are strongly correlated with each other, and
most chromosomes carry one of only a few common
HAPLOTYPES58–60. Recently, several large genomic regions
(of ~500 kb) have been comprehensively examined as

disease and quantitative traits, and because linkage
analysis has poor power for detecting common alleles
that have low penetrance, a strategic complement to
linkage analysis is desirable.

Candidate-gene resequencing studies. So far, candidate-
gene studies have been the only practical alternative to
linkage analysis. In these hypothesis-based studies, genes
are selected for further study, either by their location in a
region of linkage, or on the basis of other evidence that
they might affect disease risk (reviewed in REFS 30,31).

The most comprehensive analysis of candidate genes
is obtained by resequencing the entire gene in patients
and controls, and searching for a variant or set of vari-
ants that is enriched or depleted in disease cases.
However, because such studies are still laborious and
expensive, they have been largely limited to the coding
regions of one or a few candidate genes, such as the
small, single-exon melanocortin-4 receptor gene
(MC4R), variants of which explain a small fraction of
cases of severe, early-onset obesity49. In addition, prop-
erly interpreting the results might be challenging, par-
ticularly when considering rare non-coding variants
(see REF. 50 for a more complete discussion of these
issues). Recently, however, Cohen and colleagues have
successfully applied the resequencing approach to
high-priority candidate genes in which severe loss-of-
function variants cause Mendelian disorders of lipid
metabolism; they found that these genes also harbour
less severe but still relatively rare missense variants
that are associated with high, but not extreme, levels
of high-density lipoprotein51.

Association studies. Association studies using common
allelic variants are cheaper and simpler than the com-
plete resequencing of candidate genes, and have been
proposed as a powerful means of identifying the com-
mon variants that underlie complex traits28,30,31,52. In
their simplest form, association studies compare the
frequency of alleles or genotypes of a particular vari-
ant between disease cases and controls. Alternative
approaches include using family-based controls to avoid
the potential problem of population stratification,
which we discuss below.

Candidate-gene association studies have identified
many of the genes that are known to contribute to sus-
ceptibility to common disease30,31,38,53. Such studies are
greatly facilitated by using indirect LINKAGE-DISEQUILIBRIUM

(LD)-based methods (described in detail below). How-
ever, candidate-gene studies rely on having predicted the
identity of the correct gene or genes, usually on the basis
of biological hypotheses or the location of the candidate
within a previously determined region of linkage. Even if
these hypotheses are broad (for example, involving the
testing of all genes in the insulin-signalling pathway), they
will, at best, identify only a fraction of genetic risk factors,
even for diseases in which the pathophysiology is rela-
tively well understood.When the fundamental physiologi-
cal defects of a disease are unknown, the candidate-gene
approach will clearly be inadequate to fully explain the
genetic basis of the disease.

ADMIXTURE MAPPING

Predicting the recent ancestry of
chromosomal segments across
the genome to identify regions
for which recent ancestry in a
particular population correlates
with disease or trait values. Such
regions are more likely to
contain causal variants that are
more common in the ancestral
population.

PENETRANCE

The proportion of individuals
with a specific genotype who
manifest the genotype at the
phenotypic level. For example, if
all individuals with a specific
disease genotype show the
disease phenotype, then the
genotype is said to be
‘completely penetrant’.

HERITABILITY

The proportion of the variation
in a given characteristic or state
that can be attributed to
(additive) genetic factors.

LINKAGE DISEQUILIBRIUM 

Correlation between nearby
variants such that the alleles at
neighbouring markers
(observed on the same
chromosome) are associated
within a population more often
than if they were unlinked.

HAPLOTYPE

A sequential set of genetic
markers that are present on the
same chromosome.
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The missense approach. As a consequence of the high
proportion of missense mutations among the alleles
that underlie Mendelian disorders, Botstein and Risch
have proposed that association studies should be
focused on missense SNPs71. Because a typical gene con-
tains one or two missense SNPs35,36,72, this strategy
would require the genotyping of only 30,000–60,000
SNPs. Of course, identifying all common missense SNPs
would require a substantial effort — for example, the
bidirectional resequencing of 300,000 exons in 48
individuals would entail nearly 30 million reads —
but if sequencing costs continue to drop73, this could,
in theory, be accomplished in the near future.

However, there are reasons to question the rationale
that underlies this approach. By definition, causal alleles
for monogenic disorders are highly penetrant and often
lead to severe phenotypes. Accordingly, these alleles
often cause severe changes in protein function, and the
spectrum of disease alleles usually includes not only
missense mutations but also nonsense mutations, severe
splicing mutations and insertion or deletion mutations,
which can induce frameshifts (although even for
Mendelian disorders, an appreciable fraction of muta-
tions are outside the coding region). Clearly, these
mutations are often subject to negative selection. By
contrast, the alleles that underlie complex traits have
more subtle effects on disease risk and might be more
likely to include non-coding regulatory variants with a
modest impact on expression. In addition, given the
modest effects of these alleles on disease risk and the
late-onset of many common diseases, the causal alleles
are far less likely to be subject to strong negative selec-
tion and might therefore comprise different types of
variants to those that underlie Mendelian disorders.

In support of the missense variant approach,
Botstein and Risch71 have pointed out that the small list
of common variants that have been reliably associated
with common disease include a large proportion of
missense variants53. However, this argument is under-
mined by a significant ASCERTAINMENT BIAS; until recently,
missense variants have been preferentially discovered
and preferentially tested for association with disease, so
the true proportion of causal variants that involve mis-
sense changes cannot be estimated. Furthermore, SNPs
in coding regions are implicitly accepted as ‘the answer’
when an association with a missense variant is detected,

part of the Encyclopedia of DNA Elements (ENCODE)
project. This project involved the resequencing of 96
chromosomes to ascertain all common variants, and the
genotyping of all SNPs that are either in the dbSNP
database or that were identified by resequencing. These
studies strongly confirm the patterns of long segments
of strong LD that were seen in earlier studies (S. Gabriel,
D. Altshuler and M.J.D., personal communication; data
available on the HapMap website).

These studies have shown that most of the roughly
11 million common SNPs in the genome have groups
of neighbours that are all nearly perfectly correlated
with each other — the genotype of one SNP perfectly
predicts those of correlated neighbouring SNPs. One
SNP can thereby serve as a proxy for many others in an
association screen. Once the patterns of LD are known
for a given region, a few TAG SNPs can be chosen such
that, individually or in multimarker combinations
(haplotypes), they capture most of the common varia-
tion within the region60,61 (FIG. 1). A proportionally
higher density of variants must be typed to compre-
hensively survey the fraction of the genome that shows
low LD.

On the basis of previous studies58–60,62 and initial
HapMap data (P. DeBakker, D. Altshuler and M. J. Daly,
personal communication), a few hundred thousand
well-chosen SNPs should be adequate to provide infor-
mation about most of the common variation in the
genome; a larger number of tag SNPs is likely to be
required in African populations (and those with very
recent origins in Africa), because these populations gen-
erally contain more variation and less LD60,63. The pre-
cise number of tag SNPs needed is yet to be determined,
and will depend on the methods used to select SNPs, the
degree of long-range LD between blocks and the effi-
ciency with which SNPs in regions of low LD can be
tagged52,64. Various algorithms have been proposed for
selecting tag SNPs61,65–70; the optimal method will
depend partly on which of the many methods for
searching for associations is employed (using haplo-
types, single markers, multiple markers and so on).A full
review of the statistical methods available for selecting
tag SNPs and for finding associations with disease is
beyond the scope of this manuscript; however, Wang
and colleagues discuss some aspects of these in the same
issue of this journal32.

TAG SNPs

Single nucleotide
polymorphisms that are
correlated with, and therefore
can serve as a proxy for, much of
the known remaining common
variation in a region.

ASCERTAINMENT BIAS

A consequence of collecting a
nonrandom subsample with a
systematic bias, so that results
based on the subsample are not
representative of the entire
sample.

Table 2 | Selected commercially available high-throughput genotyping platforms

Company Method of allele discrimination Method of detection Number of assays detected
simultaneously

Third Wave PCR, cleavase Fluorescence; plate reader 1 (multiplexed 100-fold at PCR
stage only)

Sequenom PCR, primer extension Mass spectrometry 7–12

ABI PCR, primer extension Fluorescence; gel electrophoresis 48

Illumina Oligo ligation, generic PCR Fluorescence; tags on beads 1,536

Parallele Gap closure, generic PCR Fluorescence; tags on array 10,000

Affymetrix Generic PCR, hybridization Fluorescence; hybridization to array 10,000–100,000

Perlegen PCR, hybridization Fluorescence; hybridization to array 100,000+

© 2005 Nature Publishing Group 
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LD or functional considerations, but will nevertheless
achieve some degree of coverage of the genome.
However, for some sets of variants, the coverage is so
poor that calling them ‘genome-wide’ is misleading.
The least comprehensive of such so-called genome-
wide association studies are linkage studies that are
converted into association studies by looking for
associations between disease and the 400–1,000
microsatellites that are typed in linkage studies. Even
under the optimistic assumption that testing a single
microsatellite for association completely surveys vari-
ation in a surrounding 50-kb block of LD (blocks are
on average ~20 kb (REF. 60), so this is also optimistic),
such a study would cover 20–50 Mb — 1–3% of the
genome or less — and cannot truly be considered a
genome-wide association study.

A proposed alternative approach is to type a few
SNPs in or near the coding region of each gene81,82. This
method, like all association approaches, only surveys
those variants that have been chosen for genotyping and
those variants that are in LD with the chosen variants.
Unless the LD patterns of each gene are empirically
determined, even missense SNPs might well be missed
using this approach, because choosing SNPs on the basis
of physical proximity does not guarantee that nearby
SNPs will be captured52. Furthermore, regulatory vari-
ants further away from a gene will almost certainly not
be surveyed.

More recently, large collections of many thousands83

(for example, the Affymetrix Centurion and ParAllele
and MegAllele mapping sets) or over a million SNPs
(K. Frazer and D. Cox, personal communication; see
also the Perlegen Whole Genome Scanning collection)
have been developed, and these can be genotyped at a
significantly lower cost per SNP. The degree of coverage
has not yet been published for these SNP sets, but they
are likely to cover a significant fraction of the genome,
even if they are less efficient per marker than an LD-
based set. If the savings are large enough, the cost might
be lower than with an LD-based set of markers for the
same degree of genome coverage.

Before using such a set of variants, it will be impor-
tant to genotype them in a well-defined set of samples
(such as those used in the HapMap project), to deter-
mine how well the genome is covered and how best to
supplement the set of markers, if necessary. Without
such an assessment, even a large set of SNPs might seem
to be genome-wide but might actually fail to survey a
large amount of genomic variation. The ideal set of
markers would be chosen with regard to LD and would
be amenable to genotyping using the most cost-effective
method. At present, published data and data that are
emerging from the HapMap project indicate that
although 100,000 markers (1 every 30 kb of the
genome) would provide a prodigious amount of data, it
is far from a complete scan of the genome and might
only provide an adequate proxy for fewer than 50% of
common variants (I. Pe’er and M.J.D., personal com-
munication). A million randomly selected SNPs (or a
few hundred thousand that have been optimally
selected on the basis of LD) seem to provide much more

often without the functional scrutiny that is required for
a SNP in a non-coding region, and often despite the
presence of many nearby variants that might be equally
or more strongly associated with disease. Indeed, one of
the missense variants that has been shown to be associ-
ated with complex disease — the Thr17Ala polymor-
phism in the gene encoding cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) — is reliably associated
with autoimmune disease only because it is in strong
LD with a regulatory polymorphism in a non-coding
region, which is more strongly associated with disease
and is therefore more likely to be causal44.

Nevertheless, some missense variants have been reli-
ably associated with complex disease and, as a group,
missense variants are more likely to have functional
consequences. Therefore, the genome-wide testing of
large collections of missense variants is likely to remain
a productive approach. However, given our current lack
of knowledge about common disease risk alleles, it
remains unclear what fraction of these would be discov-
ered even by a comprehensive survey of missense poly-
morphisms.

New methods are emerging that might help recog-
nize variants that affect gene function without affecting
the encoded amino-acid sequence. By comparing the
human and mouse genomes74, it was shown that a signifi-
cant amount of non-coding DNA is highly conserved75.
This indicates that conserved non-coding regions are
often functionally important — a hypothesis that has
been supported experimentally75–80. Polymorphisms in
these non-coding regions could also have an important
role in the genetics of biomedical traits. Indeed, a modi-
fication of the missense approach to include SNPs in
these conserved regions has also been proposed71.
However, the large number of additional SNPs required
would sacrifice the efficiency of the missense approach
and would result in studies that are similar in scale to
the indirect LD approach.

A convenience-based approach. A third approach to
choosing markers for genome-wide association studies
is to select variants on the basis of logistical considera-
tions, such as the ease and cost of genotyping. Such a set
of variants will be less efficient per variant for surveying
the genome for disease alleles than a set that is based on

Direct association Indirect association

a b

Figure 1 | Testing SNPs for association by direct and indirect methods. a | A case in which
a candidate SNP (red) is directly tested for association with a disease phenotype. For example,
this is the strategy used when SNPs are chosen for analysis on the basis of prior knowledge
about their possible function, such as missense SNPs that are likely to affect the function of a
candidate gene (green rectangle). b | The SNPs to be genotyped (red) are chosen on the basis of
linkage disequilibrium (LD) patterns to provide information about as many other SNPs as possible.
In this case, the SNP shown in blue is tested for association indirectly, as it is in LD with the other
three SNPs. A combination of both strategies is also possible.
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HYPOTHESIS TESTING, while minimizing the amount of
genotyping required. These strategies include multi-
stage designs to minimize sample sizes, the use of special
populations and the pooling of samples.

Selecting an appropriate sample size. The most obvious
limitation of genome-wide studies is the high cost and
significant effort required to genotype hundreds of
thousands of SNPs per individual. Because of this high
cost, there is pressure to limit the sample size, with a
consequent reduction in power. However, because vari-
ants that contribute to complex traits are likely to have
modest effects, large sample sizes are crucial. The sam-
ple sizes required are further increased by the large
number of hypotheses that are tested in a genome-wide
association study, because p-values must be corrected
for multiple-hypothesis testing. Risch and Merikangas28

propose that a p-value of 5 x 10–8 (equivalent to a p-value
of 0.05 after a BONFERRONI CORRECTION for 1 million inde-
pendent tests) is a conservative threshold for declaring a
significant association in a genome-wide study.

To understand the consequences of this threshold,
consider an allele with a frequency of 15% and an ODDS

RATIO of 1.25 (similar to that of the PPARG Pro12Ala
variant associated with type 2 diabetes). For such a vari-
ant, even assuming that the causal SNP (or another SNP
that serves as a perfect proxy) has been typed, nearly
6,000 cases and 6,000 controls are required to provide
80% statistical power to detect associations with a 
p-value of 5 x 10–8. For 500,000 independent SNPs, this
sample size would require 6 billion genotypes, which
would be prohibitively costly. Alternatively, a more lib-
eral p-value threshold could be used, but to achieve 80%
power for even a nominally significant p-value of 0.05
for a variant such as PPARG Pro12Ala, 1,200 cases and
1,200 controls — or 1.2 billion genotypes — would be
required. Sample sizes smaller than this risk missing

complete coverage. However, it is important to note that
none of these marker sets will be optimal for detecting
the effects of rare variants with frequencies of 1% or
less. Nevertheless, there is hope that haplotypes of com-
mon variants will be sufficient to capture modestly rare
disease alleles in the 1–5% frequency range (BOX 1).

Strategies to increase efficiency
In this section, we discuss strategies that have been pro-
posed for implementing a whole-genome association
study that has adequate power in the context of MULTIPLE-

MULTIPLE-HYPOTHESIS TESTING

Testing more than one
hypothesis within an
experiment. As a result, the
probability of an unusual 
result from within the entire
experiment occurring by 
chance is higher than the
individual p-value associated
with that result.

BONFERRONI CORRECTION

The simplest correction of
individual p-values for 
multiple-hypothesis testing:
p

corrected
= 1 – (1 – p

uncorrected
)n,

where n is the number of
hypotheses tested. This formula
assumes that the hypotheses 
are all independent, and
simplifies to p

corrected
= np

uncorrected

when np
uncorrected

<<1.

ODDS RATIO

A measure of relative risk that 
is usually estimated from 
case-control studies.

Box 1 | Can rare alleles be detected by association methods?

Both the frequency and penetrance of causal alleles affect the statistical power to detect these alleles; power increases
with increasing frequency and increasing penetrance. This indicates that a more constructive and intuitive measure than
either of these factors is a single parameter, such as the amount of variation in a phenotype that can be explained by the
genetic variant in question. If such as measure is used, rare, highly penetrant alleles and common, low-penetrance alleles
are on an equal footing. The power to detect an allele therefore depends on what is ultimately the most relevant measure
of a genetic variant’s contribution: the proportion of the phenotypic variance in the population that is explained by a
particular variant. This means that rare variants with modest effects will be difficult to detect by any method because
they explain only a trivial fraction of the variance in a trait.

However, rare alleles might also be more difficult to detect by association for other reasons. Even if rare alleles have
strong effects, they might be difficult to detect by association methods because they are less well represented in SNP
databases and because tag SNP approaches are currently designed to tag common SNPs (usually with frequencies
>5%). However, population-genetic considerations indicate that most rare alleles with frequencies <5% are likely to
have arisen relatively recently (because old alleles tend to either disappear or become common), so there will have
been less time for recombination and mutation to disrupt the haplotype on which they arose. Therefore, rare variants
are expected to be on single, long haplotypes, as has been observed131. Recently, Cutler and colleagues have proposed
an exhaustive search of all haplotypes that could greatly increase power to detect rare variants with strong effects132.
In addition, Rioux and colleagues recently showed that the alleles of CARD15 with frequencies of <5% that
contribute to inflammatory bowel disease could have been detected indirectly with haplotypes composed of common
variants133. Of course, rare variants with strong effects, such as those in CARD15, should also be detectable by well-
powered linkage analyses, which should be attempted for common diseases in advance of, or in conjunction with, a
genome-wide association study.

Stage 1 Genotype full set
of SNPs in relatively
small population at
liberal p value

Stage 2

Screen second,
larger population
at more stringent
p value

Stage 3

Optional third stage
for increased
stringency

Number of SNPs

Figure 2 | Using a multistage approach to minimize sample sizes. In association studies, a
multistage approach can reduce the amount of genotyping required, without sacrificing power. In
stage 1, the full set of SNPs is genotyped in a fraction of samples, and a liberal p-value threshold
is used to identify a subset of SNPs with putative associations. In the second and possibly third
stages, the SNPs identified from the first stage are re-tested in populations that are larger or of a
similar size. The results of this can then be used to distinguish the few true-positive associations
identified in stage 1 from the many false-positive results that occur by chance.
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not meet it are unlikely to achieve significance in the
whole sample and can therefore be safely discarded. All
markers that pass the threshold are then tested in a sec-
ond, independent population sample, which is similar
in size or larger than the initial population. This second
stage is carried out for only a small fraction of the mark-
ers that were contained in the initial screen, so there is a
large efficiency gain. It might be better to genotype these
markers using a different method, as different technolo-
gies are better suited for SNP sets of different sizes. This
would also further minimize the chance that false asso-
ciations that arise as a result of technical genotyping
artefacts will be repeated. The joint thresholds from the
first two stages can be set so that fewer than 5% of stud-
ies would produce a double-positive, taking all of the
tests into account. A third stage could also be used for
even greater stringency.

How should the thresholds used in these analyses
be defined? One option is to use the standard
Bonferroni correction. However, with a high density
of markers, significant LD between many markers,
and redundancy between single markers and the mul-
timarker haplotypes that might also be tested for asso-
ciation, the assumption of independence among tests is
strongly violated. Therefore, the Bonferroni correction
will generally be punitively conservative, requiring
inappropriately low p-values (and therefore inappro-
priately large sample sizes).

Many alternative strategies for defining significance
thresholds have been proposed; we feel that permuta-
tion testing (BOX 2) offers a good solution to empirically
assessing the probability of having observed a particular

variants that are similar, in terms of frequency and risk,
to variants that have already reliably been shown to
affect disease susceptibility. Indeed, because the early
stages of gene discovery (which we are still in with
respect to common disease) are biased towards the
detection of stronger effects, even larger sample sizes
might be required to detect alleles with more modest
effects. However, despite the benefits of permitting a
smaller sample size, using a relaxed p-value threshold of
0.05 also guarantees that 5% of all genotyped SNPs will
be ‘associated’ by chance. For a 500,000-SNP study, this
translates into a rather useless list of 25,000 false-positive
associations, within which are buried a few genuine
causal alleles. Therefore, a liberal p-value threshold
requires follow-up studies to distinguish false-positives
from real associations.

A multi-stage approach. A simple procedure for over-
coming these problems is the use of a two- or three-stage
screening process, in which a more modest threshold for
‘passing’ markers as positive is used during the evalua-
tion of the initial scan of the genome for associa-
tion41,84,85 (FIG. 2). Formal statistical considerations for
such a strategy can be found in REFS 84,85; here we
describe the general principle. A threshold is set that
maintains the power to detect loci that explain only a
small fraction of the phenotypic variance (thereby los-
ing little power compared with a study that screens the
entire genome in all samples), while bearing in mind
that a large but reasonably controlled number of false-
positive results will also pass this threshold. This gener-
ous threshold would also be set so that markers that do

Box 2 | Permutation testing

When evaluating
potentially interesting
results with very low 
p-values, it is necessary to
determine how often they
would arise by chance if
the study were repeated
and if there were no true-
positive findings. This can
be achieved empirically
by permutation testing, as
illustrated in the figure.
Green squares and circles
represent men and
women with the disease,
respectively; yellow
squares and circles
represent controls; and
red circles indicate the
presence of a potential
disease-susceptibility allele. All of the statistics of interest are calculated both in the actual data and in many different
permuted data sets. No biologically meaningful association should be observed in the permuted data because the case
and control labels — the phenotype values — have been shuffled. Therefore, the collection of the best test statistics
observed in each permuted data set — that is, the results that show the greatest apparent association by chance —
represents a null distribution with which the best actual test statistic can be compared. This can be used to obtain a
true estimate of statistical significance that is corrected for multiple-hypothesis testing.

1. Calculate test statistics of
interest in actual data set

2. Calculate same test statistics
in each permuted data set,
and record best result for
each permutation

3. To obtain significance of best
actual test statistic, compare
with distribution of best
permuted statistics

Actual data set
Cases Controls

Permuted data
'Cases' 'Controls'

© 2005 Nature Publishing Group 

 



102 | FEBRUARY 2005 | VOLUME 6 www.nature.com/reviews/genetics

R E V I E W S

localizing genes that underlie Mendelian disorders, but
might provide less of an advantage for common dis-
eases. The use of such populations in association studies
is described in BOX 3.

Pooled samples, in which equal amounts of DNA
from multiple individuals are mixed into a single well
before genotyping, have the potential to markedly
reduce the amount of genotyping required in whole-
genome association studies (reviewed in REF. 92), perhaps
up to 30-fold93. However, this requires the extremely
accurate determination of small differences in allele fre-
quency to detect alleles with modest effects, while still
using high-throughput, low-cost genotyping platforms.
To test haplotypes for association, accurate estimates of
haplotype frequencies can, in theory, be reconstructed
from allele-frequency data for multiple markers43,92,93.
However, in practice, this might be difficult without
either extremely accurate estimates for each marker or
genotyping of multiple redundant markers, which
would reduce the cost savings. Furthermore, variants
with pure recessive effects might be more difficult to
identify using this strategy: under a recessive model, the
difference in genotype frequencies between cases and
controls will be more pronounced than the difference
in allele frequencies, but pooled genotyping only mea-
sures allele frequencies.

One other important limitation of pooling strate-
gies arises from the fact that if a genome-wide associa-
tion study is undertaken, at great effort and expense, it
will often be desirable to genotype individuals with
many different measured phenotypes, so that the infor-
mation obtained from the genotype data can be maxi-
mized. Indeed, family-based and haplotype-based tests
of association for quantitative traits have greatly
increased the number of phenotypes that can be exam-
ined94–101. However, to study multiple phenotypes using
a pooling strategy, a different pool must be made for
each phenotype, thereby reducing the cost savings. In
addition — and this might be of crucial importance —
for some diseases, more complex analyses of gene–gene
or gene–environment interactions will not be possible
without individual genotype data. Nevertheless, because
of the potentially dramatic cost savings, large-scale
empirical trials of several different pooled genotyping
technologies might be valuable, including direct com-
parisons with individual genotyping data on the same
samples to assess sensitivity and specificity.

Avoiding false-positive associations
In a study involving hundreds of thousands of markers,
minimizing false positives is essential. Sources of false-
positive associations can be divided into three main
categories: statistical fluctuations that arise by chance
and result in in low p-values (which are likely to occur
when testing multiple hypotheses); underlying system-
atic biases due to study design; and technical artefacts.
The issue of false-positives that result from multiple-
hypothesis testing is best addressed using robust crite-
ria for declaring significant associations, such as those
mentioned above. Here, we discuss systematic biases
and technical causes of false-positive associations.

result by chance. There are also other less computation-
ally intensive methods, including FREQUENTIST approaches
for estimating experiment-wide significance86–89 and
BAYESIAN approaches for assessing the likelihood that an
association is genuine90. Importantly, genuine associa-
tions can achieve thresholds that survive correction for
multiple testing if enough samples are genotyped
(either as a single study or as a combined analysis of sev-
eral studies). For example, the association of the variable
number of tandem repeats (VNTR) mutation in the
insulin gene (INS) with type 1 diabetes91, the association
between PPARG Pro12Ala and type 2 diabetes48 and a
number of other associations, have overall p-values that
survive even conservative genome-wide corrections for
multiple testing28.

Founder populations and pooled samples. Other meth-
ods have been proposed that increase the efficiency of
association studies, most notably the use of FOUNDER

POPULATIONS, which reduce the number of markers that
need to be genotyped, and of pooled samples, which
reduce the number of samples genotyped. Founder
populations offer powerful advantages for efficiently

FREQUENTIST

A statistical approach for
assessing the likelihood that a
hypothesis is correct (such as an
association being valid), by
assessing the strength of the data
that supports the hypothesis and
the number of hypotheses that
are tested.

BAYESIAN

A statistical approach that
assesses the probability of a
hypothesis being correct (for
example, whether an association
is valid) by incorporating the
prior probability of the
hypothesis and the experimental
data supporting the hypothesis.

FOUNDER POPULATIONS

Populations that that have been
derived from a limited pool of
individuals within the last 100 or
fewer generations.

Box 3 | Founder populations

Founder populations are those that have been recently derived — 100 or fewer generations
ago — from a limited pool of individuals, and such populations have been proposed to be
advantageous for studying multigenic diseases. For rare alleles with population frequencies
that are less than the reciprocal of the effective number of founding chromosomes (such as
the alleles that cause most single-gene disorders), there is a strong advantage to using
founder populations. This is because populations with a sufficiently small and recent
origin have repeatedly been shown to carry such rare mutations on a single chromosome,
which can be readily dated to the founding of that population. The populations that have
been used most successfully in such studies include non-geographically isolated groups
such as Finnish people, French-Canadians and Ashkenazi Jews.

However, theory and early data indicate that such mapping advantages might be quite
modest in the search for alleles that are associated with complex disease, which might have
higher population frequencies. In these populations, it has been repeatedly found that rare
mutations are present on a long shared haplotype, which arises because one (or a small
number) of original founding chromosomes carried the mutation in question, and as a
result, most modern-day members of that population who bear the mutation are likely to
carry that particular chromosome for a long distance.As the allele is completely or largely
located on a single chromosome at the founding of the population, the length of the
shared haplotype depends on the time since the founding event over which recombination
has acted to disrupt that chromosome; that is, it depends on the age of the population. For
more common alleles, the situation will generally be more complicated, as they will enter
even a small founder population so many times that the length of shared haplotypes
around these alleles will be indistinguishable from that of the much larger ancestral
population134. Indeed, studies of common variation in several of these more commonly
used founder populations135 show little or no difference in the LD patterns of common
genetic variants. Therefore, these populations do not seem to provide a significant
reduction in the labour required to perform a genome-wide association study.

Of course, more isolated populations will be more homogeneous and therefore might
have the advantage of a more consistent environment. It at least seems to be no more
difficult to detect associations in isolated populations than in more diverse populations,
so isolated populations (or populations that are homogeneous for other reasons) might
very well be recommended on other grounds. Several particularly isolated European
and Pacific Island populations have been reported to have modestly extended general
LD even around common alleles when compared with neighbouring populations136. So,
further exploration of this idea might be warranted for populations with particularly
small numbers of founders that contributed substantially to the current gene pool.
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the results of typing unlinked markers in well-matched
case-control studies106,111. The consensus from these stud-
ies is that large-scale stratification is unlikely in well-
matched populations111. However, mild stratification is
difficult to rule out106, and can be shown to exist in well-
matched studies of historically admixed populations if
enough markers are typed106 or if the right phenotype is
chosen112. Mild stratification might also exist even in less
admixed populations at a level that can be a significant
problem when looking for alleles with modest effects on
disease106,112 (FIG. 3). Fortunately, the large number of
markers typed in a genome-wide association study will
permit the extremely precise assessment of stratification,
allowing for either the appropriate upward correction of
p-values (with a concurrent loss of power) or the re-
matching of cases and controls on the basis of genotypes
at a large number of random loci105. Rematching samples
will also sacrifice power, as not all samples will be ana-
lyzed in the final set, and the loss of power will depend on
the severity of the stratification. Ideally, re-matching
would take place in advance by typing a smaller number
of markers in a large pool of potential controls; markers
that provide information regarding ancestry might be
particularly useful for this113.

Another way of avoiding stratification is to use fam-
ily-based samples. This approach has several theoretical
advantages: as well as being immune to stratification114,
these samples can be used to determine whether an
allele has different effects on disease when it is inher-
ited maternally or paternally115, and DISCORDANT SIB

designs116–118 can control for the effects of shared envi-
ronment. Furthermore, more complex family-based
designs are possible119 that might allow combined asso-
ciation and linkage analysis120, and family-based associa-
tion tests have also been developed for quantitative
traits94–98. However, pure sibship-based association
studies are underpowered relative to case-control stud-
ies107,116,117, and the requirement for living parents might
introduce an age-of-onset bias towards younger patients
for diseases that usually arise late in life. Furthermore,
family-based samples are often much more difficult to
collect, particularly if larger pedigrees are sought.
Finally, the most commonly used family-based design,
the TRANSMISSION DISEQUILIBIRIUM TEST (TDT; see REF. 114) is
susceptible to technical artefacts (see below).

Bias due to technical artefacts. Because a large number
of markers is typed in a genome-wide association study,
even unusual technical artefacts are likely to arise occa-
sionally. These are less likely to cause false-positives in
case-control studies, because genotyping errors or miss-
ing data should affect cases and controls equally. The
exception to this rule occurs when cases and controls are
not genotyped in an identical manner, which can result
from obvious methodological flaws such as genotyping
cases and controls on separate days or on separate
plates, or from more subtle issues concerning laboratory
methods.

By contrast, the TDT is more susceptible to false-
positive results from laboratory difficulties. The poten-
tial contribution of genotyping errors to false-positive

Bias due to population stratification. The most widely
discussed source of systematic bias is population stratifi-
cation due to ethnic ADMIXTURE. Population stratification is
the presence of multiple subgroups within a population
that differ in disease prevalence (or average trait value, for
quantitative traits). This can lead to the over-representa-
tion of one or more subgroups among the individuals
chosen as disease cases in association studies. If a
genetic marker has different frequencies in the different
subgroups, false-positive associations can ensue.

Techniques have been developed to detect102–104 and
correct103,105,106 for population stratification by typing
dozens of unlinked markers. Whether ‘well-matched’
association studies (that is, matched by self-described eth-
nicity) are subject to stratification is controversial107–110,
but until recently there has been little empirical data on
this subject. Two research groups have recently reported

ADMIXTURE 

Combining two or more
populations into a single group.
This has implications for studies
of genotype–disease associations
if the component populations
have different genotypic
distributions.

DISCORDANT SIB STUDY

A family-based association
approach that uses only sibs who
are phenotypically discordant
(that is, different). Like the
transmission disequilibrium
test, this approach is immune to
population stratification.
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Figure 3 | Effects of population stratification in whole-genome association studies. A
simulation of the effect of population stratification on the ratio of true-positive and false-positive
results in a genome-wide association study. a | The expected number of false-positive and true-
positive associations detected in a simulated genome-wide association study at different
significance levels (shown as the negative log of p-values). Results are shown for a simulated
study of 1,000 cases and 1,000 controls, for which 500,000 independent tests are carried out
but only 100 represent true associations, with allele frequencies of 15% and odds ratios ranging
from 1.2 to 1.5. b | The same scenario is simulated under two different levels of mild
stratification, λ = 1.2 and λ = 1.5 (that is, modelling degrees of stratification such that the typical
chi-square statistic for association is inflated by either 1.2 or 1.5; see REF. 103). These levels of λ
for studies of 1,000 cases and controls are plausible on the basis of recent empirical studies106.
We modelled the effect of stratification on false-positives by simulating association results under
the scenario of no stratification and no true effects and then multiplying the simulated chi-square
statistics by a factor of λ (see REF. 104).
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We have examined the impact of missing data on the
TDT, and find that this can be an important cause of
false-positive associations, even when reasonable quality-
control measures are used. As discussed in BOX 4, the
impact of missing heterozygotes is most important with
alleles that are rare enough to avoid violation of
HARDY–WEINBERG EQUILIBRIUM, but are still common enough
to achieve low p-values. False-positives are also observed
under other scenarios, especially missing homozygotes
of the rare allele (J.N.H., unpublished results). Therefore,
data completeness is important for TDTs, especially for
rarer alleles.

A complete analysis of the impact of missing data is
beyond the scope of this review, but the implication is
that for family-based designs, genotyping technologies

TDT associations has been described previously121, as
have possible corrective measures, including tests that
take errors into account, with some accompanying loss
of power122. The error rates considered in these studies
are generally greater than those observed with most cur-
rent genotyping technologies, and would usually be
detected by the occurrence of apparent inheritance
errors in families. However, these studies nevertheless
reaffirm the importance of corroborating genotype data
that show putative associations. Less widely appreciated is
the fact that missing data can also result in false-positives
if samples with a particular genotype are more likely not
to be classified during genotyping; many genotyping
methods have lower success rates for heterozygotes, so
this scenario is not unrealistic.

TRANSMISSION

DISEQUILIBRIUM TEST

A family-based test for
association that is immune to
population stratification. The
transmission of alleles from
heterozygous parents to affected
offspring is compared to the
expected 1:1 ratio.

HARDY–WEINBERG

EQUILIBRIUM

The binomial distribution of
genotypes in a population, such
that frequencies of genotypes
AA, Aa and aa will be p2, 2pq,
and q2, respectively, where p is
the frequency of allele A, and q is
the frequency of allele a.
Hardy–Weinberg equilibrium
applies in a population when
there are no factors such as
migration or admixture that
cause deviations from p2, 2pq
and q2.

Box 4 | Missing genotypes and false-positive transmission disequalibrium tests 

To estimate how missing heterozygote genotypes influence the number of false-positive results in transmission
disequalibrium tests (TDTs), pedigrees with a total of 1000 parent–offspring trios were simulated, and 1,000 different sets
of genotypes were generated for each set of trios under a model of no association. Heterozygote genotypes were randomly
removed at different rates, and TDT statistics114 were calculated using only complete trios. The percentage of p-values
<0.001 — that is, the percentage of false-positives that would be generated in a real study — was recorded for each level 
of missing heterozygotes. This simulation was carried out for alleles with different minor allele frequencies. The results 
of the simulations are plotted in the graph. For each minor allele frequency, the percentage of false-positive results that
would be obtained (p <0.001) is shown under scenarios in which 0%, 10%, 20%, 30% and 40% of heterozygote genotypes
are missing. (With no missing data, the percentage of times the p-value fell below 0.001 was 0.1%, as expected under the
null distribution.) Studies where the parental genotype counts violated Hardy–Weinberg equilibrium at p <0.01 or where
the total number of failed genotypes exceeded 10% were not counted as false-positives, as these would be detected and
eliminated by standard quality-control measures.

In real studies, false-positive TDT associations can ensue, even in the presence of standard quality-control measures,
for example if heterozygote genotypes are harder to identify correctly than other genotypes. As illustrated in the figure,
this effect is greatest with relatively rare alleles for which quality-control measures (such as checking for violation of
Hardy–Weinberg equilibrium) are less effective, but the alleles are common enough that there are sufficient numbers 
of informative trios to produce small p-values.
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if individual alleles explain only small fractions of vari-
ance, fewer are required to explain the heritability of
common phenotypes if interactions between them are
important. Empirical evidence of epistasis is provided
by repeated observations of the genetic background
modifying the effect of transgenes, knockouts and spon-
taneous mutations in mice. Nevertheless, recent stud-
ies45,125,129 indicate that, in some cases, many primarily
additive, independent factors might define the heritabil-
ity of common phenotypes. This indicates that initial
screens for main effects in genome-wide association
studies are likely to be successful in many cases, without
considering epistasis in the initial analysis.

What has been done so far?
No truly genome-wide association study has yet been
carried out, although relatively comprehensive studies
using pooled samples will undoubtedly be reported in
the near future, and comprehensive studies based on
individual genotypes are unlikely to be far behind. The
largest published study using individual genotyping was
accomplished by Nakamura and colleagues130, although
this was carried out using small samples. By genotyping
over 50,000 SNPs in a sample of just under 100 cases
and controls, and following up initial results in a replica-
tion panel, they identified a strong potential association
between myocardial infarction and variation in the lym-
photoxin-α gene. Although this was a large project
involving many millions of genotypes, the low power of
the initial screening sample means that the rates of both
false-negatives38 and false-positives90 in this study were
probably high. Furthermore, it is not clear what fraction
of the genome was surveyed by this set of SNPs.
Therefore, the performance of genome-wide association
methods has not yet been assessed.

Conclusions and future directions
Several objectives need to be met before genome-wide
association studies become truly practical. First, a set of
SNPs must be chosen that comprehensively captures the
common variation across the genome.Accumulating the
data necessary to choose such SNPs is one of the main
goals of the human HapMap project, which is due to be
completed in the next 2 years. Methods for selecting
such SNPs, and for using them efficiently for tests of
association, are being developed and refined. Other pro-
posed large sets of markers should be similarly assessed
to determine how completely they survey variation
across the genome. It is crucially important that the cost
of genotyping continues to decrease. Finally, standard-
ized criteria for establishing significance (perhaps based
on permutation testing) are needed.

Before numerous expensive genome-wide association
studies are attempted, we suggest that pilot experiments
should be used to test the merits of this approach. These
could include, for example, the application of one or
more of the approaches described above to survey varia-
tion over a small fraction of the genome. This would
ideally be carried out in a population where multiple
phenotypes have been measured, and/or in a genomic
region that has convincing linkage to the phenotypes of

that are not only accurate but also have low failure rates
will be crucial for avoiding false-positive associations. In
general, before declaring an association to be significant,
particularly with TDT analyses, genotyping should be
repeated to obtain accurate and complete data; com-
pared with the effort of a genome-wide association
screen, the effort of improving data quality for a few
potential associations is minimal. Despite these poten-
tial artefacts and other associated difficulties, family-
based approaches might still be of significant value
because they avoid stratification and might allow the
use of more powerful statistical methods.

Analysing gene–gene interactions
Gene–gene interactions — EPISTASIS — are thought to have
an important role in complex traits, but the analysis of
how these interactions contribute to complex disease is
likely to be challenging for some time to come. In an
excellent review, Cordell identifies several reasons why
establishing the biological importance of interactions that
have been identified statistically might be nearly impossi-
ble123. Beyond this, with respect to genome-wide associa-
tion studies, the sample sizes that we will be able to study
in the next few years will not support the massive number
of hypotheses that are involved in even a two-dimen-
sional screen (testing the association of all pairs of mark-
ers). Therefore, fully powered, unconstrained scans for
epistasis that account for multiple-hypothesis testing
might not be possible in the near future.

Fortunately however, efficient procedures for detect-
ing interactions might not require boundless searches of
the data. In standard models of pure biological epistasis
(for example, if there is only a phenotypic effect when
specific alleles in two genes are present together), there
will nonetheless be detectable associations for at least
one of the variants; that is, one can still observe a main
effect that does not require the consideration of interac-
tions with the other factor. Therefore an effective scan
for epistasis could involve simply searching for modest
individual effects and then either querying for interac-
tions among the set of positive markers or rescanning,
taking into account potential interactions with the
markers that have main effects. The latter conditional
analysis is likely to have an important role, regardless of
epistasis; scans that are conditional on known positive
results are also more powerful for detecting other inde-
pendent effects, as the variance explained by the major
loci has been controlled for, thereby enhancing the sig-
nal from the minor contributors.

Several studies, involving both simulated and real
data, have revealed that there are only limited advan-
tages to screens using more complex models that incor-
porate interactions between loci124–126. However, we
acknowledge that more unusual models of interaction
can be postulated that result in no main effects for either
variant; in such cases, several statistical approaches
can be used, for example, MULTIFACTOR-DIMENSIONALITY

REDUCTION127 (see REF. 128 for a more detailed discussion
of these methods).

There are theoretical and empirical reasons to think
that epistasis is important in complex disease. In theory,

EPISTASIS

In statistical genetics, this term
refers to an interaction of
multiple genetic variants
(usually at different loci) such
that the net phenotypic effect of
carrying more than one variant
is different than would be
predicted by simply combining
the effects of each individual
variant (mathematically, this
means that the gene–gene
interaction is significant).

MULTIFACTOR-DIMENSIONALITY

REDUCTION

An approach that attempts to
reduce the number of tests
required to search for
interactions between multiple
variables.
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technologies have remained fundamentally unchanged,
and it is the automation and refinement of existing
methods that has led to a reduction in cost73. Current
costs are still four orders of magnitude higher than
would be required for affordable whole-genome sequ-
encing. Therefore, although new technologies are being
explored73, waiting for whole-genome sequencing to
become a reality would ignore the increasingly feasible
genome-wide association approach.

Association studies that are genuinely genome-wide
offer great promise; in the near future, we will be able to
efficiently and comprehensively test common genetic
variation across the genome for a role in common dis-
ease and complex traits. On the basis of initial successes
in candidate-gene association studies that represent only
a tiny fraction of the genome, more comprehensive
genome-wide association studies should greatly advance
our understanding of the genetic basis of common
diseases and complex traits.

interest, to maximize the chances of finding true associ-
ations. Pilot experiments would also provide insights
into how carefully investigators must design their stud-
ies to avoid false-positives.

Looking further into the future, we note that the
most comprehensive approach towards understanding
complex disease would be complete genome resequenc-
ing in a large population of cases and controls. This
approach would not be limited by the choice of candi-
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