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LECTURE 1 : 1/23/2025

Introduction
· Human genome contains - 36 basepairs -> 46 chromosomes.

· 2 individuals are 99 % the same- difference = 10M basepairs

· GWAS Task : Finding , computationally , specific regions of shifts.

Definition : A SNP-single nucleotide polymorphism - a difference in one basepair occurs once every 600bp.

Most SNTs ave commons in 2-3% of the population.

Genomic Foundations
We will consider GWAS , protein folding , Linkage Disequilibrium ,

and more in this course.

ALGORITHMS
· MLE and E-M Algorithms , covering topics of spectral graph theory, to examine the substructures

of populations.

· ex : there are 2600 + subpopulations within in India

· protein folding/misfolding , AlphaFold ,
- applied to mad cow disease , for example

AN INTRO TO Genome Wide Association Studies (GWAS)
Before GWAS , disease context was random and non-rigorous.

· we now can have 100
,
000s of data points -> low cost of sequencing

· can be applied to unrelated people over many years , allowing for more subtle detections

B

D

·
# P statistical tests

D # & associations

population SNP

array for GWAS

Defining GWAS

· method for interrogating all 10 million variable points

· Infinite Allele Statement : There can only ever be 1 letters at a position , every SNP is binary

this is because the genome is so large , multiple mutationsof 1 pt. uncommon



e chromosome

our SNPs are arranged in blocks (haplotype blocks)

that allow us to group them

# & ↓
further studied in linkage disequilibrium.

individual SNPs = blocks of SNPS that are inherited together.

· After GWAS we can use SNPs to inform the risk for disease.

· We can also identify gene pathways from significant GWAS SNP hits .

What is Disease ?
The naive thought is a broken protein causing a cascade of issues (monogenic). This is NOT the case for

most complex diseases.

SNPs in the Genome

Definition : A position in the genome at which two or more diff bases in the genome occur
,

each

with a frequency~ 1 %

The most abundant type of polymorphism.

SNP 1 2 3

Haplotype : G c + C G A CAACA6

3
the haplotype is the sequence

G T C of the SNPS : LAG

From this , haplotypes are our alleles that we can binarize due to the infinite sites

assumption. - our matrix is entirely binary

Recombination : When new sequences are generated from 2 sequences : P . P2 , 8 1 82 - P . g2 , grp2

time

LINKAGe DISEQUILIBRIUM
13

⑧ ⑧

· variations in chromosome populations over time -
· easily visualized through phylogenetic trees · ·⑧

· ·
· definition : a way of statistically defining disease associations.



LECTURE 2 : GWAS Computational Pipeline

trio

the disease and not the control .parents
Goal: discover patterns of sps associated i the

Note that there will be patterns of SNPs on ALL

chromosomes !!

Chapter 1 : Haplotype Phasing Problem

Every study participant -> genotyped - SNPArray

Humans are diploid : mother chrom 1
, 2, ....

22 sexchromosome : female XX 23

father chrom 1
,

2, . .
22 male XY 24

SNP = single nucleotide polymorphism
↳ SNP has 2 alleles : the allele from the mother and the allele from the father

Definition:A haplotype is a single DNA sequence representing the SNPs that occur

every ~500-600 bp or so.

SNP 1
in practice it is very challenging to

M
T T construct the haplotypes because we

say from the mother we have : A A & only have the pairs ,
we don't know

father we have : G A G A which parent the individual nucleotides

originated from

Haplotype Phasing comes down to inferring the mother father haplotypes.

* WITH one INDIVIDUAL THIS Is IMPOSSIBLe A

COMBINATORICS of HaPLOTypeS : major minor alleles

↑

Definitions : a genotype is a string over 50 , 1 , 25
, a haplotype : is a string over 20 , 13

· the genotype is made up of two haplotypes !

two haplotypes =
0100

= 0120# S
↑I 0 10

↓
-

- ambiguous ,
different.

↓

this is a SNP if : there is high % of people that have it. Recall that due to the infinite sites model , only

two nucleotides are possible at a given position .

i .e AA
,

GA ,
AG , or 66



How does phasing get complicated ?

010 0

0220
+

0 0 1 0 there are 2 explanations! ,
if there are 3 Is in the genotype

b
000 0

& we will have z' possibilities.
0 110

P 00 10 this generalizes to 2"explanations for
02212s (1 , 13 ....

n amiguities .
2000

The Haplotype Phasing Problem

· Input : g ., 92, ..., On
· Output : hi

, hiz,..., huhne + all the haplotypes for all of the given genomes.

A AT G C C G TT 00101110 0

↓J ↓

-AATTT e geno : 002021200

000001000 ,
the Clark Rule haplotype

↓
now we have two haplotypes

Where do we start haplotyping ?
1 . g : ATTCT

When you have unambiguous genome snippets or 7single ambiguity in the snippet , you have good start pts 2 . gc : ATCT

3 Issues In The CLARK Regime

1. No full homozygote or single SNP

2. We arrive at a point where there are no new updates we can make
,

and there

are no remaining candidates. The remaining genomes are called orphans.
3. We find incorrect haplotypes .

This rule is heuristic and does not guarantee exceptions

Thes errors are called anamolous haplotypes.

91 = 01222

92 = 00212

93 = 0000 0 h0 000a these are automatically phased.·94 =

02111yh0
Applyinghy eg , -O 1111 + ha : 01000

&
now we have explained all of the

01222 genotypes using Clark's Rule.

Applying h2 + 92 - 00111 + ha :
00010

↓ ↓
00 21 2



LECTURE 3 : The Haplotype Phasing Problem

Chapter 1 OutlineCarkAlgorithm/greed, maximum likelihood

1
.

3 The Parsimony Algorithm3 1
.

4 The M1-Phasing and Parsimony Phasing

FormaLIZInG the CLARK Procedure A
one '2' in genotype.

① Identify all homozygotes and single hetero-zygotes (Aa , aA) haplotypes. Phase them

and call these resolved genotypes . (See Lecture 2 Notes for examples]

② Determine whether any of the unsolved haplotypes can be used to solve any

of the remaining ambiguous genotypes using the Clark Rule .

③ Iteratively continue until we have resolved all genotypes.

3 ISSUES : See Lecture 1 Notes for these enumerated issues

E-M Algorithm (1 . 2)

Goal : Finding the haplotype frequencies in a population and the maximum likelihood

haplotype phasing.

Define : The E-M Algorithm is an iterative algorithm to compute successive sets of

haplotype frequencies. 2"haplotypes , there are a lot!
① p, Pc ...PT starting on initial po , p,p
② These initial values are used as if they are unknown true frequencies to estimate

the explanation frequencies. - p(hishe) ; expectation step
-

↳ this a genome explanation for a genotype.

③ The expected explanation frequencies are used in turn to estimate haplotype frequencies.

at the next step-maximization step - P !, P2,
.... p+

continue until convergence - when consecutive steps yield minimal changes.

CONSTRUCTION+ ALGORITHM PROCess

definition : a genotype is a multi-locus genotype whose multi-locus haplotype phase is unknown

an explanation is a particular combination of 2 haplotypes , explaining a genotype

In E-M , we ultimately are trying to define a model that maximizes the probability
or likelihood of observing the given data (genotypes)



Likelihood Function

Ultimately
,

we can will only estimate frequencies over known/seen phenotypes due to

computational limitations .

ASSUMPTION : The distribution of the given sample is multinomial w . r
.
t latent and

unknown frequencies P1
,

Pe, . . num individuals
M

Thus IP(sample (Pz
, .... Pm) =n

Here ,
n :: represent counts for the m unique genotypes.

note that this UNIQUE to 1 genotype.
M

The number of explanations (C) for S; heterozygous loci can be defined as follows :

cj = 25j
- 1

-> this is clearly seen above in our Dark's Rule

examples Isee above

Putting this together, Pj : the probability of the jth genotype is the following . Letas

also add the following notation : Hj = Ehr , he' where IHjl = C is the set of all explan.

for a given phenotype.
recall that2 haplotypes make

Plexplanation) = [P(hihe) -

up every explanation.

11, hi t Hj

Here : IP(hishe) = Pr if k = e
, I pipe if K #2.

Putting everything together :
e

number of occ.

Uj of genotype j

Likelihood =

1)
= a d hta

his
,
heHj↳ multinomial constant

How do we optimize this ?

Normally ,
with Maximum Likelihood Estimation

,
we take partials w . r . t our model,

set it to 0 and find our optima. Here
, this would result in h-1 equations :

Ut = Score of the th - blogt e
log for numerical stabilitya

haplotype =Me
Setting these all to 0 and solving would be very tedious. Thus

,
enter the

E-M Algorithm !



E-M Algorithm
The goal , as aforementioned,

is to compute successive sets of haplotype frequencies P .
--. Pm

· These frequencies are used to estimate explanation frequencies[E-STEP]
· Then

,
these are used to update haplotype frequencies for the next iteration ,

M- Step

First ,
we have to initialize the haplotype frequencies : p ,%p, ..., Am*

/

· This could be uniformly distributed : IP (expl .
his he for gi) = Pilaihe)"=

· other initial conditions include P : = P; for all ij (equal 14 over haplotypes)
which represents complete linkage equilibrium

· haplotype frequencies chosen at random.

For these notes , we take the first approach

Expectation Step
At the thiteration

,
we use the previous iterations' h frequencies. to determine

the IP of resolving each genotype into possible explanations.

Iilhishe)'= IP(hishe) interpretation : weighted cond.

b probability
IPj) function of P , be...

We can understand this

as calculating the expected frequency of every explanation for each genotype .

Maximization Step
We then use the gene counting method for optimization.

pl+) +MPhuhe
2 iterable

Here, Grie 50,
1 , 23 represents the no · of times haplotype c is present in explanz

* derivation of this will appear in HW1 *

This derivation will later appear in the notes .



DeRIVATION OF M - STEP USING LaGRanGe MULT.

Recall : Classical Expectation Maximization

We have a statistical model that generates data A
, a set of unobserved data I ,

and a set

of unknown or missing parameters O.

These yield the likelihood function : 1 (0iX , 2) = p(X ,
110). The maximum likelihood

estimate is determined by maximizing the probability of observing the given data.

max ((OiX) = p(X10) = (p(X , 210)dz - or by taking partial derivatives

and using analytical optimization methods

Expectation Step :

Define Q1010') = Ellog likelihood function] w . r .
t & given X

,
0

· Q101014 = #2 - p( : /X
, 0(1) [logp(X

, 2101]
think of this as your expected likelihood over all possible latent variables 2

Maximization Step :

oth = argmax Q(010t) ->
NOTE : this step is often performed by

O analytically computing the maximum

value via lagrange multipliers.

APPLICATION to Haplotype PHASING

Here , Ye our observed genotypes Ze the explanations for our genotypes (unobserved

Of Po , ..., p + for Thaplotypes

Recall our likelihood function :

↓p.. ...,pt) =ahhSi
But what does this really represent ?



02/04/2025
LECTURE 4 :

slideshows
↑

For the complete worked through EM example , please see the course website .

Example:

say we only have genotypes : 22
, 02

, 20 ,
00 , 11

& notice that there are missing genotypese this is okay !! You rarely observe all possible g .

This means the only possible haplotypes are : 00
,

01
, 10 , 11

↳ let us denote these as 000
, Ool

,
Do

,
On - which will be iteratively determined in E-M.

↳ there are na genotypes of 22
, mp for 02

,
etc .

lused 11 in Lecture 3.

1 k = e
+ 08/11

Now ,
for group A

, for example : ↑ ↑

IP(ya) P*
= [ IPChiste) = [ (2-Uke) Pipe 22-00

h ,he Ha hi
,
he Ha

= 208) + 2001 0
,
0't

Now in the E-Step , we want to calculate the Expected Number of Each Haplotypes

· noot +"
= naP(i (Ya) + NB + nc + 24p + OnE

200 it 01/ Pa

· 00+_ Mooltyn where In= total number of haplotypes

1
.

3 Maximum LIKELHOOD PHASING

Define Haplotypes : Sequences over 50 , 13.
. Genotypes : 50 , 1 , 23

Let us consider the Likelihood Function :

↓ (P, Pz ,
. . .. PT) = (p , pz + psP4)(p . Ps + Bypo)(p , pi) (P> Po)

T= total number of haplotypes , example over 4 genotypes .

We want to find the popts that maximizes the Likelihood function. This is a computationally

infeasible problem .

Parsimony : the smallest number of haplotypes involved. Note that in practice finding
these values is done by simplifying the polynomial optimization .



LECTURE S 02/06/2025

Two Optimizations (that we can exactly solve) :

if X : are probabilities
1. We have X 1, Xz

, ..., XreIR ,
> 0

,
[xi = some constant,

↳ sum to 1
.

i = 1 : v

Problem : the solution maximizing the product P = #X:

Solution : optimal -> X
,

= Xz = ... = XR

This used in the idea of equal likelihood -> if we wanted to maximize.

2. Find the solution to : max(p' = X, xa ... xa) - optimalwhen

This is used in renormalization within some E-Mapplications-. see more in CS1820 !

NP-COMPLeTeneSS PROOF for HP/PARsimony

Theorem : parsimony haplotype phasing is NP-hard and maximum-likelihood hap phasing is NP-hard .

hi : 0 10 g : 021

SNPs are biallelic - 50.
13 : Hubbel denotes genomes differently - n :

01

where I is now the ambiguous symbol .

Parsimony PHaSInG Problem :

Given 6 = Eg .. 92 , ..., gu3 of observed genotypes, find the minimal size of inferred haploty es

H = Eh , hz, ..., hg 3 such that every genotype can be represented as a sum of two haplotypes.

We show that every instance of a general graph R may be connected in to a get

of genotypes so that a minimum set of inferred haplotypes corresponds to a minimum

clique partition of R
. E this is an NP-hard problem !

What is a clique ? R,o R2 = Rs Dr.
A graph where every node is connected to every node.

-

Clique Partition ? A partition of a graph into cliques that cover the entire graph . Min-

imising the number ofclighes is NP-hard. If we can reduce our

problem to this , then our parsimony phasing must also be Up-hard.

Reduction

First we must generate the graph f = (V , E)>G = 591
,

92 , .... gn3 the genotypes set

Algorithm : Given genotypes of length 2n.

Notation : Gij = gi(j] the jth coordinate of the ith genotype.



· We will have Ein vertices ,

· i = 1 : W : Then
, gij = 2 if i = j , gij = 1 if Vi is connected by an edge to V,I ·

i = n + 1 : 2n : Create an identify matrix where

o gij = 1 if j = n + i , 0 otherwise , 1 [In
, n+ j = In

* GRAPH CAME FIRST &
Example :

Vertex Genotype S2 Si

Si 9) (Si) = 2000
:dentity mat

a

S2 g(2) = 0210 o 00 0 SS

S3 9)(53) = 0120100 100

S4 g(54) = 00021
O 0 0 1 0

Se S4
S5 g(ss) = 111120000

m
-

d ↳these ensure uniqueness for each g(si)
these are

the original genotypes and define edges

Now let us define the haplotype set H = h
,

hz, ...,
h + where we can write that

gi , n + i = he
, n+ i + hm

, n + : - recall that utie In is our identify matix

· Then , he nei or
hminti = 1 * BUT NOT BOTH *

WLOG (without loss of generality) we assume that hm
, n +i = 1 -> thus hmi for

i = 1 : n must ALL BE UnIQUe !!!

ID H
IDENTITY Let he ;

be the haplotype consistent with Q genotypes
Umi 20001 1000 0

& gst , ..., gsu3 .

We want to show that Est
, .... Suz is a

M2 021010100 0

M3

O20100!O
digue in 2.

unique

111 1 20000
↑

200010
Recall that we can explaing : with gi : hei + hmii 02 10/

O
0120 For example , let D = ESc , S3 , 53for some heire 00021 j
11112 G

the I blocks are the same

For gi, i = 2 for i = 1 in
, which implies that hei = hmi = 1

.
Thus

, we

must have he
, k = 1 for K=t, ..., n to satisfy the connections (see example below)·

gi,j = 1 occurs on all diagonals for 1j2n since we need I on the diagonal.

otherwise gi .j = 1 means the nodes Si
, Sj are connected ,

O if not



Vertex Genotype >

Haplotypes

Si g(s) = 20001 10000 - Um, 10000 10000

hmz -1000 -1000

S2 g(2) = 0210 -1000
hms 00100 00100

S3 9)(53) = 0120100100 hmy 0001 0 00010

S4 g(54) = 0002100010
his 0000 0000

1000 00 00 0
S5 9) (Ss) = 11/12 , 00001 ↓i0110 00 00 0

0110 000 00

noncethat hey 000 11
00000

hes 111these add to gi. 00000

WRappInG UP THE PROOF
Therefore the set of genoxpes such that gi, j : 1 for all it] corresponds to

a set of vertices that are a CLIQUE !

S2 , S3
,
Sg : 02101

,
01201

,
11112 -> Clique !

Thus ,
the cliques generated in this graph each have their own common haplotype ! Thus

the number of haplotypes is a factor of the number of edges.

* so to minimize the number of haplotypes ,
we must minimize the number of

clignes ! A

This completes the reduction ! PPHP is NP-hard.

Lecture 6 2/11/2025

* SEE COURSE WeBSITeD FOR SLIDeS A



Lecture 7 2/13/2025

We need to explore and understand population genetics and linkage disequilibrium.
· Mutations/Recombinations

cause genetic variation in a population.
· Random mating 3
· genotype -> phenotype

LINKaGe DISeQUILIBRIum/EQUILIBRIum

Random Mating allows us to considere recall that humans are diploid- ~zalleles
per gene

HARDY-WellBeRG EQUILBRIUm

· With random mating , the alleles of gene are combined at random according to HW-props

· Given genotypes :
A, A

i, A ,
As

, Azz

If IP(A1) = g., IP(A2) = 82,
1 = P ,

+ A , and then HWE : A
,
A ,

is g .

2
, A

.
Az is 29,92 ,

AcAnisg??

"Random Association" = the frequency of a gamete carrying any particular combination of
alleles equals the products of the frequency of the alleles.

Definitions :

· Genes that are in random association are in linkage equilibrium. When they are

not they are in linkage disequilibrium + no selection .

· With random mating and simplifying assumptions ->ie no mutations , no migration, large

population size- we converge to linkage equilibrium

The rate of approach to LE depends on the rate of recombination in genotypes heterozygous
for both genes

. There are I types of double heterozygotes
· A, Bi / AzBz o A , B2/Az Bi

crossing over,
for

example.

Some Genetics ⑭recombination

Given A ,
5, /AzBz

,
there are four possible genotypes L

,
recombinants

1
. A , B , 2 . AzB2 3

.

A , B 2 4.. AzB ,

ByMendelian Segregation , the frequency of genomic type = the frequency of

generic type I, 11 "3 =
1"

type 4. because genomic recombination rates

must imply type 3 : type 4 ,
Vice versa.



Definition : The recombination fraction is proportional to the number of recombinatorial

gametes (type 3 + type 4) produced by a double heterozygote.

0 = &= 0 . 5 -> 0 . 5 means different genes or VERY far apart.

Genes where 0 . S are linked.

Altogether : Ape It= = E

LECTURE 8 : PROTEIN FOLDING 2120/2025

Generally speaking ,
for a protein of length 50

,
there are an exponentially large number

of ways to fold a protein .

So how do we predict native structure ?

PRIMeR on PROTeIns

Proteins are polymers, sequences of individual peptides (of which there are 20).

O

O
I proteins are either L-isomer or D-isomer ,

wher Lis

Q I O
more common

N - c - ccarboxyl L-isomer is when functional group points away
if N - -

or

↑
I 11 group

8 were shown to be on the same plane.

R
side-chain

CC carbon

Amino acids are marked by C-N peptide bonds - N-terminus (1) to C-terminus (nth)

these bonds form planes.

torsion angles & and N. rigidity in backbone planes between

CG's -this is due to the covalent bond nature within N-C-C

↓
"succession of planes that rotate about the planes between

Cd indices .

See (B) to the left.

Ramachandran Plots

bitg
Pit

d: Pi The torsional angles vary -> depending on angles we can classif,

↓
&

as2-helices , B-strands due to the types of angles.

W = 1800
, partial double bond Ve smaller L's kend to be d, more obtuse reflect

B-sheets .

Self Avoiding Walks/ Contacts : -> protein backbones are self-avoiding walks.

models must not overlap while also considering the pairwise energies that result
from interactions between peptides and even smaller, the component atoms.



Note : We want to minimize the energy of a systeme this is when it is the most stable !

HP-model + contact maps

A simple way to risuance this is the HP-model.

↳ we binarize all of the amino acids to be either H(hydrophobic) , P(hydrophilic

↳ we want to maximize the number of H-H contacts to minimize energy

example : o -

00
-0

I US 0-0 -0 -0-0 - 0-0

O 0 -A

3 contacts ! > 1 contact

We can generalize this to using CONTACT maps !

we create graphical/matrix representations connecting and relating the individual amino

acids in a particular protein sequence.

Pipeline : Structure Similaritye Structure Alignment- Fold Recognition -> Fold Alignment

Measuring Protein Similarity

How dowe understand similarity for proteins of different sizes ?

· RMSD - roof mean square distance
often done by choosing 100 aa

· Difference of distance matrices
regions for fixing length

· Contact mapOverlap I
· Ad has scoring schemes

Skipping Colin and Pranar's APERFECT POWERPOINTS A ...

LECTURE 11 Markov Chain Monte Carlo Methods 3104/2s

3 .

1 Markov Chains + Markov Chain Monte Carlo (McMc) Introduction

Box the shape in a figure
How do we

⑧fared 1
.

ge compute the area -Si ne sample randomai of such an

· il

ratio:ut

irregular shape ? then by determining the

we w the area !!



Define : A marker chain has states GE1 ,
Ee

..., Est with timing t = 1 .
2,
. . .

We also define a transition probability matix indexed by the states :

Eo

: -> sums to 1 along each row !

Es

Eo ... Es

AXIOM 1 : the Markov Property states that if at some point t the process is in state

Ej ,
the probability that one timestep later we are at state Ei depends

only on us currently being at Ej and not our previous trajectory to get
to Ej.

Mathematically : 1P(XK = Ex (Xk .. : Ery .....
Xo = Eo) = 1P(X = Ex(Xk+= Ex-)

AXIOrn 2 : The transition probability is independent of - temporally homogenous.

Definition : Where do we start our chain ? X : EX , , ...,
Xs3 where &X : = 1

is our initial state probability distribution.

Aperiodicity : There is no such state such that we revisit it at every to (multiple) steps

If there are guaranteed cycles ,
we will not visit all the nodes or approximate

the stationary distributionn.

Define : the stationary distribution It is the probability we are in any state i.

Suppose we have a transition matrix Pe if Itj = &Tr Prj at any timestep

we observe that it does not change. It is stationary

Mathematically : IT = TP must hold !!

irreducibility dictates that every state can be visited from every other state in some

number of steps.

* If we have disconnected components :

O 8

-I ↳
we will actually end up with two distinct stationary

00 ⑧

S distributions ! (think about why that might be i)

Theorem : Every finite and irreducible Markov Chain has a unique stationary distribution

IfIt is the SD, of M = (4, X) then

T = πP E =,
+k = 1



We can use linear algebra to solve T = HP to solve for It.

3
.

2 MCMC ALGORITHMS

Theorem Let (Xo , ..., Xu) be irreducible and aperiodic , MC with state space S

and trans - mat .

P

. Our estimate (h)
:

↓ (v)
II -> it as new .

We essentially will observe the true underlying distribution as we

sample a large number of samples.

Definition : Let MC , S state set
,

P trans
- mat .,

A distribution it on S is reversible

if VijTi Pij = IjPji

LECTURE 12 mcme continued

RANDOM Walks on GRAPHS

directed
↓ I These are our transition probabilities -> so let's more it to a graph !
·

" Graph G = (V , E) -> Vertices and Edges
ex 2

X3 "Z

A random walk on a graph is a markor chain with state set V = Ev ,
.... Vi

undirectedx, and the following transition mechanism :

· If at :
,

it moves at time tel to one of neighbors w . equal IP.

↓3

↓ 2 · This is then a function of degree (vi) = the number of neighbors.

Assume = IP to transition to
Pij = /di ,

if ij are neighbors
any arbitrary neighbor otherwise.

Extended Example
X2
⑧ Then the stationary distributiont =( .... ] Ford : Edi

↓ 3
oXI Intuitively , the nodes with the most neighbors will be visited

⑧

* 40

the most number of times.
& o

X 0
X5



MARKOV Chain Monie Carlo

Given a probability distributionIt = (t.,z, .... k] -> [ii = 1 over a state space S.

How do we simulate a random object over the distribution it ?

the "simple solution" :

Let X = Y (U) where U is uniform 10 , 1] and the function :

Y(x) = J X : [0 , 4 (s.)]

S 82
: x : (4(Si

,
4(S1) + 3(52)] -

a piecewise function that takes

the "INVERSE CDF" method

si : x : /[Si) ,
G :

" 3 (si)]

"InVerse CDIMETHOD" : an algorithm

· Input : a given CDF F(t) + a sample sizea (the number of random variables (

· Output : A services of "iid" random variables .

1) Generate Ipsendo) did random variables U . . . . ..
Un from Unif (o , 1)

2) for i = 1
, 2, ... Xi = inf St-IR/F(t) : His

Proof of tum : los page)

Assume F"exists ,
then 6 = Fl (that is why we choose smallest in Thm).

F(t) = IP(wee(Xcus = Y = IPEwer /F"(U(w) = th
.

= IPSWE(((w) - F(t) 3

= FIt)V this proof is ONLY possible with the assumption F - = G .

this becomes impractical ! Especially whenK very large.

Metropolis Algorithm
We want to simulate a given it over a set of states. The graph that represents the states must:

· the graph must be connected and irreducible

· each vertex should not be the endpoint of too many edges.

We then define IP of choosing given = IP to transition to an

& arbitrary edge
- min Sid , 13 if i

Pij = di

O if notneighbors
Neighbor (1)?1-Ge mine ... if i =j

~ debiasing term

Now we will prove that the




