
HW1: Haplotype Phasing

CS 2840 Spring 2025

Released: Thursday, February 6, 2025

Due: Thursday, February 20, 2025, 8pm

Overview
All homework assignments in this course will be submitted on gradescope, and must be completed in python.
For this assignment, your submission should include a PDF file with your answers to 1 and 2, and the
requested clarks.py for 3.

1 Warmup
a) How many unique explanations are there for the genotype 010220222121?

b) Pranav is pretty sure that we can come up with six explanations for 0221. In particular, he knows that
the set of haplotypes involved with this genotype are 0001, 0011, 0101, 0111; he’s pretty sure you can
combine any pair of them and get a valid explanation (hence, six). Why is this not the case? Give an
example of a pair that is not a valid explanation.

c) Will the Clark algorithm succeed with the set of genotypes G = {0201, 0222}? If so, explain why it
starts and terminates, then solve for the explanations of each genotype according to the algorithm by
hand. If not, explain why if fails to start or why it fails to terminate (note the specific problematic
SNPs).

d) Answer c), but this time for G = {0112, 2201}.

e) Explain how we can reduce a sequence of SNP data for a given person (e.g., a list of k pairs of letters
in {A,C, T,G}) into a sequence of the same length in {0, 1, 2}, if all we care about is testing SNPs and
haplotypes for associations with disease.

f) Sequencing data, in this day and age, is generated by taking many short reads (less than 600bp...) over
the genome and using algorithms to reconstruct a likely version of the whole genome. How would the
haplotype phasing problem change if we could suddenly read the whole genome at once (or even read
1000bp segments)?

g) Describe the heuristic of the Clark algorithm; i.e., what assumptions does it make about the set of
haplotypes in the population?

2 EM
Follow through the below story! There are a few signposted places where you need to provide question
answers. Before reading, you might want to first read our note on MLE at the end of this document.

Maximum likelihood estimation is a very global notion (sometimes very hard to solve, as with the haplotype
phasing likelihood function), and does not allow for the possible simplification gained by assuming latent
variables govern the data X. As a result, in contexts where we have clear latent variables Z (haplotype
phasing!), we instead use Expectation Maximization. Here, rather than directly maximizing the likelihood
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function, we maximize the expected likelihood function, over all possible latent variables. In particular, we
compute:

E(θ) = EZ(logL(θ)|X, θ)

You can think of this as the average P(X|θ) across all possible notions of Z, weighted by the probabilities of
observing (or not observing!) Z as our latent variable. To maximize this, we solve a constrained optimization
problem. a: How would you write down the system of equations you need to solve, assuming θ
is a distribution (hint: you can do it in one line!)?

From here, we take the new θ we get from this maximization, and recompute EZ(logL(θ)|X, θ).

We saw in class that EM is iterative. But, why do we even need to recompute EZ(logL(θ)|X, θ) for iteration?
In MLE, we only need to maximize once. The answer is in what has been a bit vague so far in this introduction
to EM. In particular, we never observe Z; we only take a guess at it every iteration by computing P(Z|X, θ)
during the expectation. It only appears as part of the joint distribution over X and Z, parameterized by
θ. So, EM iteration computes the distribution of Z from θ during the expectation step, then computes θ by
maximizing the resulting expectation. We kind of iterate between “solving" for Z and solving for θ. That’s
the general form of EM!

One small caveat before we move to the world of haplotypes once and for all. We’ve misled you by implying
that L(θ) is the same in both the MLE and EM worlds. As is maybe clear from the setup, L(θ) is related to
P(X|θ) in MLE world, and P(X,Z|θ) in EM world. This leads to a different likelihood function in the EM
case, which we call the complete-data likelihood function. The complete-data likelihood function assumes
we also know the latent variables, which we did not assume in our haplotype phasing likelihood function
above.

Before we come up with a complete-data likelihood function for haplotype phasing, we need to define our
latent variables. Our observed variables are the number of people with each genotype. The natural latent
variable Z, as a result, is the number of people with each explanation, nkl, where

∑
hk,hl∈Hj

nkl = nj . We
can write a new multinomial Lc (as in the MLE note below) that encapsulates this information, assuming
we also get to see the latent variables Z:

Lc(θ) =
∏

hk,hl∈∪m
j=1Hj

P(hk, hl)
nkl

=
∏

hk,hl∈∪m
j=1Hj

[(2− δkl)θkθl]
nkl

b: Given this new complete data likelihood function, what is the expectation function we want
to maximize? Simplify it so that the only remaining expectation is EZ(nkl|X, θ) (hint: use log
and expectation properties). Make sure to justify each step.

With this new expression, we need only solve for EZ(nkl|X, θ) to finish the so-called “E-step". In other words,
we want the expected number of people with each possible explanation, given the number of genotypes we
saw and the parameters θ. We know that Z is a vector of numbers of each possible explanation nkl. Since a
given hk, hl pair can only be associated with a single observed genotype j, we can use something called the
indicator trick.

Let 1i,kl be 1 if individual i has explanation hk, hl and 0 otherwise. Note that E(1i,kl|X, θ, j) = (1)P(hk, hl|j).
We need to condition on the j associated with kl, as we only want to sum over the nj people with genotype
j when we are considering how many people have explanation (hk, hl); it allows us to bound the sum on nj

individuals in the manipulation you will now complete. c: Using this notation, solve for EZ(nkl|X, θ)
in terms of nj, P(j) and P(hk, hl). You should have no sums remaining; it should be a single
expression (hint: how can you express nkl as a sum?).
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The so-called “E-step" we saw in lecture (and in Excoffier-Slatkin, 1995) was:

Pj(hk, hl)
(g) =

nj

n
· P (hk, hl)

(g)

P
(g)
j

d: How does this relate to the expectation you just derived?

e: The maximization step, while possible to solve for directly, is highly impractical to derive.
Write a few sentences about why this is the case. As it turns out, a gene-counting method is used
to derive the maximization step, although slightly less rigorous than the direct approach. We won’t cover
exactly how it is done in this homework.

At the end of this question, you should have answers to parts a− e.

3 Clark Algorithm
In this problem, you will implement the Clark algorithm. In particular, in your (autograded) gradescope
submission, you will submit one file (named clarks.py) that contains the following function:

1 def clark_algorithm(genotypes):
2 """
3 Clark ’s algorithm for haplotype resolution.
4
5 Args:
6 genotypes (List[str]): List of genotypes to resolve , given as strings of 0, 1, and 2.
7
8 Returns:
9 Set[str]: Set of resolved haplotypes ,

10 List[Tuple[str , Tuple[str , str]]] List of tuples containing the original genotype and the
resolved haplotype pair.

11 """

Note that the returned list must be in the same order as the inputted list. It should fail when the Clark
algorithm fails (any such case we discussed in class).

Supplement
No questions here!

MLE
In the standard version of EM (the successor of MLE), we have some observed data X that is governed by
some set of unobserved variables Z. In general, such a model is probabilistic (i.e., X and Z follow a joint
distribution), which we can parameterize with θ, a vector with entries θi|ni=1. For our purposes, we’ll always
think of θ as a distribution, with

∑n
i=1 θi = 1.

Additionally, we usually have some likelihood function L(θ). You can think of the likelihood function as re-
lated to P(X,Z|θ) – the probability we observe the data we did, given the parameters we have. The likelihood
function is proportional to the (parameterized) joint distribution of X and Z discussed above.

In Maximum Likelihood Estimation, we maximize the this function directly with respect to θ (which is
often easier to do by taking the log first). In particular, we maximize with respect to the constraint that∑n

i=1 θi = 1 (such that θ is a valid distribution). According to the method of Lagrange multipliers, this
means we need to solve for the system of equations that arises from:

∇[logL(θ) + λ(1−
n∑

i=1

θi)] = 0
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Where we let λ and all θi. More concretely, the system of equations we have is:

∂

∂θi
logL(θ) + λ(1−

n∑
i=1

θi) = 0

for all i and

∂

∂λ
logL(θ) + λ(1−

n∑
i=1

θi) = 0

Since we have n+ 1 equations and n+ 1 unknowns, we can solve for the θ that satisfies our constraint and
maximizes the likelihood of observing the data, X. A beautiful concept! Notice that we did not rely on any
latent variables here; in fact, we sort of assumed they weren’t present, like L(θ) ∝ P(X|θ) instead. As we
saw in lecture, when we apply this idea to haplotype phasing, we unfortunately get a difficult, non-convex
L for which this system of equations is impractical to solve on a large scale. If you recall,

L(θ) =
m∏
j=1

( ∑
hk,hl∈Hj

P(hk, hl)
)nj

=

m∏
j=1

( ∑
hk,hl∈Hj

(2− δkl)θkθl

)nj

Where the observed data we get is X = nj |mj=1 (a vector of counts). This L(θ) is proportional to P(X =

nj |mj=1 |θ), which as above, has X following a multinomial distribution over the different possible genotypes
in the population. Concretely, the likelihood function above takes the product over all possible genotypes j,
raising the probability of their occurrence, Pj =

∑
hk,hl∈Hj

P(hk, hl), to the number of times they occur, nj .
If you’re familiar with the binomial distribution, this is the m dimensional version.

As an aside, we are denoting Hj as the set of haplotype pairs, (hk, hl), that can explain the jth genotype in
the population. So, by summing over Hj , we get the probability that an individual has genotype j in the
population. As another aside, P(hk, hl) = (2 − δkl)θkθl is a compact way of noting that the probability of
an explanation (hk, hl) is 2θkθl if k ̸= l and θkθl = θ2k if k = l. If you’re not familiar with the Kronecker

delta, δkl = 1kl =

{
0 if k ̸= l

1 otherwise
. We distinguish between these cases, as we can order an observation of

(hk, hl), k ̸= l in two ways, while we can only order it one way when k = 1. This is where the random mating
assumption is essential: it allows us to claim that P(hk, hl) = (2− δkl)θkθl because random mating implies
seeing haplotype k and seeing haplotype l are independent events.
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