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SNP Selection Algorithms

�ere are regions on the genome that are in strong LD together (these are called “haplotype
blocks”), which allows us to only genotype parts of the genome and impute the rest. Sites
that allows for imputation of other sites are “tagSNPs”. �e purpose of SNP selection
algorithms is to �nd the smallest possible subset of SNPs (tagSNPs) that are associatedwith
the highest possible number of SNPs in the genome. �is reduces the cost of genotyping,
and provides us a method of data compression. It also makes it easy for scientists to
compare genotype between set of individuals by focusing on certain haplotype blocks.
�ere are two algorithms that we will study in this section:
(1) LD-select algorithms and
(2) Informativeness.

LD-Select Algorithm

Original Publication: h�ps://pubmed.ncbi.nlm.nih.gov/14681826/
�is algorithm selects the ’maximally informative set’ of common SNPs (common SNPs
occur in � 10% of the population) that are either directly assayed or indirectly assayed
(i.e. exceed a threshold level of association with some other SNPs). For linkage disequi-
librium, it uses the r2 measure because r2 is directly related to statistical power to detect
association with unassayed sites (its relationship with �2). �e algorithm can be formally
de�ned as:

Given: Genotype for a population of cases and controls
Computes: Allele frequencies and r2 thresholds that yield a given level of power to detect
a disease associated with any common SNP in the gene. Finds groups of SNPs in associa-
tion with each other.
Outputs: as few tagSNPs as possible such that all polymorphisms above a speci�ed fre-
quency threshold either directly or indirectly exceed a speci�ed level of r2 with these
tagSNPs.

Pseudocode:
Input: SNPs and their frequencies in the population

a) Set MAF threshold (e.g. 10%) and take the SNPs with frequency � MAF.

b) Find the single SNP exceeding the r2 threshold set by the user (e.g. r2 �= 0.8)
with the maximum number of SNPs above the MAF threshold. Call this SNP the
’maximum informative site’ (MIF).

c) Bin all SNP associated with MIF at or above the r2 threshold (including the MIS
SNP).
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d) Iterate on the remaning (unbinned) SNPs; �nd a new MIS and group its associated
sites into a new bin.

e) Continue until all SNPs/sites have been binned. If there are SNPs with no associated
sites at or above the r2 threshold, bin them by themselves (create bins with single
SNPs for these).

f) In each bin, compute all pairwise r2 values: all SNPs associating highly (r2 � 0.8)
with the maxmimum number of other SNPs are declared ‘winners’, or M�� I���
S����

g) Select a single tag SNP from each bin (only one of the ‘winners’ found above), tak-
ing into account genomic annotations (coding/non-coding/repeat vs. unique re-
gion/etc.) and assay design (preferably easy to assay)

h) Return the selected tagSNPs.

Note: r2 is not transitive in real data: not all SNPs in the bin are interchangeable because
pairwise association is not (generally) transitive

Selection with Informativeness Algorithm

Relevant publications:
Informativeness: h�ps://genome.cshlp.org/content/14/8/1633.full.pdf+html
Directed informativeness: h�ps://link.springer.com/chapter/10.1007/978-3-642-20036-6
42
Note: �ese publications are available on the course website under ”Class Notes” tab.

We are given a set (matrix) of SNPs and a population with one haplotype per individual For
example,in the matrix below, columns are SNP loci and rows are individual haplotypes.
SNPs are biallelic so for each locus, you label the more common allele (common SNP) as 0
and the less common allele (rare SNP) as 1 and translate this matrix into a binary matrix
without losing information as below:

Our goal is to identify SNPs that predict genotype at other loci / has information on the
other SNPs, if possible. �is is a data compression problem like LD-Select because wewant
a subset of SNPs that is smaller than the set of all SNPs. In fact, we want the smalles num-
ber of SNPs that can explain / contain information on the entire set. �is is the “minimum
informative subset (MIS)” problem. We will achieve this through a graph theoretic ap-
proach, where we create distinguishability edges between 1s and 0s at each locus. We want
to �nd out how many (and which) SNPs we need to consider to �nd out all edges.
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Hapl./Locus 1 2 3 4
1 T C A G
2 T G T G
3 A C A C

=)

Hapl./Locus 1 2 3 4
1 0 0 0 0
2 0 1 1 0
3 1 0 0 1

Note: A haplotype here is a series of 0’s and 1’s corresponding to SNP sites.

�e Minimum Informative Subset of SNPs: A subset of SNPs of minimum size that
has the complete information of the entire set of SNPs. Of course, complete is one thing-
it means 100 percent information- but you can ask partial questions too. How about the
minimum set of SNPs that contains 70 percent of the information of the entire set? �is
percentage can be set by the parameter ⇠.
In this problem, the fundamental unit of information is the SNP. It separates two individ-
uals, in the sense that at the SNP, one individual has allele 0, and the other can have allele
1, which distinguishes them. You are always making pairwise comparisons here based on
SNPs to separate individuals. For example, in the example above, SNP at locus 1 separates
individual (haplotype) no.3 from individual no.1, and SNP3 separates individual no.4 from
individual no.3 etc.

Distinguishability edge (D-edge): For each locus, you create as many nodes as hap-
lotypes and you make a D-edge between nodes when they are distinguished from each
other (have di�erent values). Nodes here represent individuals. For the example above,
this would be:

Our universal set is the imposition of all these 4 sets together:

�is is the total information we have and we want to �nd the minimum subset that can
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provide complete information on the edges of the universal set (in this case locus 1 and
locus 2 or locus 2 and locus 4 etc will work). Here we de�ne the measure “informative-
ness”:

I(s,t) = information of SNP s about SNP t

I(s, t) =
E(s) \ E(t)

E(t)

E(s) = the set of edges in the SNP graph for s.
�e intersection is ”how many edges in s that are also in r”
E(s) is the number of edges in E(s)

Example:

I(s1, s2) =
((1, 3), (2, 3)) \ ((1, 2), (2, 3))

((1, 2), (2, 3))
=

1

2

�anks to this graph theoretic and information theoretic approach, informativeness has
unique extension to multiple loci unlike LD-select and a�empts to break the “curse of
pairwise comparisons”. If we want to look at three loci, for example, we simply create a
joint set of two of the loci and compare it to the third. For example:

I(s1, s2, s3) =
(E(s1) [ E(s2)) \ E(s3)

E(s3)
=

[((1, 3), (2, 3)) [ ((1, 2), (2, 3))] \ [((1, 2), (2, 3))]

((1, 2), (2, 3))

I(s1, s2, s3) =
((1, 2), (2, 3))

((1, 2), (2, 3))
=

2

2
= 1

However, note that informativeness is not “symmetrical”. If of the two loci considered s,
and t, one has more edges than the other, depending on which one is in the denominator,
the result will change. In this case I(s,t) might not be equal I(t,s). Similar to r2,it also tries to
achieve a level of interpretability for the intermediary values through its association with
the r2 measure , and thus the �2. �is is expanded on in your readings for homework 2.

While LD-Select employs a greedy approach with “dominating set” algorithm, Informa-
tiveness uses “set cover”. However, “dominating set” and “set cover” are reducible
to each other and this is what we will show below:
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Dominating Set and Set Cover

Dominant Set A dominating set for a graph G = (V,E) is a subset D of V , D ✓ V ,
such that every vertex not in D is joined to at least one vertex of D by an edge.1 �e
dominating number �(G) is the smallest number of vertices in a dominating set of G.
Given: G = (V,E); some constant k
Compute: Dominating set D for G such that |D|  k (if it exists)

�e Set cover
Given: An universe set U and a collection of subsets of U {S1, . . . , Sk}, Si ✓ U 8 i
Compute: �e minimum number of subsets that cover U .(i.e.

Sl
i=1 Si = U . Example:

given a mapping between boys and girls that they know, what is the minimum number of
boys that collectively know all the girls? �is is NP-complete, as well.)

Example: U = {1, 2, 3, 4, 5, 6};
G =

1

2 3 4

5 6

D = {3, 5} is the smallest dominating set.
S3 = {2, 3, 4, 6} and S5 = {1, 2, 5, 6} together form a set cover: S3 [ S5 = U .

Result:

Dominating Set of (G) $ Set Cover(U, {Si})

Dominating Set and Set Cover Problems are Reducible to Each Other

Reduction 1: From Dominating Set to Set Cover Given graph G = (V,E), V =
{1...n}, we construct a set cover problem as follows:
U = V , the family of subsets S = {s1, s2, ..., sn} such that Sv consists of the vertex v and
all vertices adjacent to v.

Suppose D is a dominating set in G. �en C = {Sv|v 2 D} is a set cover for (U, S) and
C and D are the same size (|D| = |C|). Conversely, if C = {Sv|v 2 T} is a set cover for
(U, S), then T is a dominating set for G, with |T | = |C|.

1Symbolically: 8 v /2 D, 9 v0 2 D s.t. (v, v0) 2 E
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Reduction 2: From Set Cover to Dominating Set Let (U, S) be a general problem for
set cover, U =universe, S = {si : i 2 I} I \ U = ?. Now construct G = (V,E) as
follows:
Edges: {i, j} 2 E; 8i, j 2 I ; {i, u} 2 Ei 2 I;u 2 Si

Vertices: V = U [ I
Basically, everything is a vertex, and we use the sets to �nd edges, plus we connect all the
sets to each other.

a) C is a set cover of (U, S), C = {si : i 2 D}, D  I , then D is a dominating set.
b) Conversely, let D be a dominating set for G, then it is possible to construct another
dominating set X such that |X|  |D|, X  I . Simply replace each u 2 D \ U by a
neighbor i 2 I of u. �en see the set of subsets such that C = {si : i 2 X} is a feasible
solution to set cover |X| = |C| = |D|.
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