Computational Haplotype Phasing of Unrelated Individuals

October 3, 2013

Review

- Algorithms we've covered
 - Clark Phasing
 - Expectation Maximization (EM) Phasing
- Topics we've covered
 - Graph theory
 - Population genetics models (e.g. LD)
 - Maximum Likelihood (ML) Estimation
 - EM for ML

What's next

- Coalescent methods
 - Modeling populations as descendants from a most recent common ancestor
- Hidden Markov Models
- Identity by descent
 - Everyone is related to some degree
 - Relationships that are distant but still have significant haplotype overlap are called 'cryptically related'
- Algorithms for tagging SNPs and associations

Known haplotype frequencies

- If we know haplotype frequencies in the popluation we can phase using statistical methods
- E.g. genotype g has 3 explanations h1h2, h3h4, h5h6
 - We know haplotype frequencies, we multiple the frequencies for each explanation and take the maximum value

Coalescent model

- In general, the frequencies are unknown
- Approximate computation of haplotype frequencies in the population
- Approximation coalescent models
 - Intuition: New haplotypes are created from haplotype existing in the population from mutation and recombination

Coalescent phasing

- Phase using haplotypes that were used before in other phasings
- Algorithms of this type are based on the approximate coalescent
 - Modeled well by hidden Markov Models
 - We will estimate the parameters with EM

Algorithms

PHASE

- Can handle about 100 SNPs by 100 people
- The gold standard for phasing small regions
- Employs markov chain monte carlo

fastPHASE

Can handle larger data than PHASE, uses HMM

BEAGLE

Faster than fastPHASE and more accurate on large (>1000 people) data but less accurate when you have <100 individuals

SHAPE-IT

More efficient

Algorithm continued

- MACH
- IMPUTE2
 - Based on seminal work on recombination due to Li-Stephens model
 - Use HMMs

Identity by descent

- Two regions are identical by descent
- Suppose we know
 - Haplotype frequencies
 - Where IBD regions are

Example

SNP	Unphased Genotypes	Shared Haplotypes	IBD-phased genotypes	Phasing Individual 1	Phasing Individual 2
1	{A/C} {A/C}	?	?? ??	AC CA	AC CA
2	{C/T} {C/C}	С	CT CC	CT CT	CC CC
3	{T/T} {T/G}	Т	TT TG	TT TT	TG TG
4	{G/G} {A/G}	G	G G G A	GG GG	GA GA
5	{C/C} {C/C}	С	CC CC	CC CC	CC CC

Individual 1 in black, 2 in ref
If haplotype frequencies for all haplotypes in the phasings
of individuals 1 and 2 are known, multiplying the
haplotypes of the explanations will give you the
probability of the phasing.