Maximum Likelihood, Expectation Maximization, and Haplotype Phasing CSCI2820: Medical Bioinformatics

Sorin Istrail

September 24, 2013

- Imagine generating sequences of letters over the four-letter alphabet A, C, G, T
- Sequences generated by random process
- Parametric statistical models: families of probability distributions by a finite-dimensional parameter
- Goal: model this random process and estimate the parameters from the output sequences

Example

- Suppose the model uses three tetrahedral dice
- The probabilities of rolling the four letters are:

	first die	second die	third die
Α	0.15	0.27	0.25
C	0.33	0.24	0.25
G	0.36	0.23	0.25
Т	0.16	0.26	0.25

To generate each letter, the dice are chosen at random:

- ullet first die picked with probability $heta_1$
- ullet second die picked with probability $heta_2$
- ullet third die picked with probability $1- heta_1- heta_2$

Example

CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC

- Was this sequence generated by the three dice?
- If so, what are the parameters θ_1 and θ_2 ?

Matrix of probabilities:

	first die	second die	third die
Α	$0.15 heta_1$	$0.27 \theta_2$	0.25 $(1 - \theta_1 - \theta_2)$
C	$0.33 \; heta_1$	0.24 θ_2	0.25 $(1 - \theta_1 - \theta_2)$
G	$0.36 \theta_1$	$0.23 heta_2$	0.25 $(1 - \theta_1 - \theta_2)$
Т	0.16 θ_1	$0.26 heta_2$	0.25 $(1 - \theta_1 - \theta_2)$

Let p_A , p_C , p_G and p_T denote the probabilities of generating A, C, G, and T respectively. Then

$$p_A = -0.10\theta_1 + 0.02\theta_2 + 0.25$$

$$p_C = 0.08\theta_1 - 0.01\theta_2 + 0.25$$

$$p_G = 0.11\theta_1 - 0.02\theta_2 + 0.25$$

$$p_T = -0.09\theta_1 + 0.01\theta_2 + 0.25$$

Likelihood

For sequence

CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC

the likelihood of observing the sequence is:

$$L = p_C p_T p_A p_C p_C p_G \cdots p_C = p_A^{10} p_C^{14} p_G^{15} p_T^{10}$$

The likelihood function is:

$$L(\theta_1, \theta_2) = p_A(\theta_1, \theta_2)^{10} p_C(\theta_1, \theta_2)^{14} p_G(\theta_1, \theta_2)^{15} p_T(\theta_1, \theta_2)^{10}$$

$$= (-0.10\theta_1 + 0.02\theta_2 + 0.25)^{10} (0.08\theta_1 - 0.01\theta_2 + 0.25)^{14}$$

$$(0.11\theta_1 - 0.02\theta_2 + 0.25)^{15} (-0.09\theta_1 + 0.01\theta_2 + 0.25)^{10}$$

Maximum Likelihood

In maximum likelihood estimation, the goal is to estimate the parameter values which make the likelihood of observing the data as large as possible

.
$$\max L(\theta_1, \theta_2) = p_A(\theta_1, \theta_2)^{10} p_C(\theta_1, \theta_2)^{14} p_G(\theta_1, \theta_2)^{15} p_T(\theta_1, \theta_2)^{10}$$

. subject to: $0 < \theta_1, \theta_2 < 1$

Equivalent and more convenient to maximize the log-likelihood function:

$$\max I(\theta_{1}, \theta_{2}) = \max \log L(\theta_{1}, \theta_{2})$$

$$= \max \left[10 \log(p_{A}(\theta_{1}, \theta_{2})) + 14 \log(p_{C}(\theta_{1}, \theta_{2})) + 15 \log(p_{G}(\theta_{1}, \theta_{2})) + 10 \log(p_{T}(\theta_{1}, \theta_{2})) \right]$$

$$\begin{array}{lll} \max I(\theta_1,\theta_2) & = & \max \log L(\theta_1,\theta_2) \\ & = & \max \big[\, 10 \log(p_A(\theta_1,\theta_2)) + 14 \log(p_C(\theta_1,\theta_2)) \\ & & + 15 \log(p_G(\theta_1,\theta_2)) + 10 \log(p_T(\theta_1\theta_2)) \, \big] \\ & = & \max \big[\, 10 \log(-0.10\theta_1 + 0.02\theta_2 + 0.25) \\ & & + 14 \log(0.08\theta_1 - 0.01\theta_2 + 0.25) \\ & & + 15 \log(0.11\theta_1 - 0.02\theta_2 + 0.25) \\ & & + 10 \log(-0.09\theta_1 + 0.01\theta_2 + 0.25) \, \big] \end{array}$$

The solution to this optimization problem can be computed by taking partial derivatives of the log-likelihood function:

$$\frac{\partial I}{\partial \theta_{1}} = \frac{10}{p_{A}} \frac{\partial p_{A}}{\partial \theta_{1}} + \frac{14}{p_{C}} \frac{\partial p_{C}}{\partial \theta_{1}} + \frac{15}{p_{G}} \frac{\partial p_{G}}{\partial \theta_{1}} + \frac{10}{p_{T}} \frac{\partial p_{T}}{\partial \theta_{1}} = 0$$

$$\frac{\partial I}{\partial \theta_{2}} = \frac{10}{p_{A}} \frac{\partial p_{A}}{\partial \theta_{2}} + \frac{14}{p_{C}} \frac{\partial p_{C}}{\partial \theta_{2}} + \frac{15}{p_{G}} \frac{\partial p_{G}}{\partial \theta_{2}} + \frac{10}{p_{T}} \frac{\partial p_{T}}{\partial \theta_{2}} = 0$$

$$13003050\theta_{1} + 2744\theta_{2}^{2} - 2116125\theta_{2} - 6290625 = 0$$

$$134456\theta_{2}^{3} - 10852275\theta_{2}^{2} - 4304728125\theta_{2} + 935718750 = 0$$

$$(\theta_{1}, \theta_{2}) = 0.5191263945, 0.2172513326$$

Let $F = (f_{ij}(\theta))$ be an $m \times n$ matrix in parameters $(\theta_1, \theta_2, \dots \theta_d)$.

F is the hidden model or complete data model

Let f be the $m \times 1$ matrix $f = (\sum_{j=1}^{n} f_{ij}(\theta))$

• f is the observed model or partial data model

- Data: u_{ij} drawn from distribution f_{ij} (complete data model)
- Input: Instead of having complete data, we are given only the marginal data $u_i = \sum_i u_{ij}$ for each i
- Goal: infer the parameters θ to maximize the probability of observing the marginal data u_i .

Our problem is to maximize the likelihood function for this data with respect to the observed model:

$$\max L_{obs}(\theta) = f_1(\theta)^{u_1} f_2(\theta)^{u_2} \cdots f_m(\theta)^{u_m}$$

Assumption: can solve the problem for the hidden model F:

$$\max L_{hid}(\theta) = f_{11}(\theta)^{u_{11}} f_{12}(\theta)^{u_{12}} \cdots f_{mn}(\theta)^{u_{mn}}$$

The problem is that we don't know the hidden data u_{ij} !

Expectation Maximization

For models that do not have exact solutions, statisticians use a numerical optimization technique called *Expectation-Maximization* (or EM) for maximizing the likelihood function.

- not guaranteed to reach a global maximum
- known to perform well on many problems of practical interest
- under some conditions, will converge to a local maximum of the likelihood function

EM algorithm

Expectation Maximization Algorithm

Input: Functions $f_{ij}(\theta)$, observed data u_i **Output:** Maximum likelihood parameters θ

- 1. Initialize $\theta^0 \in \mathbb{R}^d_{\geq 0}$, k = 0.
 - (i) Let $u_{ij}=u_i\frac{f_{ij}(\theta^k)}{\sum_i f_{ij}(\theta^k)}=u_i\frac{f_{ij}(\theta^k)}{f_i(\theta^k)}$ for $1\leq i\leq n, 1\leq j\leq m$.
 - (ii) Let $\theta^{k+1} = \arg \max_{\theta} I_{hid}(\theta)$
- 2. If $|\theta^{k+1} \theta^k| > \epsilon$, let k = k+1 and Go to [1]. Else output $\theta^* = \theta^{k+1}$.

$$\begin{split} &I_{obs}(\theta^{k+1}) - I_{obs}(\theta^{k}) \geq \left(I_{obs}(\theta^{k+1}) - I_{obs}(\theta^{k})\right) - \left(I_{hid}(\theta^{k+1}) - I_{hid}(\theta^{k})\right) \\ &= \sum_{i=1}^{m} u_{i} \log f_{i}(\theta^{k+1}) - \sum_{i=1}^{m} u_{i} \log f_{i}(\theta^{k}) - \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij} (\log f_{ij}(\theta^{k+1}) - \log f_{ij}(\theta^{k})) \\ &> \sum_{i=1}^{m} u_{i} \log f_{i}(\theta^{k+1}) - \sum_{i=1}^{m} u_{i} \log f_{i}(\theta^{k}) - \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i} \frac{u_{ij}}{u_{i}} (\log f_{ij}(\theta^{k+1}) - \log f_{ij}(\theta^{k})) \\ &\geq \sum_{i=1}^{m} u_{i} \left(\log f_{i}(\theta^{k+1}) - \log f_{i}(\theta^{k})\right) - \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i} \frac{u_{ij}}{u_{i}} (\log f_{ij}(\theta^{k+1}) - \log f_{ij}(\theta^{k})) \\ &\geq \sum_{i=1}^{m} u_{i} \left(\log \frac{f_{i}(\theta^{k+1})}{f_{i}(\theta^{k})} \sum_{i=1}^{n} \frac{u_{ij}}{u_{i}} \log \frac{f_{ij}(\theta^{k+1})}{f_{ij}(\theta^{k})}\right) \end{split}$$

$$\geq \sum_{i=1}^{m} u_{i} \left(\log \frac{f_{i}(\theta^{k+1})}{f_{i}(\theta^{k})} - \sum_{j=1}^{n} \frac{u_{ij}}{u_{i}} \log \frac{f_{ij}(\theta^{k+1})}{f_{ij}(\theta^{k})} \right)$$

$$= \sum_{i=1}^{m} u_{i} \left(\sum_{j=1}^{n} \frac{f_{ij}(\theta^{k})}{f_{i}(\theta^{k})} \log \frac{f_{i}(\theta^{k+1})}{f_{i}(\theta^{k})} \sum_{j=1}^{n} \frac{f_{ij}(\theta^{k})}{f_{i}(\theta^{k})} \log \frac{f_{ij}(\theta^{k+1})}{f_{ij}(\theta^{k})} \right)$$

$$= \sum_{i=1}^{m} u_{i} \left(\sum_{j=1}^{n} \frac{f_{ij}(\theta^{k})}{f_{i}(\theta^{k})} \log \frac{f_{i}(\theta^{k+1})}{f_{i}(\theta^{k})} \frac{f_{ij}(\theta^{k})}{f_{ij}(\theta^{k+1})} \right)$$

$$= \sum_{i=1}^{m} u_{i} \sum_{j=1}^{n} \pi_{ij} \log \frac{\pi_{ij}}{\sigma_{ij}} = -\sum_{i=1}^{m} u_{i} \sum_{j=1}^{n} \pi_{ij} \log \frac{\sigma_{ij}}{\pi_{ij}} \left(\pi_{ij} = \frac{f_{ij}(\theta^{k})}{f_{i}(\theta^{k})}, \sigma_{ij} = \frac{f_{ij}(\theta^{k+1})}{f_{i}(\theta^{k+1})} \right)$$

$$\geq \sum_{i=1}^{m} u_{i} \sum_{j=1}^{n} \pi_{ij} \left(1 - \frac{\sigma_{ij}}{\pi_{ij}} \right) = \sum_{i=1}^{m} u_{i} \sum_{j=1}^{n} (\pi_{ij} - \sigma_{ij}) \geq 0$$

EM for Haplotype Phasing

- A haplotype is a string of 0's and 1's, representing half of a diploid chromosome
- A genotype is a conflated combination of two equal length haplotypes
 - 0 if the two haplotypes are homozygous with value 0 1 if the two haplotypes are homozygous with value 1 2 if the two haplotypes are hotozygous
 - 2 if the two haplotypes are heterozygous
- Haplotype h is consistent with genotype g if h agrees with g in all positions in which g has value 0 or 1 (i.e., there exists a haplotype h' such that $h \oplus h' = g$).

- p_k = probability of haplotype h_k in population
- Vector of haplotype probabilities $p = (p_1, p_2, \dots p_d)$
- Goal: Find the vector p of haplotype probabilities maximizing the probability of observing genotypes G

Haplotype phasing

Matrix f will denote the probabilites that the observed genotypes are generated by specific pairs of haplotypes

- each row represents an observed genotype gi
- each column represents a pair of haplotypes (h_k, h_l) (k < l)
- entry corresponding to genotype g_i and haplotype pair (h_k, h_l) is indexed by (i, [k, l]) and takes value

$$f_{i,[k,l]}(p) = \begin{cases} p_k p_l = p_k^2 & \text{if } k = l \text{ and } h_k \oplus h_l = g_i \\ 2p_k p_l, & \text{if } k \neq l \text{ and } h_k \oplus h_l = g_i \end{cases}$$

Now, apply the above EM framework to the phasing problem.

Expectation Maximization Algorithm for Haplotype Phasing Input: Functions $f_{i,[k,l]}(p)$ defined above, observed genotype data u_i

Output: An estimate p^* for the maximum likelihood haplotype frequencies.

- 1. Initialize $p^0 \in \mathbb{R}^d_{\geq 0}$, t = 0.
 - (i) Let $u_{i,[k,l]}^t = u_i \frac{f_{i,[k,l]}(p^t)}{\sum_{k,l} f_{i,[k,l]}(p^t)} = u_i \frac{f_{i,[k,l]}(p^t)}{f_i(p^t)}$ for $1 \le i \le n, 1 \le k < l \le d$.
 - (ii) Let $p^{k+1} = \arg \max_{p} I_{hid}(p)$
- 2. If $|p^{t+1} p^t| > \epsilon$, let t = t+1 and Go to [1]. Else output $p^* = p^{t+1}$.

We now show the problem of maximizing the hidden likelihood function, has an explicit solution.

Lemma. The function $M(x) = \prod_i x_i^{r_i}$ subject to the constraint $N(x) = \sum_{i=1}^n x_i = constant$ is maximized when

$$\frac{x_1}{r_1}=\frac{x_2}{r_2}=\cdots=\frac{x_n}{r_n}.$$

Proof. By the theory of Lagrange multipliers, M(x) is maximized when

$$\frac{\partial M(x)}{\partial x_i} = \lambda \frac{\partial N(x)}{\partial x_i} \text{ for all } 1 \le i \le n.$$

$$\frac{\partial M(x)}{\partial x_i} = \lambda \frac{\partial N(x)}{\partial x_i} \text{ for all } 1 \le i \le n.$$

Taking partial derivatives, we obtain the following set of equations

$$(r_{1}x_{1}^{r_{1}-1})x_{2}^{r_{2}}\cdots x_{n}^{r_{n}} = \lambda$$

$$x_{1}^{r_{1}}(r_{2}x_{2}^{r_{2}-1})\cdots x_{n}^{r_{n}} = \lambda$$

$$\vdots$$

$$x_{1}^{r_{1}}x_{2}^{r_{2}}\cdots (r_{n}x_{n}^{r_{n}-1}) = \lambda$$

So the maximum is achieved when

$$(r_1x_1^{r_1-1})x_2^{r_2}\cdots x_n^{r_n}=x_1^{r_1}(r_2x_2^{r_2-1})\cdots x_n^{r_n}=\cdots=x_1^{r_1}x_2^{r_2}\cdots (r_nx_n^{r_n-1})$$

This is satisfied when $\frac{r_1}{r_2} = \frac{r_2}{r_2} = \cdots = \frac{r_n}{r_n}$, proving the lemma.

To avoid local maxima, the method should be run on a set of widely ranging initial values. Several possibilities for the initial conditions include the following.

• All haplotypes are equally likely:

$$p_k^{(0)} = \frac{1}{d}$$
, for $k = 1, 2, ..., d$

Randomly choose probabilities satisfying

$$\sum_{k=1}^{d} p_k^{(0)} = 1$$