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Imagine generating sequences of letters over the four-letter
alphabet A, C, G, T

Sequences generated by random process

Parametric statistical models: families of probability
distributions by a finite-dimensional parameter

@ Goal: model this random process and estimate the parameters
from the output sequences
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@ Suppose the model uses three tetrahedral dice

@ The probabilities of rolling the four letters are:

first die second die third die

A 0.15 0.27 0.25
C 0.33 0.24 0.25
G 0.36 0.23 0.25
T 0.16 0.26 0.25

To generate each letter, the dice are chosen at random:
o first die picked with probability 61
@ second die picked with probability 6,
@ third die picked with probability 1 — 6; — 65
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CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC

@ Was this sequence generated by the three dice?

@ If so, what are the parameters 6, and 6,7
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Matrix of probabilities:

first die second die third die

0.15 64 0.27 6, 0.25 (1 - 601 — 6)
0.33 64 0.24 0, 0.25 (1 - 61 — 6,)
0.36 61 0.23 6, 0.25 (1 - 601 — 6)
0.16 04 0.26 0, 0.25 (1 - 601 —6,)

—Ho0 0>

Let pa, pc, pc and pt denote the probabilities of generating
A, C, G, and T respectively. Then

pa = —0.106; +0.0260, + 0.25
pc = 0.086; —0.016, +0.25
pec = 0.116; — 0.020, + 0.25
pr = —0.090; +0.016, + 0.25
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Likelihood

For sequence
CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC

the likelihood of observing the sequence is:

L = pcprpaPcPcPG -+ Pc = PAPE PE PY

The likelihood function is:

L(01,02) = pa(61,02)°pc(61,602)" ps(61,02)° pr(61,62)"°
= (—0.106; + 0.026, + 0.25)1°(0.086; — 0.016, + 0.25)'*
(0.116; — 0.020, + 0.25)'°(—0.096; + 0.016; + 0.25)°
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Maximum Likelihood

In maximum likelihood estimation, the goal is to estimate the
parameter values which make the likelihood of observing the data
as large as possible

max L(01,02) = pa(61,02)*pc(61,02)* ps(01,602)*° pr (61, 02)™°
subject to: 0 < 61,0, <1

Equivalent and more convenient to maximize the log-likelihood
function:

max [(61,62) = maxlogL(61,062)
= max [ 10log(pa(b1,62)) + 14log(pc(b1,62))
+15log(pg(01,62)) + 10log(p7(61,02)) |
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max [(61,62) = maxlogL(61,062)
= max [ 10log(pa(61,62)) + 14log(pc (61, 602))
+15log(pg (61, 62)) + 10log(p7(6162)) ]
= max [ 10log(—0.106; + 0.026, + 0.25)
+1410g(0.080; — 0.010, + 0.25)
+15log(0.116; — 0.0260, + 0.25)
+10log(—0.096; + 0.0165 + 0.25) |
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The solution to this optimization problem can be computed by
taking partial derivatives of the log-likelihood function:

0l 100pa  1490pc  150pg 10 9pr _ 0
001 padbh  pc 001  pc 061 pr 061
ol 100pa | 14 9pc EQPG+E3PT:0
00  padlr pc 002  pg 00>  pr 002

130030500, + 274463 — 21161256, — 6290625 = 0
13445603 — 1085227505 — 43047281250, + 935718750 = 0

(61,6,) = 0.5191263945,0.2172513326
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Let F = (f;j(#)) be an m x n matrix in parameters (01, 05,...04).

@ F is the hidden model or complete data model

Let f be the m x 1 matrix f = (3_7_; £;(0))

@ f is the observed model or partial data model
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e Data: wuj; drawn from distribution f;; (complete data model)

@ Input: Instead of having complete data, we are given only the

marginal data uj =}, uj; for each i

@ Goal: infer the parameters 6 to maximize the probability of
observing the marginal data u;.
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Our problem is to maximize the likelihood function for this data
with respect to the observed model:

max Lops(0) = £(0)£(0)™ - - fn(6)"m

Assumption: can solve the problem for the hidden model F:
max Lh,'d(e) = f11(0)“11 f12(9)u12 R fm,,(e)”"’"

The problem is that we don’t know the hidden data u;;!
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Expectation Maximization

For models that do not have exact solutions, statisticians use a
numerical optimization technique called Expectation-Maximization
(or EM) for maximizing the likelihood function.

@ not guaranteed to reach a global maximum
@ known to perform well on many problems of practical interest

@ under some conditions, will converge to a local maximum of
the likelihood function
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EM algorithm

Expectation Maximization Algorithm
Input: Functions f;;(#), observed data u;
Output: Maximum likelihood parameters 6

1. Initialize 0% € RYy, k = 0.

ok ok
(i) Let uj = “"Z?(ff(a)k) = u; f,’l{((gk)) for1<i<nl<j<m.

(i) Let %1 = arg maxg lhig(0)

2. If [0k — 0K > ¢, let k = k+ 1 and Go to [1].
Else output 6* = gk+1,
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I bs(e"“) — lobs(0%) > (/ ps(0°T1) = lops(0%)) = (Inia(0%T) — lhia(6))

m n

- Zu, log f;(6*+1) — Zu, log £i(0%) = > > " uj(log f;(0*) — log £;(6*))
= i=1 j=1
>Z log £i(6*™*) = " ujlog £;(6%) — ZZU, "I (log £;(60°1) — log £;(6%))
i=1 i=1 j=1 ui
> i (log £;(0**1) — log f:(6 ZZU, (log £;(6* 1) — log £;(6%))
i=1 j=1 ui

>

2
m fi(0F) Q= g | fi(0FH
Zw (log rg(ek)) ;7 8 ﬁg("k)))
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¢ FOY) g, (0
> uj | log - —Z log =
; f(0%) ; uj f;;(0%)
m n - k 2 k+1y " £ gk fi gk+1
SR S0 g FO) SR )60
U\ M) TP TRM) 0RO TA(0R)
S [ 30 o O 5(0)
U\ R TP TREM KR
e mj -\ o f(0%) f(0%+1)
= u; 7T,'|ng" = — u; 71',"|ng" <71’,":J,O',": J
m n O', m n
ZZU"ZWU(I_W.{) ZU,‘Z(TFU O'U')ZO
i=1  j=1 u i=1  j=1
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EM for Haplotype Phasing

@ A haplotype is a string of 0's and 1's, representing half of a
diploid chromosome
@ A genotype is a conflated combination of two equal length
haplotypes
0 if the two haplotypes are homozygous with value 0
1 if the two haplotypes are homozygous with value 1
2 if the two haplotypes are heterozygous
@ Haplotype h is consistent with genotype g if h agrees with g
in all positions in which g has value 0 or 1 (i.e., there exists a
haplotype h' such that h&® W = g).
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@ pi = probability of haplotype hy in population
@ Vector of haplotype probabilities p = (p1, p2, - - - Pa)

@ Goal: Find the vector p of haplotype probabilities maximizing
the probability of observing genotypes G
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Haplotype phasing

Matrix f will denote the probabilites that the observed genotypes
are generated by specific pairs of haplotypes

@ each row represents an observed genotype g;
@ each column represents a pair of haplotypes (hg, h;) (k < /)

@ entry corresponding to genotype g; and haplotype pair (hy, hy)
is indexed by (i, [k, /]) and takes value

' ()_ pkp/:plz( iszlandhk@h/:g;
[k 2pkpi, if k£ 1and hy ® hy = g;

Now, apply the above EM framework to the phasing problem.
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Expectation Maximization Algorithm for Haplotype Phasing
Input: Functions f; [, /(p) defined above, observed genotype data
uj

Output: An estimate p* for the maximum likelihood haplotype
frequencies.

1. Initialize p° € RZ, t = 0.

- t o fwnP) o fiwn(P)
(I) Let U’-)[k’/] = u’Zk,/fi,[k‘I](pt) = uj f:(p?)
1<i<nl<k<I<d.
(ii) Let p*1 = arg max, lhia(p)
2. If |pttl — pt| > ¢ let t = t + 1 and Go to [1].
pttl —p
Else output p* = pttl.

for
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We now show the problem of maximizing the hidden likelihood
function, has an explicit solution.

Lemma. The function M(x) = []; x/" subject to the constraint
N(x) = >, xi = constant is maximized when

n_*®2_ _X

n r rn

Proof. By the theory of Lagrange multipliers, M(x) is maximized
when

IM(x) ON(x)
=A
aX,' X

forall1<i<n.
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IM(x) ON(x)
=A
8X,' X

forall1<i<n.

Taking partial derivatives, we obtain the following set of equations

(r1X1r1—1)X2rz ceexn =
n rn—1 r _
x(H(nx? ") oxm o= A
nn m—1 _
Xp(txgt e (X T7) = A
So the maximum is achieved when
n—1 r m __ _n n—1 rn __ _nJ_n rn—1
(XYt xtr = X h) ot = o = it (™)
. iofi n_n_..._"mn ;
This is satisfied when == = 32, proving the lemma. [
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To avoid local maxima, the method should be run on a set of
widely ranging initial values. Several possibilities for the initial
conditions include the following.

© All haplotypes are equally likely:

1
pf(o) =7 for k=1,2,...,d

@ Randomly choose probabilities satisfying

d 0
S0 -
k=1
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