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The past five years have seenmany scientific and biological discov-

eries made through the experimental design of genome-wide asso-

ciation studies (GWASs). These studies were aimed at detecting

variants at genomic loci that are associated with complex traits

in the population and, in particular, at detecting associations

between common single-nucleotide polymorphisms (SNPs) and

common diseases such as heart disease, diabetes, auto-immune

diseases, and psychiatric disorders. We start by giving a number

of quotes from scientists and journalists about perceived problems

with GWASs. We will then briefly give the history of GWASs and

focus on the discoveries made through this experimental design,

what those discoveries tell us and do not tell us about the genetics

and biology of complex traits, and what immediate utility has

come out of these studies. Rather than giving an exhaustive review

of all reported findings for all diseases and other complex traits, we

focus on the results for auto-immune diseases and metabolic

diseases. We return to the perceived failure or disappointment

about GWASs in the concluding section.

Introduction: Have GWASs Been a Failure?

In the past five years, genome-wide association studies

(GWASs) have led to many scientific discoveries, and yet

at the same time, many people have pointed to various

problems and perceived failures of this experimental

design. Let us begin by considering a number of criticisms

that have been made against GWASs. We do not list these

quotes to discredit any of the scientists or journalists

involved, nor to deliberately cite them out of context.

Rather, they serve to confirm that the points we discuss

in this review are related to beliefs held by a significant

number of scientific commentators and therefore warrant

consideration.

From an interview with Sir Alec Jeffreys, ESHG Award

Lecturer 2010:

‘‘One of the great hopes for GWAS was that, in the

same way that huge numbers of Mendelian disorders

were pinned down at the DNA level and the gene

and mutations involved identified, it would be

possible to simply extrapolate from single gene disor-

ders to complex multigenic disorders. That really

hasn’t happened. Proponents will argue that it has

worked and that all sorts of fascinating genes that

predispose to or protect against diabetes or breast

cancer, for example, have been identified, but the

fact remains that the bulk of the heritability in these

conditions cannot be ascribed to loci that have
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The
emerged from GWAS, which clearly isn’t going to

be the answer to everything.’’

From McCLellan and King, Cell 20101:

‘‘To date, genome-wide association studies (GWAS)

have published hundreds of common variants

whose allele frequencies are statistically correlated

with various illnesses and traits. However, the vast

majority of such variants have no established biolog-

ical relevance to disease or clinical utility for prog-

nosis or treatment.’’

‘‘An odds ratio of 3.0, or even of 2.0 depending on

population allele frequencies, would be robust to

such population stratification. However, odds ratios

of the magnitude generally detected by GWAS

(<1.5) can frequently be explained by cryptic popu-

lation stratification, regardless of the p value associ-

ated with them.’’

‘‘More generally, it is now clear that common risk

variants fail to explain the vast majority of genetic

heritability for any human disease, either individu-

ally or collectively (Manolio et al., 2009).’’

‘‘The general failure to confirm common risk vari-

ants is not due to a failure to carry out GWAS

properly. The problem is underlying biology, not

the operationalization of study design. The common

disease–common variant model has been the

primary focus of human genomics over the last

decade. Numerous international collaborative efforts

representing hundreds of important human diseases

and traits have been carried out with large well-char-

acterized cohorts of cases and controls. If common

alleles influenced common diseases, many would

have been found by now. The issue is not how to

develop still larger studies, or how to parse the data

still further, but rather whether the common

disease–common variant hypothesis has now been

tested and found not to apply to most complex

human diseases.’’

From Nicholas Wade in the New York Times, March 20

2011:

‘‘More common diseases, like cancer, are thought to

be caused by mutations in several genes, and finding

the causes was the principal goal of the $3 billion
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human genome project. To that end, medical genet-

icists have invested heavily over the last eight years

in an alluring shortcut. But the shortcut was based

on a premise that is turning out to be incorrect. Scien-

tists thought the mutations that caused common

diseases would themselves be common. So they first

identified the common mutations in the human

population in a $100 million project called the

HapMap. Then they compared patients’ genomes

with those of healthy genomes. The comparisons

relied on ingenious devices called SNP chips, which

scan just a tiny portion of the genome. (SNP,

pronounced ‘‘snip,’’ stands for single nucleotide

polymorphism.) These projects, called genome-wide

association studies, each cost around $10 million or

more. The results of this costly international exercise

have been disappointing. About 2,000 sites on the

human genome have been statistically linked with

various diseases, but in many cases the sites are

not inside working genes, suggesting there may be

some conceptual flaw in the statistics. And in most

diseases the culprit DNA was linked to only a small

portion of all the cases of the disease. It seemed that

natural selection has weeded out any disease-causing

mutation before it becomes common.’’

From Tim Crow, Molecular Psychiatry 20112:

‘‘There comes a point at which the genetic skeptic

can be pardoned the suggestion that if the genes

are so small and so multiple, what they are hardly

matters, the dividing line between polygenes and

no genes is of little practical consequence. Have we

reached this point’’?

From a commentary article by Jonathan Latham, on

guardian.co.uk, 17 April 2011:

‘‘Among all the genetic findings for common

illnesses, such as heart disease, cancer and mental

illnesses, only a handful are of genuine significance

for human health. Faulty genes rarely cause, or even

mildly predispose us, to disease, and as a consequence

the science of human genetics is in deep crisis.

Since the Collins paper [Manolio et al. 20093] was

published nothing has happened to change that

conclusion. It now seems that the original twin-

study critics were more right than they imagined.

The most likely explanation for why genes for

common diseases have not been found is that, with

few exceptions, they do not exist.’’

These quotes raise a number of different issues about

the methodology, research outcomes, and utility of the

research findings. The pertinent points made in these

quotes are:

(1) GWASs are founded on a flawed assumption that

genetics plays an important role in the risk to

common diseases;
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(2) GWASs have been disappointing in not explaining

more genetic variation in the population;

(3) GWASs have not delivered meaningful, biologically

relevant knowledge or results of clinical or any

other utility; and

(4) GWAS results are spurious.

In this review we will briefly give the history of GWASs

and then focus on the discoveries made through this

experimental design, what those discoveries tell us and

do not tell us about the genetics and biology of complex

traits, and what immediate utility has come out of these

studies. We will focus on the results for auto-immune

diseases and metabolic diseases, although there have

been important findings for other diseases and complex

traits. In the concluding section, we will again consider

the perceived failure or disappointment of GWASs.

What Are GWASs, and How Did We Get There?

Attempts to use linkage analysis to map genomic loci that

have an effect on disease or other complex traits have

been ubiquitous in the last two decades. Gene mapping

by linkage relies on the cosegregation of causal variants

with marker alleles within pedigrees. We define and

discuss what we mean by ‘‘causal’’ in Box 1. Because the

number of recombination events per meiosis is relatively

small, tagging a causal variant requires only a few genetic

markers per chromosome. The downside of the small

number of recombination events is that the mapping

resolution, i.e., how close to the causal variant one can

get through linked markers, is typically low. Linkage

mapping has been extremely successful in mapping genes

and gene variants affecting Mendelian traits (e.g., single-

gene disorders).4 Mapping loci underlying common

diseases and, in particular, identifying causative muta-

tions have had much less success. There are many reasons

for the failure of linkage analyses to reliably identify

complex-trait loci in human pedigrees. One reason is

that the effect sizes (‘‘penetrance’’) of individual causal

variants are too small to allow detection via cosegregation

within pedigrees.

GWASs are based upon the principle of linkage disequi-

librium (LD) at the population level. LD is the nonrandom

association between alleles at different loci. It is created by

evolutionary forces such as mutation, drift, and selection

and is broken down by recombination.5 Generally, loci

that are physically close together exhibit stronger LD

than loci that are farther apart on a chromosome. The

larger the (effective) population size, the weaker the LD

for a given distance.6 (Linkage analysis exploits the large

LD within pedigrees.) The genomic distance at which LD

decays determines how many genetic markers are needed

to ‘‘tag’’ a haplotype, and the number of such tagging

markers is much smaller than the total number of

segregating variants in the population. For example,

a selection of approximately 500,000 common SNPs in

the human genome is sufficient to tag common variation
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Box 1. What Is a Causal Variant?

New mutations that contribute to an increase or

decrease in risk to disease arise in populations all

the time. Some of these mutations can reach an

appreciable frequency in the population, for

example by random drift or by natural selection.

As discussed in the main text, these mutations will

be associated with other variants in the genome

through LD. Such associations will include those

with SNPs that are genotyped on ‘‘SNP chips.’’

Because there are many more segregating variants

in the population than those genotyped in GWASs,

it is unlikely, but not impossible, that a mutation is

genotyped itself, and so its effect usually will be de-

tected through an association with a genotyped

variant. This genotyped variant can be robustly asso-

ciated with disease in multiple samples from the

same population, or even across populations, but it

is not the mutation that causes variation in risk.

The results from GWASs have shown that variants

at many genetic loci in the genome are associated

with disease, and these also reflect many ancestral

mutations with an effect on susceptibility to disease.

Therefore, the effect size (in terms of increasing or

decreasing the absolute probability of disease) is,

on average, small, and individual variants are

neither necessary nor sufficient to cause disease.

Herein lies the problem of defining ‘‘causal’’: How

do we prove that a particular mutation causes the

observed effect on variation in the population?

Engineering the same mutation in a cell or animal

model might give a relevant phenotype, but that is

not a proof. The mutation can have a direct effect

on gene expression in human tissues or be func-

tional in another way, but that doesn’t prove it has

a causal effect on disease risk. Operationally, in this

review what we mean by ‘‘causal variant’’ is an

(unknown) variant that has a direct or indirect func-

tional effect on disease risk, rather than a variant

that is associated with disease risk through LD,

even if we don’t have the tools available at present

to prove causality beyond reasonable doubt. Hence,

it is the variant that causes the observed association

signal.
in non-African populations, even though the total number

of common SNPs exceeds 10 million.7

Geneticists realized some time ago that they could

exploit population-based LD to map genes. For example,

Bodmer suggested in 1986 that fine-mapping using popu-

lation association could lead to closer linkage between

a causative mutation and a linked marker.82 However,

fine-mapping still relied on having an initial genomic loca-
The
tion that is obtained from linkage analysis in family

studies. What if we do not have any prior information

on genomic loci or, alternatively, we deliberately want an

unbiased scan of the genome? In a landmark paper, Risch

and Merikangas83 showed that performing an association

scan involving one million variants in the genome and

a sample of unrelated individuals could be more powerful

than performing a linkage analysis with a few hundred

markers. It took only 10 years before this theoretical design

became reality. What was needed was the discovery (accel-

erated by the sequencing of the human genome) of

hundreds of thousands of single-nucleotide variants, the

quantification of the correlation (LD) structure of those

markers in the human genome, and the ability to accu-

rately genotype hundreds of thousands of markers in an

automated and affordable manner. The LD structure was

investigated in the HapMap project,7 and the outcome

was a list of tag SNPs that captured most of the common

genomic variation in a number of human populations.

Concurrently, commercial companies produced dense

SNP arrays that could genotype many markers in a single

assay. The technological advances together with biobanks

of either population cohorts or case-control samples facili-

tated the ability to conduct GWASs.

Although GWASs are unbiased with respect to prior bio-

logical knowledge (or prior beliefs) and with respect to

genome location, they are not unbiased in terms of what

is detectable. GWASs rely on LD between genotyped

SNPs and ungenotyped causal variants. The strength of

statistical association between alleles at two loci in the

genome strongly depends on their allele frequencies,

such that a rare variant (say, one with a frequency <0.01)

will be in low LD (as measured by r2) with a nearby

common variant, even if they map to the same recombina-

tion interval.84 But the SNPs that are on the SNP chips

have been selected to be common (most have a minor

allele frequency >0.05). Therefore, GWASs are by design

powered to detect association with causal variants that

are relatively common in the population. Is it realistic to

assume common causal variants for disease segregate in

the population? This is discussed in Box 2.

(Nearly) Five Years of Discovery

Although the first results from a GWAS were reported in

20058 and 2006,9 we take the 2007 Wellcome Trust Case

Control Consortium (WTCCC) paper in Nature10 as a start-

ing point. The reason for this is that theWTCCC study was

the first large, well-designed GWAS for complex diseases to

employ a SNP chip that had good coverage of the genome.

There are many ways to summarize the discoveries based

on GWASs in the last five years. We have tried to separate

the discoveries quantitatively and to focus on the biology.

There are nowwell over 2000 loci that are significantly and

robustly associated with one or more complex traits (see

GWAS catalog in Web Resources), as shown in Figure 1.

The vast majority of the loci identified are new, i.e., before

2007 their association with disease or other complex traits
American Journal of Human Genetics 90, 7–24, January 13, 2012 9



Box 2. The CDCV Hypothesis

Currently, the allele frequency of variants that

contribute to cause common disease is a subject of

some debate.85,86 The common disease-common

variant (CDCV) hypothesis is sometimes said to be

one side of this debate; the other side holds that

disease-causing alleles are typically rare. But what

is the precise ‘‘hypothesis’’ in the CDCV hypothesis?

We tried to find the origin of the CDCV hypothesis.

Many researchers cite either Lander87 or Risch and

Merikangas.83 We will add Chakravarti88 and Reich

and Lander89 as key studies. Lander87 noted from

the then-available data that there is a limited diver-

sity in coding regions at genes, in that most variants

are very rare, and therefore the effective number of

alleles is small. In addition, he provided ‘‘tantalizing

examples’’ of common alleles with large effects (for

example, such alleles include APOE [MIM 107741],

MTHFR [MIM 607093], and ACE [MIM 106180]).

Reich and Lander89 presented a theoretical popula-

tion-genetics model that predicted a relatively

simple spectrum of the frequency of disease risk

alleles at a particular disease locus. They (re)phrased

the CDCV hypothesis as the prediction that the ex-

pected allelic identity is high for those disease loci

that are responsible for most of the population risk

for disease. These studies did not appear to make

any prediction about the number of disease loci or,

therefore, about the effect size. What the authors

stated was that if a disease was common, there was

likely to be one disease-causing allele that was

much more common than all the other disease-

causing alleles at the same locus.87,89

Risch and Merikangas83 quantified two important

points regarding the detection of disease loci: first,

that detection by association is more powerful

than linkage when the genotype-relative risk is

modest or small and the risk-allele frequency is large

(say, >10%); and second, that the multiple-testing

burden of a genome scan by association does not

prevent the detection of genome-wide-significant

findings. This paper was essentially about experi-

mental design and statistical power (and hence feasi-

bility), not about the CDCV hypothesis as such.

Finally, Chakravarti88 pointed out that if individuals

with disease needed to be homozygous for risk vari-

ants at multiple loci, then the risk alleles at those

loci must be more common than they would be in

a model in which homozygosity at any risk locus is

sufficient to cause disease. We note that without

the assumption of strong epistasis on the scale of

liability, there is no need for risk variants to be

common. For example, Risch’s multilocus multipli-

cative model,90 which implies an additive model

Box 2. Continued

on the log (risk) scale (it is one of the ‘‘exchangeable’’

models91), does not rely on a particular allelic spec-

trum of risk-allele frequencies.

What all these landmark papers have in common

is a remarkable foresight in predicting the GWAS era

well before the publication of the full draft of the

human genome sequence, the HapMap project, or

the availability of commercial genotyping. But

what can we conclude about the origin and specifics

of the CDCV hypothesis? As implicitly or explicitly

stated in these key papers, there is no strong predic-

tion about the exact allele-frequency spectrum of

risk variants in the genome, nor a prediction about

the effect size at any disease loci and hence about

the total number of risk alleles in the genome.

The current debate is about the frequency spec-

trum of disease-causing alleles. Phrasing the debate

as an either/or question is not very helpful because

examples of both common and rare alleles are

already known, but there is still an open question

as to whether most genetic variation contributing

to complex traits in the population is caused by

rare variants or common variants. A more general

question regards the spectrum of allele frequencies

of disease-causing alleles and the joint distribution

between risk-allele frequency and effect size. In the

special case of an evolutionarily neutral model and

a constant effective population size, most causal

variants that are segregating in the population will

be rare, but most heritability will be due to common

variants.79,92 The reason for this apparent paradox is

that the number of segregating variants is propor-

tional to 1/[p(1 � p), where p is the allele frequency

of a risk-increasing allele (so the smaller p, the

more variants of that frequency), whereas the herita-

bility contributed at that frequency is proportional

to p(1 � p). The net effect is that the heritability is

distributed equally over all frequencies, and cumula-

tively most heritability is contributed by common

variants.

10 The American Journal of Human Genetics 90, 7–24, January 13, 20
was not known. Essentially, these are 2000 new biological

leads. The number of loci identified per complex trait

varies substantially, from a handful for psychiatric diseases

to a hundred or more for inflammatory bowel disease

(IBD1 [MIM 266600], including Crohn disease [CD]11

and ulcerative colitis [UC]12) and stature.13 Importantly,

the number of discovered variants is strongly correlated

with experimental sample size (Figure 2), which predicts

that an ever-increasing discovery sample size will increase

the number of discovered variants: very roughly, after

a minimum sample-size threshold below which no vari-

ants are detected is reached, a doubling in sample size leads
12



Figure 1. GWAS Discoveries over Time
Data obtained from the Published GWAS Catalog (see Web
Resources). Only the top SNPs representing loci with association
p values < 5 3 10�8 are included, and so that multiple counting
is avoided, SNPs identified for the same traits with LD r2 > 0.8 esti-
mated from the entire HapMap samples are excluded.

Figure 2. Increase in Number of Loci Identified as a Function of
Experimental Sample Size
(A) Selected quantitative traits.
(B) Selected diseases.
The coordinates are on the log scale. The complex traits were
selected with the criteria that there were at least three GWAS
papers published on each in journals with a 2010–2011 journal
impact factor>9 (e.g.,Nature,Nature Genetics, the American Journal
of Human Genetics, and PLoS Genetics) and that at least one paper
contained more than ten genome-wide significant loci. These
traits are a representative selection among all complex traits that
fulfilled these criteria.
to a doubling of the number of associated variants discov-

ered. The proportion of genetic variation explained by

significantly associated SNPs is usually low (typically less

than 10%) for many complex traits, but for diseases such

as CD and multiple sclerosis (MS [MIM 126200]), and for

quantitative traits such as height and lipid traits, between

10% and 20% of genetic variance has been accounted for

(Table 1). In comparison to the pre-GWAS era, the propor-

tion of genetic variation accounted for by newly discov-

ered variants that are segregating in the population is large.

It is clear that for most complex traits that have been

investigated by GWAS, multiple identified loci have

genome-wide statistical significance, and thus it is likely

that there are (many) other loci that have not been identi-

fied because of a lack of statistical significance (false nega-

tives). Recently, researchers have developed and applied

methods to quantify the proportion of phenotypic varia-

tion that is tagged when one considers all SNPs simulta-

neously.12–14 These methods focus on estimation rather

than hypothesis testing and do not suffer from false

negatives caused by small effect sizes.15 Whole-genome

approaches to estimating genetic variation have shown

that approximately one-third to one-half of additive

genetic variation in the population is being tagged when

all GWAS SNPs are considered simultaneously.12–14 This

is a surprisingly large proportion given that evolutionary

theory predicts that most variants affecting disease risk

ought to be found at a low frequency in the population

if they affect fitness,16,17 and such risk variants would

not be in sufficient LD with the common SNPs to be

detected in GWASs.

Autoimmune Diseases

We concentrate on seven auto-immune diseases, anky-

losing spondylitis (AS [MIM 106300]), rheumatoid arthritis

(RA [MIM 180300), systemic lupus erythematosus (SLE
The A
[MIM 152700]), and type 1 diabetes (T1D [MIM 222100]),

MS, CD, and UC. Table 2 summarizes the number of genes

that have been identified for these diseases. Across these

diseases, 19 loci (mainly related to human leukocyte

antigen) were known prior to 2007, and 277 have been

discovered from 2007 onward. The total of 277 includes

multiple counts of loci that have been implicated across a

number of diseases; such loci include BLK (MIM 191305),

TNFAIP3 (MIM 191163) and CD40 (MIM 109535).

Inflammatory bowel disease (IBD, not to be confused

here with identity by descent) is thought to arise from

dysregulation of intestinal homeostasis.18 GWASs of IBD

(CD and UC) have been highly successful in terms of

the number of loci identified (99 nonoverlapping loci in
merican Journal of Human Genetics 90, 7–24, January 13, 2012 11



Table 1. Population Variation Explained by GWAS for a Selected
Number of Complex Traits

Trait or Disease
h2 Pedigree
Studies

h2 GWAS
Hitsa

h2 All
GWAS SNPsb

Type 1 diabetes 0.998 0.699 ,c 0.312

Type 2 diabetes 0.3–0.6100 0.05-0.1034

Obesity (BMI) 0.4–0.6101,102 0.01-0.0236 0.214

Crohn’s disease 0.6–0.8103 0.111 0.412

Ulcerative colitis 0.5103 0.0512

Multiple sclerosis 0.3–0.8104 0.145

Ankylosing spondylitis >0.90105 0.2106

Rheumatoid arthritis 0.6107

Schizophrenia 0.7–0.8108 0.0179 0.3109

Bipolar disorder 0.6–0.7108 0.0279 0.412

Breast cancer 0.3110 0.08111

Von Willebrand factor 0.66–0.75112,113 0.13114 0.2514

Height 0.8115,116 0.113 0.513,14

Bone mineral density 0.6-0.8117 0.05118

QT interval 0.37–0.60119,120 0.07121 0.214

HDL cholesterol 0.5122 0.157

Platelet count 0.8123 0.05–0.158

a Proportion of phenotypic variance or variance in liability explained by
genome-wide-significant and validated SNPs. For a number of diseases, other
parameters were reported, and these were converted and approximated to the
scale of total variation explained. Blank cells indicate that these parameters
have not been reported in the literature.
b Proportion of phenotypic variance or variance in liability explained when all
GWAS SNPs are considered simultaneously. Blank cell indicate that these
parameters have not been reported in the literature.
c Includes pre-GWAS loci with large effects.
total18), and a substantial proportion of familial risk, about

20%, has been accounted for.11,12,18 Twenty-eight risk loci

are shared between CD and UC, despite the fact that these

diseases display distinct clinical features, and it has been

suggested that the two diseases share pathways and are

part of a mechanistic continuum.18 There are also strong

overlaps between genes involved in CD and UC, AS,19

and psoriasis (MIM 177900), again suggesting shared aetio-

pathogenic mechanisms in these conditions. Pleiotropic

genetic effects are becoming increasing widely identified,

including in classical autoimmune diseases.20 For example,

a coding variant in the gene PTPN22 (MIM 600716)

confers strong risk for T1D and RA as well as protection

against CD.18

Metabolic Diseases

In terms of metabolic diseases, we focus here specifically

on type 2 diabetes (T2D [MIM 125853]); fasting glucose

and insulin levels; body-mass index (BMI) and obesity;

and fat distribution. A recent review21 already covered

these complex traits, but we have updated that review

wherever necessary. Table 3 gives an overview of the

number of loci identified.
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More than 20 major GWASs for T2D have been pub-

lished to date21–24, and there has been a cumulative tally

of around 50 genome-wide-significant hits,21,23,24 only

three of which were known before the GWAS era. Most

of these studies have involved individuals of European

descent; the latest published effort is from the DIAGRAM

(Diabetes Genetics Replication and Meta-analysis)

Consortium and includes more than 47,000 GWAS indi-

viduals and 94,000 samples for replication. More recently,

equivalent studies have emerged from samples of East

Asians,23,25–27 South Asians,22 and Hispanics,28,29 and

large studies involving African Americans and other major

ethnic groups are underway. Notwithstanding differences

in allele frequency and LD patterns, most of the signals

found in one ethnic group show some evidence of associ-

ation in others, indicating that the common-variant

signals identified by GWASs are likely to be the result of

widely distributed causal alleles that are of relatively high

frequency. This is an important observation because it

indicates that most of the GWAS-identified associations

for T2D reflect high LD with a causal variant that has

a small effect size rather than low LD with a causal variant

that has a large effect size. The largest common-variant

signal identified for T2D remains TCF7L2 (MIM 602228)

(detected just prior to the GWAS era30), which has a

per-allele odss ratio (OR) of around 1.35. The remaining

signals detected by GWAS have allelic ORs in the range

between 1.05 and 1.25. Collectively, the most-strongly

associated variants at these loci are estimated to explain

around 10% of familial aggregation of T2D in European

populations.

The MAGIC (Meta-Analysis of Glucose- and Insulin-

Related Traits Consortium) investigators have been

carrying out equivalent analyses focused on the identifica-

tion of variants influencing variation in glucose and

insulin levels in healthy nondiabetic individuals.31–33 Prior

to the GWAS era, the only compelling association signal

for fasting glucose levels was known at GCK (MIM

138079) (glucokinase),34 but GWAS in European samples

(46,000 GWAS and 76,000 replication samples) have

expanded that number to 1632. These variants explain

around 10% of the inherited variation in fasting glucose

levels. Only two signals (near GCKR [MIM 600842] and

IGF1 [MIM 147440]) were shown to influence fasting

insulin levels in the same analysis. Equivalent analyses

for 2h glucose33 (15,000 GWAS samples and up to 30,000

replication samples) identified further signals, including

variants near the GIP (MIM 137240) receptor (GIPR [MIM

137241]).

Before the GWAS era, the only robust association

between DNA sequence variation and either BMI or

weight involved low-frequency variants in MC4R (MIM

155541).35 Now, there are more than 30. In the most

recent study from the GIANT consortium,36 these analyses

extended to almost 250,000 samples, half of them in the

stage 1 GWAS, the remainder for replication. The largest

signal remains that at FTO (MIM 610966),37 where the
12



Table 2. Summary of GWAS Findings for Seven Autoimmune Diseasesa

Prior to 2007 2007 onward

Disease Number of Loci Loci Number of Loci Some or All of the Loci

Ankylosing
spondylitis

1 HLA-B27 13 IL23R, ERAP1, 2p15, 21q22, CARD9 (MIM 607212), IL12B
(MIM 161561), PTGER4 (MIM 601586), IL1R2 (MIM 147811),
TNFR1, TBKBP1 (MIM 608476), ANTXR2 (MIM 608041),
RUNX3 (MIM 600210), KIF21B (MIM 608322)

Rheumatoid
arthritis

3 HLA-DRB1,
PADI4,
CTLA4

30 AFF3 (MIM 601464), BLK, CCL21 (MIM 602737), CD2/CD58
(MIM 186990)/153420], CD28, CD40, FCGR2A (MIM 146790),
HLA-DRB1, IL2/IL21 (MIM 147680/605384), IL2RA, IL2RB
(MIM 146710), KIF5A/PIP4K2C, PRDM1 (MIM 603423), PRKCQ
(MIM 600448), PTPRC (MIM 151460), REL (MIM 164910), STAT4
(MIM 600558), TAGAP, TNFAIP3, TNFRSF14, TRAF1/C5 (MIM
120900/601711), TRAF6 (MIM 602355), IL6ST (MIM 600694),
SPRED2 (MIM 609292), RBPJ (MIM 147183), CCR6
(MIM 601835), IRF5 (MIM 607218), PXK (MIM 611450)

Systemic lupus
erythematosus

3 HLA, PTPN22,
IRF5 (MIM
607218)

31 BANK1 (MIM 610292), BLK (MIM 191305), C1q, C2 (MIM 613927),
C4A/B (MIM 120820/120810), CRP (MIM 123260), ETS1
(MIM 164720), FcGR2A–FcGR3A (MIM 146790/146740), FcGR3B
(MIM 610665), HIC2-UBE2L3 (MIM 607712/603721), IKZF1 (MIM
603023), IL10 (MIM 124092), IRAK1 (MIM 300283), ITGAM–ITGAX
(MIM 120980)/151510], JAZF1, KIAA1542/PHRF1, LRRC18-WDFY4,
LYN (MIM 165120), NMNAT2 (MIM 608701), PRDM1 (MIM
603423), PTTG1 (MIM 604147), PXK (MIM 611450), RASGRP3
(MIM 609531), SLC15A4, STAT1 (MIM 600555), TNFAIP3, TNFSF4
(MIM 603594), TNIP1 (MIM 607714), TREX1 (MIM 606609),
UHRF1BP1, XKR6

Type 1
diabetes

4 HLA, INS
(MIM 176730),
PTPN22, CTLA4

40 RGS1, IL18RAP (MIM 604509), IFIH1 (MIM 606951), CCR5 (MIM
601373), IL2 (MIM 147680), IL7R, MHC, BACH2 (MIM 605394),
TNFAIP3, TAGAP, IL2RA, PRKCQ (MIM 600448), INS (MIM 176730),
ERBB3 (MIM 190151), 12q13.3, SH2B3 (MIM 605093), CTSH
(MIM 116820), CLEC16A (MIM 611303), PTPN2 (MIM 176887),
CD226 (MIM 605397), UBASH3A (MIM 605736), C1QTNF6, IL10
(MIM 124092), 4p15.2, C6orf173, 7p15.2, COBL (MIM 610317),
GLIS3 (MIM 610192), C10orf59, CD69 (MIM 107273), 14q24.1,
14q32.2, IL27 (MIM 608273), 16q23.1, ORMDL3 (MIM 610075),
17q21.2, 19q13.32, 20p13, 22q12.2, Xq28

Multiple
sclerosis

1 HLA 52 BACH2 (MIM 605394), BATF (MIM 612476), CBLB, CD40, CD58,
CD6 (MIM 186720), CD86, CLEC16A (MIM 611303), CLECL1,
CYP24A1, CYP27B1, DKKL1 (MIM 605418), EOMES (MIM 604615),
EVI5 (MIM 602942), GALC (MIM 606890), HHEX (MIM 604420),
IL12A, IL12B, IL22RA2, IL2RA, IL7, IL7R, IRF8, KIF21B (MIM
608322), MALT1, MAPK1 (MIM 176948), MERTK (MIM 604705),
MMEL1,MPHOSPH9 (MIM 605501),MPV17L2,MYB (MIM 189990),
MYC (MIM 190080), OLIG3 (MIM 609323), PLEK (MIM 173570),
PTGER4 (MIM 601586), PVT1 (MIM 165140), RGS1, SCO2 (MIM
604272), SP140 (MIM 608602), STAT3, TAGAP, THEMIS (MIM
613607), TMEM39A, TNFRSF1A, TNFSF14 (MIM 604520), TYK2,
VCAM1, ZFP36L1 (MIM 601064), ZMIZ1 (MIM 607159), ZNF767

Crohn’s
disease

4 NOD2 (MIM 605956),
IBD5 (MIM 606348),
DRB1*0103, IL23R

67 SMAD3 (MIM 603109), ERAP2 (MIM 609497), IL10 (MIM 124092),
IL2RA, TYK2, FUT2 (MIM 182100), DNMT3A (MIM 602769),
DENND1B (MIM 613292), BACH2 (MIM 605394), ATG16L1
(MIM 610767)

Ulcerative
colitis

3 DRB1*1502,
DRB1*0103, IL23R

44 IL1R2 (MIM 147811), IL8RA-IL8RB, IL7R, IL12B, DAP
(MIM 600954), PRDM1 (MIM 603423), JAK2 (MIM 147796),
IRF5 (MIM 607218), GNA12 (MIM 604394), LSP1 (MIM 153432),
ATG16L1 (MIM 610767)

Total 19 277

a The names of the loci are signposts and do not indicate that these loci are necessarily biologically relevant. A number of associated variants are distant from
protein-coding genes.
average between-homozygotes difference in weight is

around 2.5 kg. The effects at other loci are smaller, and

in combination, these variants explain no more than

1%–2% of overall variation in adult BMI (although this

percentage rises to almost 20% if the analysis is extended

to all GWA variants, not just those that reach genome-
The A
wide significance14). As well as these studies of BMI and

obesity in population samples, there have been several

studies focused on extreme obesity phenotypes.38,39 The

genome-wide-significant loci thrown up by these efforts

only partially overlap with those emerging from popula-

tion-based studies, raising the possibility that some of
merican Journal of Human Genetics 90, 7–24, January 13, 2012 13



Table 3. Summary of GWAS Findings for Metabolic Traitsa

Prior to 2007 2007 onward

Disease Number of Loci Loci Number of Loci Some or All of the Loci

Type 2 diabetes 3 PPARG, KCNJ11
(MIM 600937),
TCF7L2

50 NOTCH2 (MIM 600275), PROX1 (MIM 601546), GCKR, THADA
(MIM 611800), BCL11A (MIM 606557), RBMS1 (MIM 602310), IRS1,
ADAMTS9, ADCY5 (MIM 600293), IGF2BP2 (MIM 608289), WFS1,
ZBED3, CDKAL1, DGKB (MIM 604070), JAZF1, GCK, KLF14,
TP53INP1 (MIM 606185), SLC30A8 (MIM 611145), PTPRD
(MIM 601598), CDKN2A, CHCHD9, CDC123,HHEX (MIM 604420),
DUSP8 (MIM 602038), KCNQ1, CENTD2, MTNR1B, HMGA2 (MIM
600698), TSPAN8 (MIM 600769), HNF1A, ZFAND6 (MIM 610183),
PRC1 (MIM 603484), FTO, SRR (MIM 606477), HNF1B (MIM
189907), DUSP9 (MIM 300134), CDCD4A, UBE2E2 (MIM 602163),
GRB14 (MIM 601524), ST6GAL1 (MIM 109675), VPS26A (MIM
605506), HMG20A (MIM 605534), AP3S2 (MIM 602416), HNF4A
(MIM 600281), SPRY2 (MIM 602466)

Body-mass index 1 MC4R 30 NEGR1 (MIM 613173), TNNI3K (MIM 613932), PTBP2 (MIM
608449), TMEM18 (MIM 613220), POMC, FANCL (MIM 608111),
LRP1B (MIM 608766), CADM2 (MIM 609938), ETV5 (MIM 601600),
GNPDA2 (MIM 613222), SLC39A8 (MIM 608732), HMGCR
(MIM 142910), PCSK1, ZNF608, NCR3 (MIM 611550), HMGA1
(MIM 600701), LRRN6C, TUB (MIM 601197), BDNF, MTCH2
(MIM 613221), FAIM3 (MIM 606015), MTIF3, PRKD1
(MIM 605435), MAP2K5 (MIM 602520), FTO, SH2B1, GPRC5B
(MIM 605948), KCTD15, GIPR, TMEM160

Glucose or insulin 1 GCK 15 GCKR, G6PC2, IGF1, ADCY5 (MIM 600293), MADD (MIM 603584),
ADRA2A, CRY2 (MIM 603732), FADS1 (MIM 606148), GLIS3
(MIM 610192), SLC2A2, PROX1 (MIM 601546), C2CD4B (MIM
610344), DGKB (MIM 604070), GIPR, VPS13C (MIM 608879)

Fat distribution 0 20 TBX15 (MIM 604127), LYPLAL1, IRS1, SPRY2 (MIM 602466), GRB14
(MIM 601524), STAB1 (MIM 608560), ADAMTS9, CPEB4 (MIM
610607), VEGFA (MIM 192240), TFAP2B (MIM 601601), LY86
(MIM 605241), RSPO3 (MIM 610574),NFE2L3 (MIM 604135),MSRA
(MIM 601250), ITPR2 (MIM 600144), HOXC13 (MIM 142976),
NRXN3 (MIM 600567), ZNRF3 (MIM 612062), PIGC (MIM 601730)

Total 5 107

a The names of the loci are signposts and do not indicate that these loci are necessarily biologically relevant. A number of associated variants are distant from
protein-coding genes.
the most extreme cases of obesity are driven by highly

penetrant, low-frequency variants. Variation at copy-

number variants (CNVs) has some impact on BMI. This is

true of commonCNVs (theNEGR1 association seems likely

to be driven by a common CNV40) and also rarer CNVs for

which evidence is starting to accumulate (e.g., 16p CNV

and effect on morbid obesity and developmental delay41).

The adverse metabolic effects of obesity depend not

only on the overall level of adiposity but also on the distribu-

tion of fat around the body; visceral (abdominal) fat has

particularly adverse consequences for overall health. GWASs

of fat-distribution phenotypes (including waist circumfer-

ence,waist:hipratio, andbody-fatpercentage studied inclose

to 200,000 individuals) have revealed almost 20 loci with

genome-wide significance40,42–44 and relatively little overlap

with those loci influencingoverall adiposity.AswithBMI, the

proportion of variance explained by these loci is small

(around 1% after adjustment for BMI, age, and sex).

New Biology Arising from GWAS Discoveries

Autoimmune Diseases

Thus far nearly all genes associated with MS have been

involved in autoimmune pathways rather than in
14 The American Journal of Human Genetics 90, 7–24, January 13, 20
neurologic degenerative diseases.45 Indeed, of the two

MS-associated genes involved in neurodegeneration, one

(KIF21B) is also associated with AS and CD, suggesting

that it is actually an autoimmunity gene. The genes

involved in MS include genes coding for components of

the cytokine pathway (CXCR5 [MIM 601613], IL2RA

[MIM 147730], IL7R [MIM 146661], IL7 [MIM 146660],

IL12RB1 [MIM 601604], IL22RA2 [MIM 606648], IL12A

[MIM 161560], IL12B [MIM 161561], IRF8 [MIM 601565],

TNFRSF1A [MIM 191190], TNFRSF14 [MIM 602746], and

TNFSF14 [MIM 604520]), costimulatory molecules

(CD37 [MIM 151523], CD40, CD58 [MIM 153420],

CD80 [MIM 112203], CD86 [MIM 601020], and CLECL1

[MIM 607467]), and signal-transduction molecules of

immunological relevance (CBLB [MIM 604491], GPR65

[MIM 604620], MALT1 [MIM 604860], RGS1 [MIM

600323], STAT3 [MIM 102582], TAGAP [MIM 609667],

andTYK2 [MIM176941]). Interestingly, these genesmainly

implicate T-helper cells in MS pathogenesis.

Genetic findings have had amajor impact on AS research

and therapeutics. The association of the genes IL23R (MIM

607562)46 and IL12B19 have pointed to the involvement of

the IL-23R pathway, and hence IL-17-producing
12



proinflammatory cell populations, in the aetiopathogene-

sis of AS. The involvement of this pathway in AS was not

considered until the genetic discoveries were reported.

The recent demonstration that ERAP1 (MIM 606832) poly-

morphisms are associated with HLA-B27-positive but not

HLA-B27-negative AS has shed important light on research

into the mechanism by which HLA-B27 induces AS; this

mechanism has remained an enigma since the discovery

of the association of HLA-B27 with AS in the early 1970s.

ERAP1 is involved in peptide processing before HLA class

I molecule presentation; the restriction of the association

of ERAP1 variants to HLA-B27-positive disease indicates

that HLA-B27 operates to cause AS by a mechanism

that involves peptide presentation. Protective variants of

ERAP1 have been shown to have lower peptide-processing

capacity and thus to reduce the amount of peptide avail-

able to HLA-B27.47 Thus HLA-B27 is more likely to cause

AS when it is processing more peptides.

The finding that PADI4 (MIM 605347) is associated with

RA focused research interest on the role of anti-citrulli-

nated peptide antibodies (ACPAs) and disease.48 PADI4 is

involved in the citrullination of peptides against which

ACPAs develop. The association of PADI4 variants with

RA therefore indicated that ACPAs are directly involved

in RA pathogenesis, not an indirect manifestation of

immune dysregulation in the disease. Subsequently, it

was discovered that the association of HLA-DRB1 (MIM

142857) with RA was restricted to ACPA-positive disease

and that there was a strong gene-environment interaction,

such that cigarette smoking increases the risk of ACPA-

positive but not ACPA-negative RA.49 Because ACPA-

positive disease is more severe than ACPA-negative disease

and has a greater propensity toward joint-damaging

erosion, this provided further evidence supporting public-

health measures against cigarette smoking.

The genetic loci identified for IBD through GWASs have

highlighted a number of pathways, including antibacterial

autophagy and signaling pathways (e.g., IL-10 signaling,

T-cell-negative regulators, and pathways involving B cells

and innate sensors).18 Some of these pathways were previ-

ously not suspected to be important for these diseases.

The role of a number of pathways, for example the IL-23R

pathway, the autophagy pathway, and innate immunity,

haveall come fromhypothesis-generatinggenetics research,

not from immunology or hypothesis-driven research.

Similar advances could be described for many other

autoimmune diseases but are beyond the scope of this

review.

Metabolic Traits

Most loci affecting T2D and fasting glucose levels map to

regulatory sequences, and inmany cases, the ‘‘causal’’ tran-

script, i.e., the transcript responsible for mediating the

effect of the associated variants, is not yet known. At other

loci, a combination of coding variants, strong biological

candidates, and/or cis expression QTL data has defined

the transcript through which the effect is mediated
The A
(HNF1A [MIM 142410], GCK, IRS1 [MIM 147545], WFS1

[MIM 606201], PPARG [MIM 601487], CAMK1D [MIM

607957], JAZF1 [MIM 606246], KLF14 [MIM 609393] and

others) as a first step to inferring biology.50 Some of these

stories are now starting to be fleshed out into biological

mechanisms (e.g., KLF1451).

There is incomplete overlap with the loci influencing

physiological variation in glucose and insulin. Some loci

(e.g., MTNR1B [MIM 600804]) have a relatively large effect

on both, whereas others (e.g., G6PC2 [MIM 608058])

influence fasting glucose levels but have a minimal effect

on T2D risk. Still others (e.g., CDKN2A and CDKN2 B

[MIM 600160 and 600431]) impact T2D and have surpris-

ingly modest effects on fasting glucose levels in healthy,

nondiabetic individuals32,33,50. Most of these loci appear

to have their primary effect on the function of beta cells

rather than on insulin resistance, highlighting the impor-

tance of the former with respect to normal and abnormal

glucose homeostasis.50 Of the subset of loci (including

PPARG, KLF14, and ADAMTS9 [MIM 605421]) shown to

influence T2D risk through a primary effect on insulin

resistance, only FTO seems to act primarily through an

effect on obesity.50 Several of the T2D loci overlap genes

that are known to harbor rare variants responsible for

penetrant, monogenic forms of diabetes (such genes

include KCNQ1 [MIM 607542], PPARG, HNF1A, GCK,

and WFS1), indicating that multiple causal variants at

the same locus segregate in the population at difference

frequencies. There is overlap between signals influencing

T2D risk and those influencing body weight (CDKAL1

[MIM 611259] and ADCY5 [MIM 600293]) indicating

that some of the observed epidemiological associations

between these traits are attributable to shared suscepti-

bility variants.52

Whereas many of the fasting-glucose and fasting-insulin

signals map near strong biological candidates for relevant

traits (such candidate genes include IRS1, IGF1, ADRA2A

[MIM 104210], SLC2A2 [MIM 138160], GCK and GCKR)

and fit within established models of our understanding

of islet biology, this is far from the case with the loci iden-

tified for T2D. Efforts to demonstrate that the genes

mapping close to T2D risk loci are enriched for particular

pathways or processes have met with only limited success;

the most robust finding yet has been in relation to

cell-cycle regulation (and was consistent with a model in

which the regulation of islet mass is a key component of

risk50). Either T2D is especially heterogeneous or else key

aspects of its pathophysiology are as yet poorly codified

in existing databases.

As for T2D and fasting glucose, most of the signals for

obesity and fat distribution map to regulatory signals, the

causal transcript is known at only a minority of the loci.

Signals influencing BMI appear to be enriched for genes

implicated in neuronal processes, whereas those influ-

encing fat distribution seem to be more closely related to

adipose development.36,43 Overlap with signals and genes

implicated inmore severe forms of disease (morbid obesity,
merican Journal of Human Genetics 90, 7–24, January 13, 2012 15



lipodystrophy) is seen at some loci (PCSK1 [MIM 162150],

POMC [MIM 176830], BDNF [MIM 113505], MC4R, and

SH2B1 [MIM 608937]) but is far from complete (some

loci implicated in extreme obesity case-control studies

show no association with BMI at the population level36).

The strongest signal for overall adiposityis the one map-

ping to FTO37. FTO is thought to be a DNA methylase,53

but its function is poorly understood. Murine models

demonstrate that modulation of Fto expression is associ-

ated with changes in body weight,54–56 but no direct

evidence linking coding variants in FTO in humans to

body-weight variation has been demonstrated. For the

time being, FTO remains the strongest candidate, but

the role of other genes (e.g., RPGRIP1L [MIM 610937]) in

the region cannot be discounted. This example demon-

strates the difficulties that remain in relating GWAS signals

to downstream biology. Fat distribution is a strongly

gender-dimorphic phenotype, and many of the signals

associated with fat distribution seem to have a selective

effect on this phenotype in women.43

Quantitative Traits

In addition to having been performed on the quantitative

traits discussed previously (e.g., BMI and fasting-glucose

and -insulin levels), GWASs have been done on a number

of quantitative risk factors for disease and for traits that

are models for the genetic architecture of complex traits.

For bone mineral density (BMD), a risk factor for osteopo-

rotic fracture, a total of 34 loci, together explaining ~5% of

narrow sense heritability, have been identified (Estrada

et al., abstract presented at the American Society for Bone

and Mineral Research 2010 Annual Meeting, published

in J. Bone. Med. Res. 25 [Suppl S1], p. 1243). Among these

genes, there is a major over-representation of genes in the

Wnt-signaling pathway, which was first implicated in oste-

oporosis (MIM 166710) from studies in families with high

or low BMD phenotypes. Many other examples exist in

osteoporosis and other human diseases in which GWASs

have demonstrated that more-prevalent but less-severe

genetic variants in genes initially identified from studies

of severe familial diseases have proven to be important in

the risk of disease in the general population. For human

height, a combined discovery and validation cohort of

~180,000 samples identified 180 robustly associated loci,

many in meaningful biological pathways and with evi-

dence for multiple segregating variants at the same loci.13

Together these loci explain approximately 12%–14% of

additive genetic variation (~10% of phenotypic variation).

A meta-analysis of more than 100,000 individuals of

European ancestry detected a total of 95 loci significantly

associated with plasma concentrations of cholesterol

and triglycerides, known risk factors for coronary artery

disease,57 and it provided evidence that the GWAS loci

were of biological and clinical relevance. A meta-analysis

from the HaemGen consortium on platelet count and

platelet volume, which are endophenotypes for myo-

cardial infarction (MIM 608446), discovered 68 loci.58
16 The American Journal of Human Genetics 90, 7–24, January 13, 20
When the genes of a number of these loci were silenced

in Drosophila, 11 showed a clear platelet phenotype. These

genes are previously unknown regulators of blood cell

formation. The identification of so many loci has uncov-

ered new gene functions in megakaryopoiesis and platelet

formation. That is, new biology has resulted directly from

the identification of SNPs that are associated with variation

in platelet phenotypes.

Across these quantitative traits, a number of loci discov-

ered through GWASs were known to be a mutational target

for those traits because Mendelian forms with extreme

phenotypes existed. Taken together, the inference from

quantitative traits in terms of the (large) number of loci

involved, the allelic frequency spectrum of associated vari-

ants, and the nature of the candidate genes suggest that

models arising from quantitative traits appropriately

reflect the genetic architecture of disease and reinforce

the emerging evidence that it is the cumulative effect of

many loci that underlies susceptibility to disease.

From GWAS to Translation: Clinical Relevance

Autoimmune Diseases

Many of the MS-associated genes discovered by GWASs

represent excellent potential therapeutic targets. Of partic-

ular note is the identification of two genes involved in

vitamin D metabolism (CYP27B1 [MIM 609506] and

CYP24A1 [MIM 126065]). This identification might help

to explain the latitudinal variation in MS incidence—i.e.,

higher MS prevalence at more extreme latitudes is most

likely due to higher rates of vitamin D deficiency. Two

other identified genes are already targets of MS therapies,

highlighting the relevance of the findings to the disease

pathogenesis (natalizumab targets VCAM1 [MIM

192225], and daclizumab targets IL2RA). The findings for

AS have stimulated the trial of therapies against identified

pathways. Anti-IL-17 treatment has been shown in a phase

2 trial to have equivalent efficacy as the current gold-stan-

dard treatment, TNF-inhibition, in the treatment of AS.

The relevance of the RA-related genetic findings to thera-

peutic development is highlighted by the fact that some

existing therapies already target genes or gene pathways

highlighted by the genetic associations with RA; such ther-

apies include those involving TNF inhibitors (e.g., inflixi-

mab) and co-stimulation inhibitors (e.g., abatacept).

Abatacept is a fusion protein of CTLA-4 and immunoglob-

ulin. It acts by preventing costimulation of T-helper cells

by the binding of the T cell’s CD28 protein to the B7

protein on the antigen-presenting cell. CTLA4 (MIM

123890) and CD28 (MIM 186760) polymorphisms are

associated with RA. The RA-associated genes include

many involved in the NfKB signaling pathway and

place this pathway at the center of RA pathogenesis. As

in MS, mouse research prior to the genetic discoveries

had implicated the IL-23-dependent Th17-lymphocyte

pathway in RA pathogenesis. To date there has been very

little genetic support for this with regard to human

diseases, in contrast to the situation in seronegative
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diseases such as AS, psoriasis and IBD, where strong genetic

associations exist and treatments targeting the pathway

are in clinical use.

Metabolic Diseases

The main relevance of GWASs lies in the insights into

disease biology (see above) and the potential for clinical

translation through novel approaches to the diagnosis,

prevention, treatment, and monitoring of disease. This

will take some time, in particular given that most GWAS

discoveries were made in the last few years. The predictive

power of disease risk ascertained from genetic data remains

poor because for most diseases only a small proportion of

additive genetic variation has been accounted for.

Although it is possible for T2D to identify individuals

who are at the extremes of the genotype risk score distribu-

tion and who differ appreciably in T2D risk (they have

twice or half the average risk for the upper and lower

1%–2%, respectively), many of these would already be

identifiable on the basis of classical risk factors. In fact,

when using receiver operating characteristic (ROC) anal-

yses, BMI and age do a far better job of discrimination

than the genetic variants so far discovered.59 This may

change as low frequency and rare causal alleles are found.

Although individual prediction is not yet practical with

the variants at hand, it should be possible to identify

groups of individuals who are at a substantially greater-

than-average risk for diabetes, and this might be of value,

for example, with respect to clinical-trial enrichment.

One obvious route to early translation involves the iden-

tification of diagnostic biomarkers on the basis of the

processes that have been uncovered. These may have

predictive impact well beyond the genetic variants that

led to their discovery. This was recently demonstrated by

a GWAS of C-reactive protein (CRP) levels; that study

found that common variants near the HNF1A gene were

associated with variation in CRP.60 The authors asked

whether rare HNF1A mutations that are causal for the

Mendelian MODY (MIM 606391) subtype of diabetes are

also associated with differences in CRP levels and whether

it would be possible to use CRP levels as a diagnostic

marker to help identify individuals who have early-onset

diabetes and who are likely to have HNF1A-MODY (and

to direct those individuals to sequence-based diagnostics).

They were able to show marked differences in CRP levels

between HNF1A -MODY and other types of diabetes and

demonstrated that diagnoses based on CRP levels has

a discriminative accuracy of more than 80% for this diag-

nostic classification.61,62 Otherwise, GWAS findings have

as yet had no impact on therapeutic optimization. Recent

studies have identified variants that influence therapeutic

response to metformin63 and might herald better under-

standing of how these drugs work.

New Science Facilitated by GWASs

Although the GWAS approach was designed for the detec-

tion of associations between DNA markers and disease, as
The A
a by-product such studies have generated new scientific

discoveries. A detailed description and discussion is outside

the scope of this review, and we highlight only a few of

these advances: the discovery of genes affecting genetic

recombination and their correlation with natural selec-

tion64–66 and new insight in human population structure

and evolution.67–73

Interpretation of GWAS Results

GWASs conducted in the last five years were designed and

powered to detect associations through LD between geno-

typed (or imputed) common SNP markers and unknown

causal variants. What do the results imply in terms of vari-

ance explained in the population, common versus rare

variants underlying complex traits, and the nature of

complex-trait variation and evolution? It is too early to

be able to quantify the joint distribution of risk-allele

frequencies and their effect sizes because there are very

few causal variants identified by GWAS and because

systematic study of rare variants (through exome or

whole-genome sequencing) is in an early stage. To under-

stand the allelic spectrum of risk variants and thereby

inform optimal design of experiments aiming to detect

causal variants, one must differentiate between two expla-

nations for observed associations between genotyped

common SNPs and disease: the association can be caused

by one or more causal variants that have large effect sizes

and are in low LD with the genotyped SNPs, or it can be

caused by causal variants that have small effects and are

in high LD with the genotyped SNPs. Low LD occurs

when the allele frequencies of the unknown causal vari-

ants and those at the genotyped SNPs are very different

from each other, for example when the allele frequency

of causal variants is much lower than that of the SNPs.

For a single robustly associated SNP in a homogeneous

population, we cannot distinguish between the hypoth-

eses that the association signal is caused by a rare variant

of large effect or a common variant with small effect.

However, variants at multiple loci and GWASs in other

ethnic populations help to narrow the boundaries of the

genetic architecture of diseases. At this point in time, we

can conclude that

(1) Many loci contribute to complex-trait variation

(e.g., Figure 2).

(2) At a number of identified risk loci, there aremultiple

alleles associated with disease at a wide range of

frequencies.

(3) There is evidence for pleiotropy, i.e., that the same

variants are associated with multiple traits.66,74,75

(4) A number of variants associated with disease or

complex traits in one ethnic population are also

associated the same disease or traits in other popula-

tions (see above for T2D examples).

(5) The hypothesis76 that causal variant(s) that lead to

the association between common SNPs and disease

are mostly rare (say, have an allele frequency of 1%
merican Journal of Human Genetics 90, 7–24, January 13, 2012 17



Box 3. Synthetic Associations

Dickson and colleagues suggested that the observed

association between a common SNP and a complex

trait might result when one or more rare variants at

the locus is in LD with that SNP.76,93 Because

common SNP alleles and rare causal variants cannot

be highly correlated because of the properties of

LD,84 the hypothesis of ‘‘synthetic’’ associations

implies that the effect sizes of the causal variants

are much larger than the effect size observed at the

common SNP and suggests that (re)sequencing

studies might detect such variants. The hypothesis

is not about whether GWASs work as an experi-

mental design but what the likely interpretation of

GWAS hits is in terms of the allele spectrum of causal

risk alleles. Are empirical data consistent with this

hypothesis? Several lines of evidence suggest that

associations observed with common SNP associa-

tions are rarely due to synthetic associations with

rare variants. First, because the LD correlation

between common and rare variants is so low (typi-

cally 0.01–0.02), synthetic associations imply that

variation explained by the causal variants at the

locus is 50–100 times larger than the variance ex-

plained at the genotyped SNP.78 So, if the SNP

explains 0.1% of phenotypic variation in the popu-

lation, the causal variant would explain 5%–10%.

But as shown in this review, for many complex traits

and diseases tens to hundred of common variants

are identified, and so their combined effects would

explain too much variation if synthetic associations

were the norm. Second, empirical data from

(re)sequencing studies and trans-ethnic mapping

suggest that both common and rare variants

contribute to disease risk.77 At most loci detected

by GWASs, there is no evidence (despite extensive

genotyping and/or re-sequencing) that the

common-variant signal is driven by low-frequency

or rarer variants. Where rare risk alleles are uncov-

ered at the same loci, they seem much more likely

to be independent signals.94–96

Together these observations point to a highly

polygenic model of disease susceptibility with causal

variants across the entire range of the allele-

frequency spectrum. By ‘‘polygenic,’’ we mean that

segregating variants at many genomic loci (tens,

hundreds, or even thousands) contribute to genetic

variation for susceptibility in the population. The

observations imply that, for most common complex

diseases, nearly everyone in the population carries

some risk alleles and that affected individuals are

likely to have a different portfolio of risk alleles.79

They also imply that any single risk allele is neither

necessary nor sufficient to cause disease. For the

Box 3. Continued

etiology of disease, these observations provide

empirical evidence to support a threshold or burden

model involving multiple variants and environ-

mental factors, and they appear to be inconsistent

with a single cause (e.g., a single mutation). A rare-

variant only model of disease, characterized by locus

heterogeneity and raremutations of large effects and

proposed by, for example, McClellan and King,1 is

not consistent with empirical observations.77,79,97
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or lower) isnot consistentwith theoretical and empir-

ical results.77,78 In particular, there is no widespread

evidence for the existence of ‘‘synthetic associations’’

(see Box 3). Numerically, we expect that most causal

variants that segregate in the population are rare,

consistent with evolutionary theory, but the propor-

tion of genetic variation that these variants cumula-

tively explain depends on their correlation with

fitness.79

(6) A surprisingly large proportion of additive genetic

variation is tagged when all SNPs are considered

simultaneously.12–14
The Cost of GWASs

If we assume that the GWAS results from Figure 1 represent

a total of 500,000 SNP chips and that on average a chip

costs $500, then this is a total investment of $250 million.

If there are a total of ~2,000 loci detected across all traits,

then this implies an investment of $125,000 per discov-

ered locus. Is that a good investment? We think so: The

total amount of money spent on candidate-gene studies

and linkage analyses in the 1990s and 2000s probably

exceeds $250M, and they in total have had little to show

for it. Also, it is worthwhile to put these amounts in

context. $250M is of the order of the cost of a one-two

stealth fighter jets and much less than the cost of a single

navy submarine. It is a fraction of the ~$9 billion cost of

the Large Hadron Collider. It would also pay for about

100 R01 grants. Would those 100 non-funded R01 grants

have made breakthrough discoveries in biology and medi-

cine? We simply can’t answer this question, but we can

conclude that a tremendous number of genuinely new

discoveries have been made in a period of only five years.

Concluding Comments

In this review we have attempted to summarize the

tremendous quality and quantity of discoveries that have

been made by GWASs in the last five years. Because of

space limitations, we have been able to discuss only

a subset of diseases and have not mentioned those made

in common cancers, pediatric diseases, and ophthalmolog-

ical diseases, to name but a few. We now return to the



perceived failure of GWASs as summarized in the introduc-

tory section:

(1) Is the GWAS approach founded on a flawed assumption

that genetics plays an important role in the risk for

common diseases? Pedigree studies, including those

involving twins, suggest that a substantial propor-

tion of variation in susceptibility for common

disease is due to genetic factors. The proportion of

total variation explained by genome-wide-signifi-

cant variants has reached 10%–20% for a number

of diseases, and clearly there are additional variants

with such small effect sizes that they have not been

detected with stringent significance. As reviewed

here, many of the detected loci are in biologically

meaningful pathways for the diseases investigated.

Whole-genome analyses involving GWAS data

have estimated that 20%–50% of phenotypic varia-

tion is captured when all SNPs are considered simul-

taneously for a number of complex diseases and

traits. These estimates are based on population-

wide studies and provide a lower limit of the total

proportion of phenotypic variation due to genetic

factors. Inference from GWASs is independent of

inference drawn from close relatives (pedigree/

family studies), and therefore these studies have

provided independent evidence for the role of

genetics in common diseases.

(2) Have GWASs been disappointing in not explaining more

genetic variation in the population? This criticism

implies that the aim of GWASs is to explain all

genetic variation. This is a misrepresentation of

the objective of GWASs. As was the aim of linkage

studies in pedigrees for complex diseases prior to

the GWAS era, the aim of GWAS is to detect loci

that are associated with complex traits. The detec-

tion of such loci has led to the discovery of new bio-

logical knowledge about disease—knowledge that

was absent only five years ago. But even ignoring

the aim of GWASs, for a number of complex traits

the proportion of genetic variation uncovered by

GWASs is actually substantial. For example, for

T2D, MS, and CD, approximately 10%, 20%, and

20%, respectively, of genetic variation in the popu-

lation has been accounted for. Apart from diseases

with a known major locus (which is usually the

major histocompatibility locus), the baseline of

variation explained five years ago was essentially

zero.

(3) Have GWASs delivered meaningful biologically relevant

knowledge or results of clinical or any other utility? As

we have highlighted in this review, the answer to

this question is a definite ‘‘yes.’’ For example, the

discovery of the importance of the autophagy

pathway in Crohn disease, the IL-23R pathway in

rheumatoid arthritis, and factor H in age-related

macular degeneration (MIM 610149)9 have given
The A
important biological insight with direct clinical

relevance. Hunter and Kraft put it this way back in

2007: ‘‘There have been few, if any, similar bursts

of discovery in the history of medical research.’’80

(4) Are GWAS results spurious? The combination of large

sample sizes and stringent significance testing has

led to a large number of robust and replicable asso-

ciations between complex traits and genetic vari-

ants, many of which are in meaningful biological

pathways. A number of variants or different variants

at the same loci have been shown to be associated

with the same trait in different ethnic populations,

and some loci are even replicated across species.81

The combination of multiple variants with small

effect sizes has been shown to predict disease status

or phenotype in independent samples from the

same population. Clearly, these results are not

consistent with flawed inferences from GWASs.

In conclusion, in a period of less than five years, the

GWAS experimental design in human populations has

led to new discoveries about genes and pathways involved

in common diseases and other complex traits, has

provided a wealth of new biological insights, has led to

discoveries with direct clinical utility, and has facilitated

basic research in human genetics and genomics. For the

future, technological advances enabling the sequencing

of entire genomes in large samples at affordable prices is

likely to generate additional genes, pathways, and biolog-

ical insights, as well as to identify causal mutations.
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