Medical Bioinformatics (CSCI295-L)

Genome-Wide Association Studies, Protein Folding and

Immunogenomics

Sorin Istrail

November 2010

SYLLABUS

Contents

1	Short Introductions	2
2	The Hardy-Weinberg Model	3
3	Linkage Disequilibrium and GWAS	3
4	Tagging SNPs and GWAS	4
5	Haplotype Phasing and GWAS	5
6	GWAS studies in detail: Multiple Sclerosis and Autism	6
7	Wright-Fisher, Infinite Allels and Urn Models	7
8	Computational Complexity of the Haplotype Phasing Problem	7
9	Tests of Association	8
10	Complex Disease and Heritability	8
11	The Coalescent and GWAS	9
12	Statistical Hypothesis Testing in GWAS	9
13	GWAS and the Missing Heritability Puzzle	10
14	Protein Folding and Drug Design	10
15	Immunogenomics	10

1 Short Introductions

Class 1

Topics covered:

- 1. The Course Sections
 - (a) Genome-Wide Association Studies (GWAS)
 - (b) Immunogenomics
 - (c) Protein Folding
- 2. SNPs and the Human Genome: SNPs, haplotypes, mutation, recombination, genetic determinants of disease
- 3. SNP Genetic Variation: A look at the data
- 4. Fundamental Challenges: (1) Very limited success so far regarding the knowledge of the human genome sequence to the clinical impact ; and (2) Causality of disease mechanism may be unknowable

Class 2

- Topics covered:
 - 1. Introduction to Immunogenomics: proteomes, peptides, epitopes, T-cells, MHC, T-cell vaccines
 - 2. Introduction to Association Studies: haplotypes blocks, tagging SNPs: block definitions (e.g., 4-gametes block test), the Hudson-Kaplan 4gametes block decomposition, minimum informative subset of tagging SNPs via Informativeness, graph theory modeling using the minimum set cover problem
- Class readings:
 - Guilt by Association
 - Viruses in the Sea

- Topics covered:
 - Introduction to Protein Folding: the comparative genomics landscape (1-dimensional = biomolecular sequence analysis, DNA, protein, regulatory regions, SNPs, haplotypes, genome assembly; 3-dimensional = protein structure; logic/chemistry "dimension" = expression, networks), self-avidong walks, contacts, statistical mechanics, protein structure alignment, fold recognition, the Computational Protein Folding Competition (CASP= Critical Assessment of Structure Prediction), contact maps, contact map overlap structure alignment, fold recognition

- 2. Introduction to Genome-Wide Association Studies (GWAS): 17 caveats
- Class readings:
 - Drinking from the Fire Hose Statistical Issues in GWAS

2 The Hardy-Weinberg Model

Class 4

- Topics covered:
 - 1. Population Genetics Models: population, diploid organism, random mating, non-overlapping generations, genotype-gamete-genotype, genotype frequency, gene frequency
 - 2. The Hardy-Weinberg model for one locus: Hardy-Weinberg Equilibrium (HWE), Fundamental Theorem 1 (HWE attained in one generation), Fundamental Theorem 2 (constancy of allele frequencies in every generation), HW frequencies satisfy the $Y^2 = XZ$ equation, the Hardy=Weinberg Theorem (one variable x only: x = X + Y)

Class 5

- Topics covered:
 - 1. The Hardy-Weinberg model for two loci: Linkage equilibrium (LE), recombination rate r (do not confuse with r^2 the measure of LD different r notations), linkage disequilibrium (LD); double heterozygotes, recombinant and non-recombinant gametes, Lewontin's linkage disequilibrium parameter D, single locus HWE = no evolution (constancy of frequencies), two loci HW = potential for evolution based on parameters D and r.

3 Linkage Disequilibrium and GWAS

- Topics covered:
 - 1. The first measure of linkage disequilibrium: D. The D equation, D' and the independence of allele frequencies
 - 2. Examples: Evaluation of HWE at each locus, and of LD between them.
 - 3. The second measure of linkage disequilibrium: r^2 .
 - 4. Complete LD, Perfect LD, Useful LD.

• Class readings:

- A haplotype map of the human genome

Class 7

- Topics covered:
 - 1. Properties of the LD measure r^2 : its correlation coefficient definition, r^2 as a statistical test, description of the loss in efficiency when one marker is replaced by another marker, its relation to χ^2 , drawbacks (e.g., measure is pairwise and not clear how to extend to many sites)
 - 2. Genome-wide association studies: an outline of the methodology (genome is huge so "interesting" pattern occur by chance; HW, Tagging SNPs, Haplotype Phasing are computational methods in active research not yet consensus on how to use and apply them to data; the problem of missing data; case and control samples have different parameters and hard to match and contrast statistically and algorithmically for the most discrepancy (e.g., different rates of missing data); LD is a non-quantitative phenomenon, there is no natural scale for it); tagging SNPs are effective only for capturing common variants, and tagging on one population only poorly performs in another population; population substructure can generate spurious phenotype associations; to phase of not to phase - associations of unphased genotypes is limited but phasing with an adhoc choice of method adds uncertainty as well.
 - 3. An introduction to HapMap
- Class readings:
 - Linkage disequilibrium and the mapping of complex human traits

4 Tagging SNPs and GWAS

- Topics covered:
 - 1. The architecture of linkage disequilibrium based haplotype blocks across chromosome 6, 21, 22 $\,$
- Class readings:
 - Blocks of limited haplotype diversity revealed by high-resolution scanning of the human chromosome 21

Class 9

- Topics covered:
 - 1. Tagging SNPs and the Minimum Informative Subset of Tagging SNPs
 - 2. A set of desiderata (axioms) for tagging SNPs selection:
 - (a) To be extendable uniquely to multi markers
 - (b) To be consistent with the LD measures
 - (c) To be haplotype block free (no adhoc definition of block required)
 - (d) To be hypothesis free (e.g., not specific to a certain disease or trait)
 - (e) To be algorithmically sound (practical for genome-wide data0
 - (f) To be statistically sound (no overfitting)
 - 3. The Informativeness measure satisfies all the above desiderata
 - 4. The modeling of Informativeness via the Minimum Set Cover Problem
 - 5. A dynamic programming algorithm for the minimally informative K SNPs problem.
- Class readings:
 - Efficiency and power in genetic association studies
 - Selecting a maximally informative set of SNPs for association analyses using LD
 - The structure of the Haplotype Blocks in the Human Genome

5 Haplotype Phasing and GWAS

- Topics covered:
 - 1. The Haplotype Phasing Problem: The Clark Method and the Maximum Likelihood Method: genotypes, haplotypes, genotype explanations
 - 2. The Clark Method: greedy algorithm, Clark rule, three difficulties.
- Class readings:
 - Optimal haplotype block free selection of tagging SNPs for GWAS (and two supplemental documents)
 - Multiple Sclerosis GWAS: Risk alleles for multiple sclerosis identified by a genomewide study

Class 11

- Topics covered:
 - 1. The Expectation-Maximization Algorithm of Excoffier-Slatkin for computing haplotype frequencies and haplotype phase: intro to maximum likelihood, the EM algorithm background, computing haplotype frequencies and genotype explanations frequencies iteratively; the EM algorithm for the haplotype frequencies, and its application to haplotype phasing
- Class readings:
 - Inference of haplotypes from PCR-amplified samples of diploid populations
 - Maximum-Likelihood estimation of molecular haplotype frequencies in a diploid population

Class 12

- Topics covered:
 - 1. Guest Lecturer: Jonathan Yewdell (NIH): Topics in Immunogenomics
- Class readings:
 - Identifying cytotoxic T-cell epitopes from genomic and proteomic information

6 GWAS studies in detail: Multiple Sclerosis and Autism

- Topics covered:
 - 1. The GWAS for Multiple Sclerosis
- Class readings:
 - Istrail, Yewdell et. al "The immunopeptidome of human and their pathogens"

7 Wright-Fisher, Infinite Allels and Urn Models

Class 14

- Topics covered:
 - 1. The Wright-Fisher Model and the Infinite Allele Model
 - 2. Urn Models for population genetics: Polya Urn models
 - 3. The Wright-Fisher Model: Mutation, Random Genetic Drift, Selection
 - 4. Wright-Fisher and Markov Chains
 - 5. The Infinite Allele Model
 - 6. Stationarity of partitions
 - 7. Ewens' Sampling Lemma
- Class readings:
 - Genetic mapping of human disease (and supplementary material)

Class 15

- Topics covered:
 - 1. The Urn model for the Infinite Allele model is the Hoppe's Urn model
 - 2. Computing Q probabilities for the Hoppe's urn model
 - 3. The Clark Algorithm revisited: the analysis of the three difficulties based on the Infinite Allele model theory

8 Computational Complexity of the Haplotype Phasing Problem

- Topics covered:
 - 1. Computational Complexity of the Haplotype Phasing Problem
 - The Parsimony Haplotype Phasing is NP-complete The Hubbell Theorem 1.
 - The Global Maximum Likelihood Haplotype Phasing is NP-complete
 The Hubell Theorem 2.
 - $-\,$ The Clark Maximal Resolution Haplotype Phasing is NP-complete.
- Class readings:
 - E. Hubbell's manuscript, 2000

9 Tests of Association

Class 17

- Topics covered:
 - 1. Tests of Association
 - 2×2 contingency tables, the hypergeometric distribution and the Fisher's Exact Test
 - Contingency tables of arbitrary size: The Chi-Square Test (the historical test) and the Kullback-Leibler relative entropy test (the right test)
 - 2. The Coalescent introduction
 - Coalescent with mutation
 - Gene trees vs allele/haplotype trees vs haplotype networks

10 Complex Disease and Heritability

Class 18

- Topics covered:
 - 1. Complex Disease and Heritability
 - The "triangle" of the etiology of disease: single gene, polygenic, environment
 - Dichotomous vs continuous traits
 - Polygenic theory: Heritability and Thresholds
 - Polygenic susceptibility to disease
 - Regression, covariance, regression slope, correlation coefficient, Fisher's paper on the correlation between relatives
 - Heritability as a correlation coefficient

- Topics covered:
 - 1. Guest Lecturer: Sam Broder (Celera, former Director of the National Cancer Institute): "Towards Evidence-Based Medicine: The Human Genome: 3 Billion Letters of Code, But Whos Counting?" followed by a Sweat Box Session on The Missing Heritability Puzzle – "The Genome as a Teacher: In This Class, Does the Teacher Grade on a Curve?"

Class 20

- Topics covered:
 - 1. Broad-sense and narrow sense heritability and the "missing heritability" puzzle; common and rare variants
 - 2. The Coalescent with recombination; ancestral recombination graphs (ARG)
- Class readings:
 - Jon Mclellan and Mary-Claire King "Genetic heterogeneity in human disease," 2010
 - Eichler et al "Missing heritability and strategies for finding the underlying causes of complex disease" 2010

11 The Coalescent and GWAS

Class 21

- Topics covered:
 - 1. The Miniciello-Durbin ARG reconstruction algorithm
 - 2. Population Substructure
- Class readings:
 - Miniciello-Durbin "Mapping trait loci by use of inferred ancestral recombination graphs"

12 Statistical Hypothesis Testing in GWAS

- Topics covered:
 - 1. Classical hypothesis testing the five steps and GWAS
 - 2. Statistical power
 - 3. Multiple testing
 - 4. The Transmission/Disequilibrium test statistic (TDT)
 - 5. The Cochran-Mantel-Haenzel test statistic

13 GWAS and the Missing Heritability Puzzle

Class 23

- Topics covered:
 - 1. Disease Models: Common Disease Common Variant
 - 2. Rare alleles: Common Disease many rare variants
 - 3. Genetic heterogeneity in human disease
 - 4. Missing heritability and strategies for finding underlying causes of complex disease

14 Protein Folding and Drug Design

Class 24

- Topics covered:
 - 1. Protein Folding in Lattice Models: Ken Dill's HP-Model
- Class readings:
 - F. Lam and S.Istrail "Combinatorial algorithms for protein folding in lattice models: a survey of mathematical results"

Class 25

- Topics covered:
 - 1. Protein Folding in Lattice Models: Folding algorithms

Class 26

- Topics covered:
 - 1. The Medicinal Chemist Compound Tinkering Problem: chemical graph theory

Class 27

- Topics covered:
 - 1. Concepts of drug-likeness, and the Lipinski rule of five

15 Immunogenomics

- Topics covered:
 - 1. Drug resistance, codon-bias, RNA and HIV