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CS242: Lecture 8A Outline
ØBeta priors for Bernoulli distributions
ØDirichlet priors for categorical distributions
ØConjugate priors for exponential family distributions
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Bayesian Parameter Estimation
Ø Suppose I have L independent observations sampled from 

some unknown probability distribution:
Ø We have a likelihood model with unknown parameters:

Ø We have a prior distribution on parameters (possible models):

x = {x(1)
, . . . , x

(L)}

p(x | ✓) =
LY

`=1

p(x(`) | ✓)

p(✓)
Ø Posterior distribution on parameters, given data:

p(✓ | x) = 1

p(x)
p(✓)

LY

`=1

p(x(`) | ✓)



Bayesian Parameter Estimation
Ø Maximum a Posteriori (MAP) parameter estimate:

Choose the parameters with largest posterior probability.

Ø Posterior distribution on parameters, given data:

p(✓ | x) = 1

p(x)
p(✓)

LY

`=1

p(x(`) | ✓)

ˆ

✓ = argmax

✓
p(✓ | x) = argmax

✓
p(✓)

LY

`=1

p(x

(`) | ✓)

Ø Conditional Expectation parameter estimate:
Set the parameters to the mean of the posterior distribution.

✓̂ = E[✓ | x] =
Z

✓p(✓ | x) d✓



Bayesian Parameter Estimation
Ø Maximum a Posteriori (MAP) parameter estimate:

Choose the parameters with largest posterior probability.

ˆ

✓ = argmax

✓
p(✓ | x) = argmax

✓
p(✓)

LY

`=1

p(x

(`) | ✓)

Ø Conditional Expectation parameter estimate:
Set the parameters to the mean of the posterior distribution.

✓̂ = E[✓ | x] =
Z

✓p(✓ | x) d✓

Ø Both estimators pick parameters with high posterior probability
Ø Choice of estimator can be formalized via decision theory

(conditional expectation minimizes expected squared error)



Bayesian Learning of Binary Distributions
Bernoulli Distribution:  Single toss of a (possibly biased) coin  

0  ✓  1Ber(x | ✓) = ✓

x(1� ✓)1�x

x 2 {0, 1}

Uniform Prior Distribution: p(✓) = 1 for 0  ✓  1.
Posterior Distribution:

p(✓ | x) = p(x | ✓)p(✓)
p(x)

=

1

p(x)

✓

N1
(1� ✓)

N0
for 0  ✓  1.

p(x) =
R 1
0 p(x | ✓)p(✓) d✓. What is this distribution?

N1 =
PL

`=1 x
(`)

N0 =
PL

`=1(1� x

(`)) = L�N1

p(x(1)
, . . . , x

(L) | ✓) = ✓

N1(1� ✓)N0



Beta Distributions

Beta probability density function:

�(k) = (k � 1)!

�(x+ 1) = x�(x)

✓ 2 [0, 1]

Beta(✓ | ↵,�) = 1

B(↵,�)
✓↵�1(1� ✓)��1

↵,� > 0B(↵,�) , �(↵)�(�)

�(↵+ �)



Beta Distributions

Beta probability density function: ✓ 2 [0, 1]

Beta(✓ | ↵,�) = 1

B(↵,�)
✓↵�1(1� ✓)��1

E[✓] = ↵

↵+ �
V[✓] = ↵�

(↵+ �)2(↵+ � + 1)



Beta Distributions

There is a unique mode assuming ↵ > 1,� > 1

Mode[✓] = arg max

✓2[0,1]
Beta(✓ | ↵,�) = ↵� 1

(↵� 1) + (� � 1)

Otherwise the mode may be degenerate                         or be undefined.(✓ = 0 or 1)



Bayesian Learning of Binary Distributions

Beta Prior Distribution: p(✓) = Beta(✓ | ↵,�) / ✓↵�1(1� ✓)��1

Beta Posterior Distribution:

p(✓ | x) / ✓

N1+↵�1(1� ✓)N0+��1 / Beta(✓ | N1 + ↵, N0 + �)

Prior is conjugate to likelihood because posterior distribution in same family.

Bernoulli Distribution:  Single toss of a (possibly biased) coin  

0  ✓  1Ber(x | ✓) = ✓

x(1� ✓)1�x

x 2 {0, 1}

N1 =
PL

`=1 x
(`)

N0 =
PL

`=1(1� x

(`)) = L�N1

p(x(1)
, . . . , x

(L) | ✓) = ✓

N1(1� ✓)N0



Bayesian Learning of Binary Distributions
Recommended Estimator:  Posterior mean

Beta Prior Distribution: p(✓) = Beta(✓ | ↵,�) / ✓↵�1(1� ✓)��1

Beta Posterior Distribution:

p(✓ | x) / ✓

N1+↵�1(1� ✓)N0+��1 / Beta(✓ | N1 + ↵, N0 + �)

Prior is conjugate to likelihood because posterior distribution in same family.

With uniform prior:
“add one” to 
observed counts

✓̂ = E[✓ | x] = N1 + ↵

N1 + ↵+N0 + �

✓̂ = E[✓ | x] = N1 + 1

N1 +N0 + 2



A Sequence of Beta Posteriors

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

 

 

truth

n=5

n=50

n=100

p(✓) = 1 for 0  ✓  1.

p(✓ | x) = 1

p(x)
✓

N1(1� ✓)N0



Estimators for Beta Posteriors
Prior:

p(✓ | x) = Beta(✓ | N1 + ↵, N0 + �)
N1 =

PN
i=1 xi

N0 = N �N1

p(✓) = Beta(✓ | ↵,�) p(✓) = Beta(✓ | 1, 1) = 1

✓̂ = E[✓ | x] = N1 + ↵

N + ↵+ �

✓̂ = E[✓ | x] = N1 + 1

N + 2
MMSE:

MAP:
ˆ

✓ = argmax

✓
p(✓ | x) = N1 + ↵� 1

N + ↵+ � � 2

assuming N1 + ↵ > 1, N0 + � > 1

ˆ

✓ = argmax

✓
p(✓ | x) = N1

N

equivalent to maximum likelihood (ML)
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Dirichlet Probability Distributions
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Dir(✓ | ↵) = 1

B(↵)

KY

k=1

✓↵k�1
k ↵0 =

PK
k=1 ↵k

⇥ = {✓ : 0  ✓k  1,
PK

k=1 ✓K = 1}
Simplex:  Set of possible categorical distributions

Dirichlet:  Probability distribution on simplex
↵k > 0

B(↵) ,
QK

k=1 �(↵k)

�(↵0)

Mean:

Variance:  Inversely proportional to ↵0

E[✓k] =
↵k

↵0

Normalizer:



Samples from Dirichlet Prior Distributions

Dir(✓ | 0.1, 0.1, 0.1, 0.1, 0.1) Dir(✓ | 1.0, 1.0, 1.0, 1.0, 1.0)
Uniform distribution on

probability simplex
Mean weights classes equally, but 

biased towards sparse distributions



Bayes Learning of Categorical Distributions
Categorical Distribution:  Single roll of a (possibly biased) die

Dirichlet Prior Distribution:
p(✓) = Dir(✓ | ↵) /

KY

k=1

✓↵k�1
k

Dirichlet Posterior Distribution:

Prior is conjugate to likelihood because posterior distribution in same family.

p(✓ | x) /
KY

k=1

✓

Nk+↵k�1
k / Dir(✓ | N1 + ↵1, . . . , NK + ↵K)

xk 2 {0, 1},
PK

k=1 xk = 1.Cat(x | ✓) =
Q

K

k=1 ✓
xk
k

p(x(1)
, . . . , x

(L) | ✓) =
QK

k=1 ✓
Nk
k Nk =

PL
`=1 x

(`)
k



Bayes Learning of Categorical Distributions
Recommended Estimator:  Posterior mean

Dirichlet Prior Distribution:
p(✓) = Dir(✓ | ↵) /

KY

k=1

✓↵k�1
k

Dirichlet Posterior Distribution:

Prior is conjugate to likelihood because posterior distribution in same family.

p(✓ | x) /
KY

k=1

✓

Nk+↵k�1
k / Dir(✓ | N1 + ↵1, . . . , NK + ↵K)

With uniform prior:
✓̂k = E[✓k | x] = Nk + ↵k

L+ ↵0

✓̂k = E[✓k | x] = Nk + 1

L+K



Possible Dirichlet Priors & Posteriors

p(✓) = Dir(✓ | ↵) /
KY

k=1

✓↵k�1
k

Prior:

Ø K parameters (positive numbers) 
Ø K-1 degrees of freedom define mean:

Ø Variance proportional to
Ø Favors sparsity as

E[✓k] =
↵k

↵0

↵0 =
PK

k=1 ↵k

1/↵0

p(✓ | x) / Dir(✓ | N1 + ↵1, . . . , NK + ↵K)

Posterior:

Ø Posterior mean is weighted average of 
prior mean and observed counts

Ø As N grows, posterior variance shrinks

↵0 ! 0



Estimators for Dirichlet Posteriors
Prior:

p(✓ | x) = Dir(✓ | N1 + ↵1, . . . , NK + ↵K)
Nk =

PN
n=1 xnk

p(✓) = Dir(✓ | 1, . . . , 1) = 1p(✓) = Dir(✓ | ↵1, . . . ,↵K)
↵0 =

PK
k=1 ↵k

MMSE:
✓̂k = E[✓k | x] = Nk + ↵k

N + ↵0
✓̂k = E[✓k | x] = Nk + 1

N +K

MAP:

equivalent to maximum likelihood (ML)

✓̂k =
Nk + ↵k � 1

N + ↵0 �K

assuming Nk + ↵k > 1 for all k

✓̂ =
Nk

N
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3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

r�(✓)

⇥



Learning Directed Graphical Models
1X

2X 3X

X 4

1X

2X

1X

3X

1X

X 4

2X 3X

(a) (b)

Intuition:  Must learn a good predictive model 
of each node, given its parent nodes

p(x) =
Y

i2V
p(xi | x�(i), ✓i)

• Directed factorization allows likelihood to locally decompose:
p(x | ✓) = p(x1 | ✓1)p(x2 | x1, ✓2)p(x3 | x1, ✓3)p(x4 | x2, x3, ✓4)

log p(x | ✓) = log p(x1 | ✓1) + log p(x2 | x1, ✓2) + log p(x3 | x1, ✓3) + log p(x4 | x2, x3, ✓4)

• We often assume a similarly factorized (meta-independent) prior:
p(✓) = p(✓1)p(✓2)p(✓3)p(✓4)

log p(✓) = log p(✓1) + log p(✓2) + log p(✓3) + log p(✓4)

• We thus have independent Bayesian learning problems at each node



Bayesian Learning with Complete Data
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• Directed graph encodes statistical structure of single training examples:

• Given completely observed training data, nodes have independent posteriors:
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p(x | ✓) =
LY

`=1

NY

i=1

p(x(`)
i | x(`)

�(i), ✓i)

p(✓ | x) / p(✓)p(x | ✓) /
NY

i=1

"
p(✓i)

LY

`=1

p(x(`)
i | x(`)

�(i), ✓i)

#



Bayesian Learning with Complete Data

• Given completely observed training data, nodes have independent posteriors:

p(✓ | x) / p(✓)p(x | ✓) /
NY

i=1

"
p(✓i)

LY

`=1

p(x(`)
i | x(`)

�(i), ✓i)

#

• For discrete variables with no parents, parameters define some 
Bernoulli/categorical distribution with a beta/Dirichlet conjugate prior

• More generally, there are multiple categorical distributions per node, 
one for every combination of parent variables
Ø Learning objective decomposes into multiple terms, one for 

subset of training data with each parent configuration
Ø Apply independent Bayesian learning to each

• How can we generalize to continuous variables?  Exponential families.



Exponential Families of Distributions

fixed vector of sufficient statistics (features), 
specifying the family of distributions
unknown vector of natural parameters,
determine particular distribution in this family

�(x) 2 Rd

✓ 2 ⇥ ✓ Rd

⇥ = {✓ 2 Rd | Z(✓) < 1} ensures we construct a valid distribution

p(x | ✓) = 1

Z(✓)

⌫(x) exp{✓T�(x)}

= ⌫(x) exp{✓T�(x)� �(✓)}
�(✓) = logZ(✓)

Z(✓) =

Z

X
⌫(x) exp{✓T�(x)} dx

normalization constant or partition function
(for discrete variables, integral becomes sum)
reference measure independent of parameters
(for many models, we simply have                 )

Z(✓) > 0

⌫(x) > 0
⌫(x) = 1



ML Estimation for Exponential Families

• Given L observations, the log-likelihood function equals:

log p(x

(`) | ✓) = log ⌫(x

(`)
) + ✓

T
�(x

(`)
)� �(✓)

L(✓) = C +
hPL

`=1 ✓
T
�(x(`))

i
� L�(✓)

C =

PL
`=1 log ⌫(x

(`)
)

• Note that the negative log-likelihood function is convex!
• Gradients of the log-likelihood function have a simple form:

rL(✓) =
hPL

`=1 �(x
(`))

i
� LE✓[�(x)]

• At unique global optimum, gradient is 0:
E✓[�(x)] =

1
L

PL
`=1 �(x

(`))



Exponential Families: Inference & Learning

M , {µ 2 Rd | 9 p such that Ep[�(x)] = µ}

• Canonical parameters & moments:
3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple
examples. Table 3.2 provides the conjugate dual pair (A,A∗) for
several well-known exponential families of scalar random variables.
For each family, the table also lists Ω := domA, as well as the set M,
which contains the effective domain of A∗, corresponding to the set of
values for which A∗ is finite.

In the rest of this section, we illustrate the basic ideas by work-
ing through two simple scalar examples in detail. To be clear, neither
of these examples is interesting from a computational perspective —
indeed, for most scalar exponential families, it is trivial to compute the
mapping between canonical and mean parameters by direct methods.
Nonetheless, they are useful in building intuition for the consequences
of Theorem 3.4. The reader interested only in the main thread may
skip ahead to Section 3.7, where we resume our discussion of the role
of Theorem 3.4 in the derivation of approximate inference algorithms
for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli). Consider a
Bernoulli variable X ∈ {0,1}: its distribution can be written as an expo-
nential family with φ(x) = x, A(θ) = log(1 + exp(θ)), and Ω = R. In
order to verify the claim in Theorem 3.4(a), let us compute the conju-
gate dual function A∗ by direct methods. By the definition of conjugate

r�(✓)

⇥
⇥ , {✓ 2 Rd | �(✓) < +1}

• Inference: Find moments of model with known 
parameters (joint distribution).  Computable from marginals!

µ = r✓�(✓) = E✓[�(x)] =
P

X �(x)p(x | ✓)
E✓̂[�(x)] = µ̂

Maximum Likelihood (ML):

• Learning: Find model parameters matching data moments
This is the inverse of the mapping defining inference.

µ̂ =
1

L

LX

`=1

�(x(`))

log p(x

(`) | ✓) = log ⌫(x

(`)
) + ✓

T
�(x

(`)
)� �(✓)



Parametric & Predictive Sufficiency36 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

of the canonical parameters can be written as follows:

p(θ | x(1), . . . , x(L), λ) =
p(x(1), . . . , x(L) | θ, λ) p(θ | λ)∫

Θ p(x(1), . . . , x(L) | θ, λ) p(θ | λ) dθ
(2.17)

∝ p(θ | λ)
L∏

ℓ=1

p(x(ℓ) | θ) (2.18)

The proportionality symbol of eq. (2.18) represents the constant needed to ensure in-
tegration to unity (in this case, the data likelihood of eq. (2.17)). Recall that, for
minimal exponential families, the canonical parameters are uniquely associated with
expectations of that family’s sufficient statistics (Prop. 2.1.3). The posterior distribu-
tion of eq. (2.18) thus captures our knowledge about the statistics likely to be exhibited
by future observations.

In many situations, statistical models are used primarily to predict future observa-
tions. Given L independent observations as before, the predictive likelihood of a new
observation x̄ equals

p(x̄ | x(1), . . . , x(L), λ) =

∫

Θ
p(x̄ | θ) p(θ | x(1), . . . , x(L), λ) dθ (2.19)

where the posterior distribution over parameters is as in eq. (2.18). By averaging over
our posterior uncertainty in the parameters θ, this approach leads to predictions which
are typically more robust than those based on a single parameter estimate.

In principle, a fully Bayesian analysis should also place a prior distribution p(λ)
on the hyperparameters. In practice, however, computational considerations frequently
motivate an empirical Bayesian approach [21, 75, 107] in which λ is estimated by max-
imizing the training data’s marginal likelihood:

λ̂ = arg max
λ

p(x(1), . . . , x(L) | λ) (2.20)

= arg max
λ

∫

Θ
p(θ | λ)

L∏

ℓ=1

p(x(ℓ) | θ) dθ (2.21)

In situations where this optimization is intractable, cross–validation approaches which
optimize the predictive likelihood of a held–out data set are often useful [21].

More generally, the predictive likelihood computation of eq. (2.19) is itself in-
tractable for many practical models. In these cases, the parameters’ posterior dis-
tribution (eq. (2.18)) is often approximated by a single maximum a posteriori (MAP)
estimate:

θ̂ = arg max
θ

p(θ | x(1), . . . , x(L), λ) (2.22)

= arg max
θ

p(θ | λ)
L∏

ℓ=1

p(x(ℓ) | θ) (2.23)
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In principle, a fully Bayesian analysis should also place a prior distribution p(λ)
on the hyperparameters. In practice, however, computational considerations frequently
motivate an empirical Bayesian approach [21, 75, 107] in which λ is estimated by max-
imizing the training data’s marginal likelihood:

λ̂ = arg max
λ

p(x(1), . . . , x(L) | λ) (2.20)

= arg max
λ

∫

Θ
p(θ | λ)

L∏

ℓ=1

p(x(ℓ) | θ) dθ (2.21)

In situations where this optimization is intractable, cross–validation approaches which
optimize the predictive likelihood of a held–out data set are often useful [21].

More generally, the predictive likelihood computation of eq. (2.19) is itself in-
tractable for many practical models. In these cases, the parameters’ posterior dis-
tribution (eq. (2.18)) is often approximated by a single maximum a posteriori (MAP)
estimate:

θ̂ = arg max
θ

p(θ | x(1), . . . , x(L), λ) (2.22)

= arg max
θ

p(θ | λ)
L∏

ℓ=1

p(x(ℓ) | θ) (2.23)

Posterior distribution:

Predictive likelihood:
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This approach is best justified when the training set size L is very large, so that the pos-
terior distribution of eq. (2.22) is tightly concentrated [21, 107]. Sometimes, however,
MAP estimates are used with smaller datasets because they are the only computation-
ally viable option.

Parametric and Predictive Sufficiency

When computing the posterior distributions and predictive likelihoods motivated in
the previous section, it is very helpful to have compact ways of characterizing large
datasets. For exponential families, the notions of sufficiency introduced in Sec. 2.1.1
can be extended to simplify learning with prior knowledge.

Theorem 2.1.2. Let p(x | θ) denote an exponential family with canonical parameters θ,
and p(θ | λ) a corresponding prior density. Given L independent, identically distributed
samples {x(ℓ)}L

ℓ=1, consider the following statistics:

φ(x(1), . . . , x(L)) !

{
1

L

L∑

ℓ=1

φa(x
(ℓ))

∣∣∣ a ∈ A
}

(2.24)

These empirical moments, along with the sample size L, are then said to be parametric
sufficient for the posterior distribution over canonical parameters, so that

p(θ | x(1), . . . , x(L), λ) = p(θ | φ(x(1), . . . , x(L)) , L, λ) (2.25)

Equivalently, they are predictive sufficient for the likelihood of new data x̄:

p(x̄ | x(1), . . . , x(L), λ) = p(x̄ | φ(x(1), . . . , x(L)) , L, λ) (2.26)

Proof. Parametric sufficiency follows from the Neyman factorization criterion, which
is satisfied by any exponential family. The correspondence between parametric and
predictive sufficiency can then be argued from eqs. (2.18, 2.19). For details, see Sec.
4.5 of Bernardo and Smith [21].

This theorem makes exponential families particularly attractive when learning from
large datasets, due to the often dramatic compression provided by the statistics of
eq. (2.24). It also emphasizes the importance of selecting appropriate sufficient statis-
tics, since other features of the data cannot affect subsequent model predictions.

Analysis with Conjugate Priors

Theorem 2.1.2 shows that statistical predictions in exponential families are functions
solely of the chosen sufficient statistics. However, it does not provide an explicit char-
acterization of the posterior distribution over model parameters, or guarantee that the
predictive likelihood can be computed tractably. In this section, we describe an expres-
sive family of prior distributions which are also analytically tractable.

Sample moments
& sample size are:

Ø Sufficient to find
posterior under 
any prior distribution.

Ø Sufficient to optimally
predict future data.
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STATISTICAL methods play a central role in the design and analysis of machine vi-
sion systems. In this background chapter, we review several learning and inference

techniques upon which our later contributions are based. We begin in Sec. 2.1 by de-
scribing exponential families of probability densities, emphasizing the roles of sufficiency
and conjugacy in Bayesian learning. Sec. 2.2 then shows how graphs may be used to im-
pose structure on exponential families. We contrast several types of graphical models,
and provide results clarifying their underlying statistical assumptions.

To apply graphical models in practical applications, computationally efficient learn-
ing and inference algorithms are needed. Sec. 2.3 describes several variational meth-
ods which approximate intractable inference tasks via message–passing algorithms. In
Sec. 2.4, we discuss a complementary class of Monte Carlo methods which use stochas-
tic simulations to analyze complex models. In this thesis, we propose new inference
algorithms which integrate variational and Monte Carlo methods in novel ways.

Finally, we conclude in Sec. 2.5 with an introduction to nonparametric methods
for Bayesian learning. These infinite–dimensional models achieve greater robustness
by avoiding restrictive assumptions about the data generation process. Despite this
flexibility, variational and Monte Carlo methods can be adapted to allow tractable
analysis of large, high–dimensional datasets.

! 2.1 Exponential Families

An exponential family of probability distributions [15, 36, 311] is characterized by the
values of certain sufficient statistics. Let x be a random variable taking values in some
sample space X , which may be either continuous or discrete. Given a set of statistics or
potentials {φa | a ∈ A}, the corresponding exponential family of densities is given by

p(x | θ) = ν(x) exp

{
∑

a∈A

θaφa(x) − Φ(θ)

}

(2.1)
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where θ ∈ R|A| are the family’s natural or canonical parameters, and ν(x) is a non-
negative reference measure. In some applications, the parameters θ are set to fixed
constants, while in other cases they are interpreted as latent random variables. The log
partition function Φ(θ) is defined to normalize p(x | θ) so that it integrates to one:

Φ(θ) = log

∫

X
ν(x) exp

{
∑

a∈A

θaφa(x)

}

dx (2.2)

For discrete spaces, dx is taken to be counting measure, so that integrals become sum-
mations. This construction is valid when the canonical parameters θ belong to the set
Θ for which the log partition function is finite:

Θ !
{

θ ∈ R
|A| | Φ(θ) < ∞

}
(2.3)

Because Φ(θ) is a convex function (see Prop. 2.1.1), Θ is necessarily convex. If Θ is also
open, the exponential family is said to be regular. Many classic probability distributions
form regular exponential families, including the Bernoulli, Poisson, Gaussian, beta, and
gamma densities [21, 107]. For example, for scalar Gaussian densities the sufficient
statistics are {x, x2}, ν(x) = 1, and Θ constrains the variance to be positive.

Exponential families are typically parameterized so that no linear combination of
the potentials {φa | a ∈ A} is almost everywhere constant. In such a minimal repre-
sentation,1 there is a unique set of canonical parameters θ associated with each density
in the family, whose dimension equals d ! |A|. Furthermore, the exponential family
defines a d–dimensional Riemannian manifold, and the canonical parameters a coor-
dinate system for that manifold. By characterizing the convex geometric structure of
such manifolds, information geometry [6, 15, 52, 74, 305] provides a powerful framework
for analyzing learning and inference algorithms. In particular, as we discuss in Sec. 2.3,
results from conjugate duality [15, 311] underlie many algorithms used in this thesis.

In the following sections, we further explore the properties of exponential families,
emphasizing results which guide the specification of sufficient statistics appropriate to
particular learning problems. We then introduce a family of conjugate priors for the
canonical parameters θ, and provide detailed computational methods for two exponen-
tial families (the normal–inverse–Wishart and Dirichlet–multinomial) used extensively
in this thesis. For further discussion of the convex geometry underlying exponential
families, see [6, 15, 36, 74, 311].

" 2.1.1 Sufficient Statistics and Information Theory

In this section, we establish several results which motivate the use of exponential fam-
ilies, and clarify the notion of sufficiency. The following properties of the log partition
function establish its central role in the study of exponential families:

1We note, however, that overcomplete representations play an important role in recent theoretical
analyses of variational approaches to approximate inference [305, 306, 311].
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
ℓ=1 φa(x(ℓ))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

ℓ=1

log ν(x(ℓ)) (2.33)
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∫
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}

dθ (2.29)
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{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
ℓ=1 φa(x(ℓ))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

ℓ=1

log ν(x(ℓ)) (2.33)
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While this functional form duplicates the exponential family’s, the interpretation is
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take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)
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{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
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)
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p(θ | λ) = exp
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}
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While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
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Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
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λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
ℓ=1 φa(x(ℓ))

λ0 + L
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Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
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L∑

ℓ=1

log ν(x(ℓ)) (2.33)

Conjugate priors have matched functional forms.

For an exponential family, the conjugate prior is defined by:
• Prior expected values         of the d sufficient statistics
• A measure of confidence in those prior expectations,

expressed as a positive number of pseudo-observations

�a

�0
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STATISTICAL methods play a central role in the design and analysis of machine vi-
sion systems. In this background chapter, we review several learning and inference

techniques upon which our later contributions are based. We begin in Sec. 2.1 by de-
scribing exponential families of probability densities, emphasizing the roles of sufficiency
and conjugacy in Bayesian learning. Sec. 2.2 then shows how graphs may be used to im-
pose structure on exponential families. We contrast several types of graphical models,
and provide results clarifying their underlying statistical assumptions.

To apply graphical models in practical applications, computationally efficient learn-
ing and inference algorithms are needed. Sec. 2.3 describes several variational meth-
ods which approximate intractable inference tasks via message–passing algorithms. In
Sec. 2.4, we discuss a complementary class of Monte Carlo methods which use stochas-
tic simulations to analyze complex models. In this thesis, we propose new inference
algorithms which integrate variational and Monte Carlo methods in novel ways.

Finally, we conclude in Sec. 2.5 with an introduction to nonparametric methods
for Bayesian learning. These infinite–dimensional models achieve greater robustness
by avoiding restrictive assumptions about the data generation process. Despite this
flexibility, variational and Monte Carlo methods can be adapted to allow tractable
analysis of large, high–dimensional datasets.

! 2.1 Exponential Families

An exponential family of probability distributions [15, 36, 311] is characterized by the
values of certain sufficient statistics. Let x be a random variable taking values in some
sample space X , which may be either continuous or discrete. Given a set of statistics or
potentials {φa | a ∈ A}, the corresponding exponential family of densities is given by

p(x | θ) = ν(x) exp

{
∑

a∈A

θaφa(x) − Φ(θ)

}

(2.1)
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where θ ∈ R|A| are the family’s natural or canonical parameters, and ν(x) is a non-
negative reference measure. In some applications, the parameters θ are set to fixed
constants, while in other cases they are interpreted as latent random variables. The log
partition function Φ(θ) is defined to normalize p(x | θ) so that it integrates to one:

Φ(θ) = log

∫

X
ν(x) exp

{
∑

a∈A

θaφa(x)

}

dx (2.2)

For discrete spaces, dx is taken to be counting measure, so that integrals become sum-
mations. This construction is valid when the canonical parameters θ belong to the set
Θ for which the log partition function is finite:

Θ !
{

θ ∈ R
|A| | Φ(θ) < ∞

}
(2.3)

Because Φ(θ) is a convex function (see Prop. 2.1.1), Θ is necessarily convex. If Θ is also
open, the exponential family is said to be regular. Many classic probability distributions
form regular exponential families, including the Bernoulli, Poisson, Gaussian, beta, and
gamma densities [21, 107]. For example, for scalar Gaussian densities the sufficient
statistics are {x, x2}, ν(x) = 1, and Θ constrains the variance to be positive.

Exponential families are typically parameterized so that no linear combination of
the potentials {φa | a ∈ A} is almost everywhere constant. In such a minimal repre-
sentation,1 there is a unique set of canonical parameters θ associated with each density
in the family, whose dimension equals d ! |A|. Furthermore, the exponential family
defines a d–dimensional Riemannian manifold, and the canonical parameters a coor-
dinate system for that manifold. By characterizing the convex geometric structure of
such manifolds, information geometry [6, 15, 52, 74, 305] provides a powerful framework
for analyzing learning and inference algorithms. In particular, as we discuss in Sec. 2.3,
results from conjugate duality [15, 311] underlie many algorithms used in this thesis.

In the following sections, we further explore the properties of exponential families,
emphasizing results which guide the specification of sufficient statistics appropriate to
particular learning problems. We then introduce a family of conjugate priors for the
canonical parameters θ, and provide detailed computational methods for two exponen-
tial families (the normal–inverse–Wishart and Dirichlet–multinomial) used extensively
in this thesis. For further discussion of the convex geometry underlying exponential
families, see [6, 15, 36, 74, 311].

" 2.1.1 Sufficient Statistics and Information Theory

In this section, we establish several results which motivate the use of exponential fam-
ilies, and clarify the notion of sufficiency. The following properties of the log partition
function establish its central role in the study of exponential families:

1We note, however, that overcomplete representations play an important role in recent theoretical
analyses of variational approaches to approximate inference [305, 306, 311].
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
ℓ=1 φa(x(ℓ))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

ℓ=1

log ν(x(ℓ)) (2.33)
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Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:
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)
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λ̄0 = λ0 + L λ̄a =
λ0λa +
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Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

ℓ=1

log ν(x(ℓ)) (2.33)
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}

(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}

dθ (2.29)

Λ !
{

λ ∈ R
|A|+1 | Ω(λ) < ∞

}
(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(ℓ)}L

ℓ=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
ℓ=1 φa(x(ℓ))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

ℓ=1

log ν(x(ℓ)) (2.33)

Ø Closed form for
posterior 
distribution.

Ø Closed form for
marginal
likelihood.



Bayes Learning of Categorical Distributions
Categorical Distribution:  Single roll of a (possibly biased) die

Dirichlet Prior Distribution:
p(✓) = Dir(✓ | ↵) /

KY

k=1

✓↵k�1
k

Dirichlet Posterior Distribution:

Prior is conjugate to likelihood because posterior distribution in same family.

p(✓ | x) /
KY

k=1

✓

Nk+↵k�1
k / Dir(✓ | N1 + ↵1, . . . , NK + ↵K)

xk 2 {0, 1},
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Q

K

k=1 ✓
xk
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p(x(1)
, . . . , x
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QK

k=1 ✓
Nk
k Nk =

PL
`=1 x

(`)
k



Normal (Gaussian) Random Variables

E[X] = µ

Var[X] = E[(X � µ)2] = �2

p
Var[X] = � is the standard deviation

Ø Standard deviations provide 
confidence intervals:

Z µ+�

µ��
N (x | µ,�2) dx ⇡ 0.68

Z µ+2�

µ�2�
N (x | µ,�2) dx ⇡ 0.95

Z µ+3�

µ�3�
N (x | µ,�2) dx ⇡ 0.997

p(x) = N (x | µ,�2) =
1p
2⇡�2

e

� 1
2 (

x�µ

�

)2



Bayesian Learning of Gaussians
Scalar Gaussian Likelihood Function:

Gaussian Prior Distribution: 
Assume variance �2

is known and fixed.

p(µ) = N (µ | µ0,�
2
0) =

1p
2⇡�2

0

exp

⇢
� (µ� µ0)

2

2�2
0

�

p(x | µ) = N (x | µ,�2
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1p
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2
exp

⇢
� (x� µ)

2
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�

Gaussian Posterior Distribution: Prior is conjugate to likelihood.
p(µ | x(1)

, . . . , x

(L)) = N (µ | µL,�
2
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Posterior Mean versus Empirical Mean
Optimal Estimator:
Posterior mean,
Posterior mode, &
Posterior median

Example:
Posterior given varying 
amounts of data N=L

µ = 0.8
�2 = 0.1

Gaussian Posterior Distribution:
p(µ | x(1)

, . . . , x
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2
L)
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µ̂ = µL = E[µ | x]
µL ! x̄L as L ! 1



Impact of Prior Variance
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Gaussian Posterior Distribution:
p(µ | x(1)

, . . . , x

(L)) = N (µ | µL,�
2
L)

µL =
�

2

L�

2
0 + �

2
µ0 +

L�

2
0

L�

2
0 + �

2
x̄L x̄L = 1

L

PL
`=1 x

(`)

1

�2
L

=
1

�2
0

+
L

�2

µL ! x̄L as �2
0 ! 1

Example:  Posteriors given same single 
observation, for two different priors.



Example 2. 
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FIGURE 1. Distribution of the sum of two independent exponential variables. Here is a random 

scatter of points suggesting the joint density of independent exponential variables T and U , along 

with grophs of the densities of T, U, and S = T + U. 
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Distribution of T: 
exponential (1) 

Sums of independent gamma variables. 
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Recall from Section 4.2 that the gamma (r, A) distribution is defined for every real 
r > 0 by the density 

t>O 
t::;O 

If Tr and Ts are independent random variables with gamma (r, A) and gamma 
(s, J\) distributions, respectively, then Tr + Ts has gamma (r + s, A) distribution. 

Proof for positive integers rand s. This case follows from the representation of a 
gamma variable as the sum of independent exponential variables. To see how, note 
first that the density of an independent sum Tr + Ts is determined by the densities 

Aside: Sums of Exponential Variables
1.0 

0.0 

o 

Section 4.2. Exponential and Gamma Distributions 287 

negative binomial (r, p) distribution of the number of trials until the rth success, as 
derived in Section 3.4. As the display shows, the formulae relating the gamma to the 
Poisson distribution are like similar formulae relating the negative binomial to the 
binomial distribution. 

FIGURE 2. Gamma density of the rth arrival for r = 1 to 10. Note how the distributions shift to 

the righl and flatten out as r increases, in keeping with the formulae r /.\ and Vi /.\ for the mean 

and SD. Due to the central limit theorem, the gamma (r,.\) distribution becomes asymptotically 

normal as r -+ 00. 
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n=10

Approximately 
Gaussian for large n!

p
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��x

, x � 0.

Gamma PDF:
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Bayesian Learning of Variances
Scalar Gaussian Likelihood Function:

Gamma Prior Distribution on Inverse Variance (precision): 

p(x | �) = N (x | µ,��1
) =

r
�

2⇡

exp

⇢
��

2

(x� µ)

2

�

Assume mean µ is known and fixed.

E[�] =
a

b

Var[�] =
a

b2

p(�) = Gamma(� | a0, b0) =
ba0
0

�(a0)
�a0�1

exp{�b0�}



Bayesian Learning of Variances
Scalar Gaussian Likelihood Function:

Gamma Prior Distribution on Inverse Variance (precision): 

Gamma Posterior Distribution: Prior is conjugate to likelihood.

p(x | �) = N (x | µ,��1
) =

r
�

2⇡

exp

⇢
��

2

(x� µ)

2

�

Assume mean µ is known and fixed.

p(� | x(1)
, . . . , x

(L)) = Gamma(� | aL, bL)
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L

2
�̄2

�̄

2 = 1
L

PL
`=1(x

(`) � µ)2
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Multivariate Gaussian Distribution
N (x | µ,⌃) = 1
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Moment Parameterization:  Mean & Covariance
µ = E[x] 2 RN⇥1

⌃ = E[(x� µ)(x� µ)T ] = E[xxT ]� µµ

T 2 RN⇥N

For simplicity, assume covariance positive definite & invertible.
Information Parameterization:  Canonical Parameters
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Recall general exponential family form:
p(x | ✓) = exp{✓T�(x)� �(✓)}
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Figure 2.2. Examples of normal–inverse–Wishart distributions. Left: Joint probability density of a
scalar normal–inverse–χ2 distribution (µ, Λ) ∼ NW(2, 0, 4, 1). Right: Covariance ellipses corresponding
to ten samples from a two–dimensional normal–inverse–Wishart distribution (µ, Λ) ∼ NW(0.3, 0, 4, I2).

To efficiently represent these posterior parameters, we can cache the observations’ sum
(eq. (2.62)), and the Cholesky decomposition [63, 118] of the sum of observation outer
products (eq. (2.63)). Cholesky decompositions are numerically robust, can be recur-
sively updated as observations are added or removed, and allow fast likelihood evalua-
tion through the solution of triangulated linear systems.

Integrating over the parameters of the normal–inverse–Wishart posterior distribu-
tion, the predictive likelihood of a new observation x̄ is multivariate Student–t with
(ν̄ − d + 1) degrees of freedom [107]. Assuming ν̄ > (d + 1), this posterior density has
finite covariance, and can be approximated by a moment–matched Gaussian:

p(x̄ | x(1), . . . , x(L), κ, ϑ, ν, ∆) ≈ N
(

x̄; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
∆̄

)
(2.64)

As illustrated in Fig. 2.3, Student–t distributions have heavier tails than Gaussians, due
to integration over uncertainty in the true covariance. However, the KL divergence plot
of Fig. 2.3 shows that, for small d, the Gaussian approximation is accurate unless ν̄ is
very small. Examining eqs. (2.62, 2.63), we see that the predictive likelihood depends
on regularized estimates of the mean and covariance of previous observations.

! 2.2 Graphical Models

Many practical applications, including the computer vision tasks investigated in this
thesis, involve very large collections of random variables. In these situations, direct
application of the classic exponential families introduced in the previous section is
typically infeasible. For example, a multinomial model of the joint distribution of
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We denote this density by W(ν, ∆). An inverse–Wishart prior is proper when ν > d,
and skewed towards larger covariances, so that its mean and mode equal

Eν [Λ] =
ν

ν − d − 1
∆ ν > d + 1 (2.59)

arg max
Λ

W(Λ; ν, ∆) =
ν

ν + d + 1
∆ (2.60)

The degrees of freedom ν acts as a precision parameter, and can be interpreted as
the size of a pseudo–dataset with sample covariance ∆. However, because the inverse–
Wishart density is rotationally invariant, it cannot model situations in which the degree
of prior knowledge varies across different covariance entries or subspaces. Inverse–
Wishart samples can be drawn via appropriate transformations of standard Gaussian
random variables [107].

If a multivariate Gaussian’s mean and covariance are both uncertain, the normal–
inverse–Wishart distribution [107] provides an appropriate conjugate prior. Following
eq. (2.58), the covariance matrix is assigned an inverse–Wishart prior Λ ∼ W(ν, ∆).
Conditioned on Λ, the mean µ ∼ N (ϑ, Λ/κ). Here, ϑ is the expected mean, for which
we have κ pseudo–observations on the scale of observations x ∼ N (µ,Λ). The joint
prior distribution, denoted by NW(κ, ϑ, ν, ∆), then takes the following form:

p(µ,Λ | κ, ϑ, ν, ∆) ∝ |Λ|−( ν+d
2 +1) exp

{
−1

2
tr(ν∆Λ−1) − κ

2
(µ − ϑ)T Λ−1(µ − ϑ)

}
(2.61)

Fig. 2.2 illustrates a normal–inverse–χ2 density, the special case arising when d = 1.
Note that the mean and variance are dependent, so that there is greater uncertainty in
the mean value for larger underlying variances. This scaling is often, but not always,
appropriate, and is necessary if conjugacy is desired [107]. Fig. 2.2 also shows several
Gaussian distributions drawn from a two–dimensional normal–inverse–Wishart prior.

Conjugate Posteriors and Predictions

Consider a set of L observations {x(ℓ)}L
ℓ=1 from a multivariate Gaussian distribu-

tion N (µ,Λ) with normal–inverse–Wishart prior NW(κ, ϑ, ν, ∆). Via conjugacy, the
posterior distribution p

(
µ,Λ | x(1), . . . , x(ℓ), κ, ϑ, ν, ∆

)
is also normal–inverse–Wishart,

and thus compactly described by a set of updated hyperparameters NW
(
κ̄, ϑ̄, ν̄, ∆̄

)
.

Through manipulation of the quadratic form in eq. (2.61), it can be shown [107] that
these posterior hyperparameters equal

κ̄ϑ̄ = κϑ +
L∑

ℓ=1

x(ℓ) κ̄ = κ + L (2.62)

ν̄∆̄ = ν∆ +
L∑

ℓ=1

x(ℓ)x(ℓ)T

+ κϑϑT − κ̄ϑ̄ϑ̄T ν̄ = ν + L (2.63)
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Fig. 2.2 illustrates a normal–inverse–χ2 density, the special case arising when d = 1.
Note that the mean and variance are dependent, so that there is greater uncertainty in
the mean value for larger underlying variances. This scaling is often, but not always,
appropriate, and is necessary if conjugacy is desired [107]. Fig. 2.2 also shows several
Gaussian distributions drawn from a two–dimensional normal–inverse–Wishart prior.

Conjugate Posteriors and Predictions

Consider a set of L observations {x(ℓ)}L
ℓ=1 from a multivariate Gaussian distribu-

tion N (µ,Λ) with normal–inverse–Wishart prior NW(κ, ϑ, ν, ∆). Via conjugacy, the
posterior distribution p

(
µ,Λ | x(1), . . . , x(ℓ), κ, ϑ, ν, ∆

)
is also normal–inverse–Wishart,

and thus compactly described by a set of updated hyperparameters NW
(
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)
.

Through manipulation of the quadratic form in eq. (2.61), it can be shown [107] that
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x(ℓ) κ̄ = κ + L (2.62)
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Ø The Wishart distribution generalizes gamma to positive definite matrices
Ø For multivariate normal, conjugate prior is Wishart on inverse covariance,

and multivariate Gaussian (with dependent covariance) on mean



Normal-Inverse-Wishart Prior Distributions
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Figure 2.2. Examples of normal–inverse–Wishart distributions. Left: Joint probability density of a
scalar normal–inverse–χ2 distribution (µ, Λ) ∼ NW(2, 0, 4, 1). Right: Covariance ellipses corresponding
to ten samples from a two–dimensional normal–inverse–Wishart distribution (µ, Λ) ∼ NW(0.3, 0, 4, I2).

To efficiently represent these posterior parameters, we can cache the observations’ sum
(eq. (2.62)), and the Cholesky decomposition [63, 118] of the sum of observation outer
products (eq. (2.63)). Cholesky decompositions are numerically robust, can be recur-
sively updated as observations are added or removed, and allow fast likelihood evalua-
tion through the solution of triangulated linear systems.

Integrating over the parameters of the normal–inverse–Wishart posterior distribu-
tion, the predictive likelihood of a new observation x̄ is multivariate Student–t with
(ν̄ − d + 1) degrees of freedom [107]. Assuming ν̄ > (d + 1), this posterior density has
finite covariance, and can be approximated by a moment–matched Gaussian:

p(x̄ | x(1), . . . , x(L), κ, ϑ, ν, ∆) ≈ N
(

x̄; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
∆̄

)
(2.64)

As illustrated in Fig. 2.3, Student–t distributions have heavier tails than Gaussians, due
to integration over uncertainty in the true covariance. However, the KL divergence plot
of Fig. 2.3 shows that, for small d, the Gaussian approximation is accurate unless ν̄ is
very small. Examining eqs. (2.62, 2.63), we see that the predictive likelihood depends
on regularized estimates of the mean and covariance of previous observations.

! 2.2 Graphical Models

Many practical applications, including the computer vision tasks investigated in this
thesis, involve very large collections of random variables. In these situations, direct
application of the classic exponential families introduced in the previous section is
typically infeasible. For example, a multinomial model of the joint distribution of
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We denote this density by W(ν, ∆). An inverse–Wishart prior is proper when ν > d,
and skewed towards larger covariances, so that its mean and mode equal

Eν [Λ] =
ν

ν − d − 1
∆ ν > d + 1 (2.59)

arg max
Λ

W(Λ; ν, ∆) =
ν

ν + d + 1
∆ (2.60)

The degrees of freedom ν acts as a precision parameter, and can be interpreted as
the size of a pseudo–dataset with sample covariance ∆. However, because the inverse–
Wishart density is rotationally invariant, it cannot model situations in which the degree
of prior knowledge varies across different covariance entries or subspaces. Inverse–
Wishart samples can be drawn via appropriate transformations of standard Gaussian
random variables [107].

If a multivariate Gaussian’s mean and covariance are both uncertain, the normal–
inverse–Wishart distribution [107] provides an appropriate conjugate prior. Following
eq. (2.58), the covariance matrix is assigned an inverse–Wishart prior Λ ∼ W(ν, ∆).
Conditioned on Λ, the mean µ ∼ N (ϑ, Λ/κ). Here, ϑ is the expected mean, for which
we have κ pseudo–observations on the scale of observations x ∼ N (µ,Λ). The joint
prior distribution, denoted by NW(κ, ϑ, ν, ∆), then takes the following form:

p(µ,Λ | κ, ϑ, ν, ∆) ∝ |Λ|−( ν+d
2 +1) exp

{
−1

2
tr(ν∆Λ−1) − κ

2
(µ − ϑ)T Λ−1(µ − ϑ)

}
(2.61)

Fig. 2.2 illustrates a normal–inverse–χ2 density, the special case arising when d = 1.
Note that the mean and variance are dependent, so that there is greater uncertainty in
the mean value for larger underlying variances. This scaling is often, but not always,
appropriate, and is necessary if conjugacy is desired [107]. Fig. 2.2 also shows several
Gaussian distributions drawn from a two–dimensional normal–inverse–Wishart prior.

Conjugate Posteriors and Predictions

Consider a set of L observations {x(ℓ)}L
ℓ=1 from a multivariate Gaussian distribu-

tion N (µ,Λ) with normal–inverse–Wishart prior NW(κ, ϑ, ν, ∆). Via conjugacy, the
posterior distribution p

(
µ,Λ | x(1), . . . , x(ℓ), κ, ϑ, ν, ∆

)
is also normal–inverse–Wishart,

and thus compactly described by a set of updated hyperparameters NW
(
κ̄, ϑ̄, ν̄, ∆̄

)
.

Through manipulation of the quadratic form in eq. (2.61), it can be shown [107] that
these posterior hyperparameters equal

κ̄ϑ̄ = κϑ +
L∑

ℓ=1

x(ℓ) κ̄ = κ + L (2.62)

ν̄∆̄ = ν∆ +
L∑

ℓ=1

x(ℓ)x(ℓ)T

+ κϑϑT − κ̄ϑ̄ϑ̄T ν̄ = ν + L (2.63)
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