CS242: Probabilistic Graphical Models

Lecture 8A: Conjugate Priors & Bayesian Learning

Professor Erik Sudderth

Brown University Computer Science November 1, 2016

Some figures and materials courtesy lain Murray, Markov Chain Monte Carlo, MLSS 2009 http://homepages.inf.ed.ac.uk/imurray2/teaching/09mlss/

CS242: Lecture 8A Outline

Beta priors for Bernoulli distributions

- Dirichlet priors for categorical distributions
- > Conjugate priors for exponential family distributions

Bayesian Parameter Estimation

- Suppose I have *L* independent observations sampled from some unknown probability distribution: $x = \{x^{(1)}, \dots, x^{(L)}\}$
- > We have a *likelihood model* with unknown parameters: $p(x \mid \theta) = \prod^{L} p(x^{(\ell)} \mid \theta)$

 $\ell - 1$

 \blacktriangleright We have a *prior distribution* on parameters (possible models): $p(\theta)$

> Posterior distribution on parameters, given data:

$$p(\theta \mid x) = \frac{1}{p(x)} p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)$$

Bayesian Parameter Estimation

Maximum a Posteriori (MAP) parameter estimate: Choose the parameters with largest posterior probability.

$$\hat{\theta} = \arg \max_{\theta} p(\theta \mid x) = \arg \max_{\theta} p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)$$

Conditional Expectation parameter estimate:

Set the parameters to the mean of the posterior distribution.

$$\hat{\theta} = E[\theta \mid x] = \int \theta p(\theta \mid x) \ d\theta$$

> Posterior distribution on parameters, given data: $_{1}^{1}$

$$p(\theta \mid x) = \frac{1}{p(x)} p(\theta) \prod_{\ell=1}^{l} p(x^{(\ell)} \mid \theta)$$

Bayesian Parameter Estimation

Maximum a Posteriori (MAP) parameter estimate: Choose the parameters with largest posterior probability.

$$\hat{\theta} = \arg \max_{\theta} p(\theta \mid x) = \arg \max_{\theta} p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)$$

Conditional Expectation parameter estimate: Set the parameters to the mean of the posterior distribution.

$$\hat{\theta} = E[\theta \mid x] = \int \theta p(\theta \mid x) \ d\theta$$

- Both estimators pick parameters with high posterior probability
- Choice of estimator can be formalized via *decision theory* (conditional expectation minimizes expected squared error)

Bayesian Learning of Binary Distributions

Bernoulli Distribution: Single toss of a (possibly biased) coin

$$Ber(x \mid \theta) = \theta^{x} (1 - \theta)^{1 - x} \qquad 0 \le \theta \le 1 \qquad x \in \{0, 1\}$$
$$p(x^{(1)}, \dots, x^{(L)} \mid \theta) = \theta^{N_{1}} (1 - \theta)^{N_{0}}$$
$$N_{1} = \sum_{\ell=1}^{L} x^{(\ell)} \qquad N_{0} = \sum_{\ell=1}^{L} (1 - x^{(\ell)}) = L - N_{1}$$

Uniform Prior Distribution:

$$p(\theta) = 1$$
 for $0 \le \theta \le 1$.

Posterior Distribution:

$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)} = \frac{1}{p(x)}\theta^{N_1}(1-\theta)^{N_0} \text{ for } 0 \le \theta \le 1.$$

$$p(x) = \int_0^1 p(x \mid \theta)p(\theta) \ d\theta. \qquad \text{What is this distribution?}$$

Beta Distributions

Beta Distributions

Beta Distributions

Otherwise the mode may be degenerate $(\theta = 0 \text{ or } 1)$ or be undefined.

Bayesian Learning of Binary Distributions

Bernoulli Distribution: Single toss of a (possibly biased) coin

Ber
$$(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$
 $0 \le \theta \le 1$ $x \in \{0, 1\}$
 $p(x^{(1)}, \dots, x^{(L)} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}$
 $N_1 = \sum_{\ell=1}^L x^{(\ell)}$ $N_0 = \sum_{\ell=1}^L (1 - x^{(\ell)}) = L - N_1$

Beta Prior Distribution: $p(\theta) = \text{Beta}(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$ **Beta Posterior Distribution:**

$$p(\theta \mid x) \propto \theta^{N_1 + \alpha - 1} (1 - \theta)^{N_0 + \beta - 1} \propto \text{Beta}(\theta \mid N_1 + \alpha, N_0 + \beta)$$

Prior is conjugate to likelihood because posterior distribution in same family.

Bayesian Learning of Binary Distributions

Recommended Estimator: Posterior mean $\hat{\theta} = \mathbb{E}[\theta \mid x] = \frac{N_1 + \alpha}{N_1 + \alpha + N_0 + \beta}$

With uniform prior:

$$\hat{\theta} = \mathbb{E}[\theta \mid x] = \frac{N_1 + 1}{N_1 + N_0 + 2}$$
 "add one" to observed counts

Beta Prior Distribution:

$$p(\theta) = \text{Beta}(\theta \mid \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$p(\theta \mid x) \propto \theta^{N_1 + \alpha - 1} (1 - \theta)^{N_0 + \beta - 1} \propto \text{Beta}(\theta \mid N_1 + \alpha, N_0 + \beta)$$

Prior is conjugate to likelihood because posterior distribution in same family.

A Sequence of Beta Posteriors

Estimators for Beta PosteriorsPrior:
$$p(\theta) = \text{Beta}(\theta \mid \alpha, \beta)$$
 $p(\theta) = \text{Beta}(\theta \mid 1, 1) = 1$ MMSE: $\hat{\theta} = \mathbb{E}[\theta \mid x] = \frac{N_1 + \alpha}{N + \alpha + \beta}$ $\hat{\theta} = \mathbb{E}[\theta \mid x] = \frac{N_1 + 1}{N + 2}$ MAP: $\hat{\theta} = \arg \max_{\theta} p(\theta \mid x) = \frac{N_1 + \alpha - 1}{N + \alpha + \beta - 2}$ $\hat{\theta} = \arg \max_{\theta} p(\theta \mid x) = \frac{N_1}{N}$ assuming $N_1 + \alpha > 1, N_0 + \beta > 1$ $\hat{\theta} = \arg \max_{\theta} p(\theta \mid x) = \frac{N_1}{N}$ $N_1 = \sum_{i=1}^{N} x_i$

$$p(\theta \mid x) = \text{Beta}(\theta \mid N_1 + \alpha, N_0 + \beta)$$

$$N_1 = \sum_{i=1}^{N} x_i$$
$$N_0 = N - N_1$$

CS242: Lecture 8A Outline

Beta priors for Bernoulli distributions
 Dirichlet priors for categorical distributions
 Conjugate priors for exponential family distributions

Dirichlet Probability Distributions

Samples from Dirichlet Prior Distributions

Bayes Learning of Categorical Distributions

Categorical Distribution: Single roll of a (possibly biased) die Cat $(x \mid \theta) = \prod_{k=1}^{K} \theta_k^{x_k}$ $x_k \in \{0, 1\}, \sum_{k=1}^{K} x_k = 1.$ $p(x^{(1)}, \dots, x^{(L)} \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k} \qquad N_k = \sum_{\ell=1}^{L} x_k^{(\ell)}$ Dirichlet Prior Distribution: $p(\theta) = \text{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{n} \theta_{k}^{\alpha_{k}-1}$ k=1**Dirichlet Posterior Distribution:**

$$p(\theta \mid x) \propto \prod_{k=1}^{K} \theta_k^{N_k + \alpha_k - 1} \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \dots, N_K + \alpha_K)$$

Prior is conjugate to likelihood because posterior distribution in same family.

Bayes Learning of Categorical Distributions

Recommended Estimator: Posterior mean

$$\hat{\theta}_{k} = \mathbb{E}[\theta_{k} \mid x] = \frac{N_{k} + \alpha_{k}}{L + \alpha_{0}}$$
Nith uniform prior:

$$\hat{\theta}_{k} = \mathbb{E}[\theta_{k} \mid x] = \frac{N_{k} + 1}{L + K}$$

Dirichlet Prior Distribution: $p(\theta) = Dir(\theta \mid \alpha) \propto \prod_{k=1}^{n} \theta_k^{\alpha_k - 1}$

Dirichlet Posterior Distribution:

$$p(\theta \mid x) \propto \prod_{k=1}^{K} \theta_k^{N_k + \alpha_k - 1} \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \dots, N_K + \alpha_K)$$

Prior is conjugate to likelihood because posterior distribution in same family.

Possible Dirichlet Priors & Posteriors

Prior:

$$p(\theta) = \operatorname{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}$$

- ➤ K parameters (positive numbers)
- ➤ K-1 degrees of freedom define mean:

$$\mathbb{E}[\theta_k] = \frac{\alpha_k}{\alpha_0} \qquad \qquad \alpha_0 = \sum_{k=1}^K \alpha_k$$

- \succ Variance proportional to $1/\alpha_0$
- ➢ Favors sparsity as $\alpha_0 → 0$

Posterior:

 $p(\theta \mid x) \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \dots, N_K + \alpha_K)$

- Posterior mean is weighted average of prior mean and observed counts
- > As *N* grows, posterior variance shrinks

Estimators for Dirichlet Posteriors

Prior:
$$p(\theta) = \text{Dir}(\theta \mid \alpha_1, \dots, \alpha_K)$$

 $\alpha_0 = \sum_{k=1}^K \alpha_k$ $p(\theta) = \text{Dir}(\theta \mid 1, \dots, 1) = 1$
 $\alpha_0 = \sum_{k=1}^K \alpha_k$ MMSE:
 $\hat{\theta}_k = \mathbb{E}[\theta_k \mid x] = \frac{N_k + \alpha_k}{N + \alpha_0}$ $\hat{\theta}_k = \mathbb{E}[\theta_k \mid x] = \frac{N_k + 1}{N + K}$ MAP:
 $\hat{\theta}_k = \frac{N_k + \alpha_k - 1}{N + \alpha_0 - K}$ $\hat{\theta} = \frac{N_k}{N}$ assuming $N_k + \alpha_k > 1$ for all k equivalent to maximum likelihood (ML)

 $p(\theta \mid x) = \text{Dir}(\theta \mid N_1 + \alpha_1, \dots, N_K + \alpha_K) \qquad N_k = \sum_{n=1}^N x_{nk}$

CS242: Lecture 8A Outline

Beta priors for Bernoulli distributions
 Dirichlet priors for categorical distributions
 Conjugate priors for exponential family distributions

Learning Directed Graphical Models

$$p(x) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\Gamma(i)}, \theta_i)$$

Intuition: Must learn a good predictive model of each node, given its parent nodes

• Directed factorization allows likelihood to locally decompose:

 $p(x \mid \theta) = p(x_1 \mid \theta_1)p(x_2 \mid x_1, \theta_2)p(x_3 \mid x_1, \theta_3)p(x_4 \mid x_2, x_3, \theta_4)$

 $\log p(x \mid \theta) = \log p(x_1 \mid \theta_1) + \log p(x_2 \mid x_1, \theta_2) + \log p(x_3 \mid x_1, \theta_3) + \log p(x_4 \mid x_2, x_3, \theta_4)$

• We often assume a similarly factorized (meta-independent) prior:

 $p(\theta) = p(\theta_1)p(\theta_2)p(\theta_3)p(\theta_4)$

 $\log p(\theta) = \log p(\theta_1) + \log p(\theta_2) + \log p(\theta_3) + \log p(\theta_4)$

• We thus have *independent* Bayesian learning problems at each node

Bayesian Learning with Complete Data

• Directed graph encodes statistical structure of single training examples:

$$p(x \mid \theta) = \prod_{\ell=1}^{L} \prod_{i=1}^{N} p(x_i^{(\ell)} \mid x_{\Gamma(i)}^{(\ell)}, \theta_i)$$

• Given completely observed training data, nodes have independent posteriors:

$$p(\theta \mid x) \propto p(\theta)p(x \mid \theta) \propto \prod_{i=1}^{N} \left[p(\theta_i) \prod_{\ell=1}^{L} p(x_i^{(\ell)} \mid x_{\Gamma(i)}^{(\ell)}, \theta_i) \right]$$

Bayesian Learning with Complete Data

- For discrete variables with no parents, parameters define some Bernoulli/categorical distribution with a beta/Dirichlet conjugate prior
- More generally, there are multiple categorical distributions per node, one for every *combination* of parent variables
 - Learning objective decomposes into multiple terms, one for subset of training data with each parent configuration
 - > Apply independent Bayesian learning to each
- How can we generalize to continuous variables? *Exponential families.*

• Given completely observed training data, nodes have independent posteriors:

$$p(\theta \mid x) \propto p(\theta)p(x \mid \theta) \propto \prod_{i=1}^{N} \left[p(\theta_i) \prod_{\ell=1}^{L} p(x_i^{(\ell)} \mid x_{\Gamma(i)}^{(\ell)}, \theta_i) \right]$$

Exponential Families of Distributions

 $p(x \mid \theta) = \frac{1}{Z(\theta)} \nu(x) \exp\{\theta^T \phi(x)\} \qquad Z(\theta) = \int_{\mathcal{X}} \nu(x) \exp\{\theta^T \phi(x)\} dx$ $= \nu(x) \exp\{\theta^T \phi(x) - \Phi(\theta)\} \qquad \Phi(\theta) = \log Z(\theta)$

 $\phi(x) \in \mathbb{R}^d \longrightarrow$

 $\theta \in \Theta \subseteq \mathbb{R}^d$ —

 $Z(\theta) > 0$

 $\nu(x) > 0$

- fixed vector of *sufficient statistics* (features), specifying the family of distributions
- unknown vector of *natural parameters*, determine particular distribution in this family
- normalization constant or *partition function*
- (for discrete variables, integral becomes sum)

reference measure independent of parameters (for many models, we simply have $\nu(x) = 1$)

 $\Theta = \{\theta \in \mathbb{R}^d \mid Z(\theta) < \infty\}$ ensures we construct a valid distribution

ML Estimation for Exponential Families

$$\log p(x^{(\ell)} \mid \theta) = \log \nu(x^{(\ell)}) + \theta^T \phi(x^{(\ell)}) - \Phi(\theta)$$

• Given *L* observations, the *log-likelihood function* equals:

$$L(\theta) = C + \left[\sum_{\ell=1}^{L} \theta^T \phi(x^{(\ell)})\right] - L\Phi(\theta)$$
$$C = \sum_{\ell=1}^{L} \log \nu(x^{(\ell)})$$

- Note that the *negative log-likelihood function is convex!*
- Gradients of the log-likelihood function have a simple form:

$$\nabla L(\theta) = \left[\sum_{\ell=1}^{L} \phi(x^{(\ell)})\right] - LE_{\theta}[\phi(x)]$$

• At unique global optimum, gradient is 0: $E_{\theta}[\phi(x)] = \frac{1}{L} \sum_{\ell=1}^{L} \phi(x^{(\ell)})$

Exponential Families: Inference & Learning

$$\log p(x^{(\ell)} \mid \theta) = \log \nu(x^{(\ell)}) + \theta^T \phi(x^{(\ell)}) - \Phi(\theta)$$

(-)

θ

 $\nabla \Phi(\theta)$

 \mathcal{M}

 $\mathbb{E}_{\hat{\theta}}[\phi(x)] = \hat{\mu}$

- Canonical parameters & moments:
 - $\Theta \triangleq \{\theta \in \mathbb{R}^d \mid \Phi(\theta) < +\infty\}$

 $\mathcal{M} \triangleq \{ \mu \in \mathbb{R}^d \mid \exists \ p \text{ such that } \mathbb{E}_p[\phi(x)] = \mu \}$

 Inference: Find moments of model with known parameters (joint distribution). Computable from marginals!

$$\mu = \nabla_{\theta} \Phi(\theta) = \mathbb{E}_{\theta}[\phi(x)] = \sum_{\mathcal{X}} \phi(x) p(x \mid \theta)$$

• Learning: Find model parameters matching data moments This is the inverse of the mapping defining inference. Maximum Likelihood (ML): $1 \sum_{k=1}^{L} \frac{1}{k} \sum_{k=1}^{L} \frac{1}{k} \frac{1}{k}$

$$\hat{\mu} = \frac{1}{L} \sum_{\ell=1} \phi(x^{(\ell)})$$

Parametric & Predictive Sufficiency

Posterior distribution:

$$p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) = \frac{p(x^{(1)}, \dots, x^{(L)} \mid \theta, \lambda) p(\theta \mid \lambda)}{\int_{\Theta} p(x^{(1)}, \dots, x^{(L)} \mid \theta, \lambda) p(\theta \mid \lambda) d\theta} \propto p(\theta \mid \lambda) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)$$
Predictive likelihood:

$$p(\bar{x} \mid x^{(1)}, \dots, x^{(L)}, \lambda) = \int_{\Theta} p(\bar{x} \mid \theta) p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) d\theta$$

Theorem 2.1.2. Let $p(x \mid \theta)$ denote an exponential family with canonical parameters θ , and $p(\theta \mid \lambda)$ a corresponding prior density. Given L independent, identically distributed samples $\{x^{(\ell)}\}_{\ell=1}^{L}$, consider the following statistics:

$$\boldsymbol{\phi}(x^{(1)},\dots,x^{(L)}) \triangleq \left\{ \frac{1}{L} \sum_{\ell=1}^{L} \phi_a(x^{(\ell)}) \mid a \in \mathcal{A} \right\}$$
(2.24)

Sample moments & sample size are:

Τ

These empirical moments, along with the sample size L, are then said to be parametric sufficient for the posterior distribution over canonical parameters, so that

$$p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) = p(\theta \mid \phi(x^{(1)}, \dots, x^{(L)}), L, \lambda)$$
(2.25)

Equivalently, they are predictive sufficient for the likelihood of new data \bar{x} :

$$p(\bar{x} \mid x^{(1)}, \dots, x^{(L)}, \lambda) = p(\bar{x} \mid \phi(x^{(1)}, \dots, x^{(L)}), L, \lambda)$$

 Sufficient to find posterior under any prior distribution.

 Sufficient to optimally predict future data.

(2.26)

Learning with Conjugate Priors

$$p(x \mid \theta) = \nu(x) \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \phi_a(x) - \Phi(\theta)\right\} \qquad \Phi(\theta) = \log \int_{\mathcal{X}} \nu(x) \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \phi_a(x)\right\} dx$$
$$p(\theta \mid \lambda) = \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta) - \Omega(\lambda)\right\} \qquad \Omega(\lambda) = \log \int_{\Theta} \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta)\right\} d\theta$$

Conjugate priors have matched functional forms.

1

$$\Lambda \triangleq \left\{ \lambda \in \mathbb{R}^{|\mathcal{A}|+1} \mid \Omega(\lambda) < \infty \right\}$$

Proposition 2.1.4. Let $p(x \mid \theta)$ denote an exponential family with canonical parameters θ , and $p(\theta \mid \lambda)$ a family of conjugate priors defined as in eq. (2.28). Given L independent samples $\{x^{(\ell)}\}_{\ell=1}^{L}$, the posterior distribution remains in the same family:

$$p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) = p(\theta \mid \bar{\lambda})$$
(2.31)

$$\bar{\lambda}_0 = \lambda_0 + L \qquad \bar{\lambda}_a = \frac{\lambda_0 \lambda_a + \sum_{\ell=1}^L \phi_a(x^{(\ell)})}{\lambda_0 + L} \qquad a \in \mathcal{A} \qquad (2.32)$$

For an exponential family, the conjugate prior is defined by:

- Prior expected values λ_a of the *d* sufficient statistics
- A measure of confidence in those prior expectations, expressed as a positive number of *pseudo-observations* λ_0

Learning with Conjugate Priors

$$p(x \mid \theta) = \nu(x) \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \phi_a(x) - \Phi(\theta)\right\} \qquad \Phi(\theta) = \log \int_{\mathcal{X}} \nu(x) \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \phi_a(x)\right\} dx$$
$$p(\theta \mid \lambda) = \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta) - \Omega(\lambda)\right\} \qquad \Omega(\lambda) = \log \int_{\Theta} \exp\left\{\sum_{a \in \mathcal{A}} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta)\right\} d\theta$$

Proposition 2.1.4. Let $p(x \mid \theta)$ denote an exponential family with canonical parameters θ , and $p(\theta \mid \lambda)$ a family of conjugate priors defined as in eq. (2.28). Given L independent samples $\{x^{(\ell)}\}_{\ell=1}^{L}$, the posterior distribution remains in the same family:

$$p(\theta \mid x^{(1)}, \dots, x^{(L)}, \lambda) = p(\theta \mid \bar{\lambda})$$
(2.31)

$$\bar{\lambda}_0 = \lambda_0 + L \qquad \bar{\lambda}_a = \frac{\lambda_0 \lambda_a + \sum_{\ell=1}^L \phi_a(x^{(\ell)})}{\lambda_0 + L} \qquad a \in \mathcal{A}$$
(2.32)

 Closed form for posterior distribution.

Integrating over Θ , the log-likelihood of the observations can then be compactly written using the normalization constant of eq. (2.29):

$$\log p(x^{(1)}, \dots, x^{(L)} \mid \lambda) = \Omega(\bar{\lambda}) - \Omega(\lambda) + \sum_{\ell=1}^{L} \log \nu(x^{(\ell)})$$
(2.33)

Closed form for marginal likelihood.

Bayes Learning of Categorical Distributions

Categorical Distribution: Single roll of a (possibly biased) die Cat $(x \mid \theta) = \prod_{k=1}^{K} \theta_k^{x_k}$ $x_k \in \{0, 1\}, \sum_{k=1}^{K} x_k = 1.$ $p(x^{(1)}, \dots, x^{(L)} \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k} \qquad N_k = \sum_{\ell=1}^{L} x_k^{(\ell)}$ Dirichlet Prior Distribution: $p(\theta) = \text{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{n} \theta_{k}^{\alpha_{k}-1}$ k=1**Dirichlet Posterior Distribution:**

$$p(\theta \mid x) \propto \prod_{k=1}^{K} \theta_k^{N_k + \alpha_k - 1} \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \dots, N_K + \alpha_K)$$

Prior is conjugate to likelihood because posterior distribution in same family.

Normal (Gaussian) Random Variables

$$p(x) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \int_{0}^{0} \int_{0}$$

Standard deviations provide confidence intervals:

$$\int_{\mu-\sigma}^{\mu+\sigma} \mathcal{N}(x \mid \mu, \sigma^2) \, dx \approx 0.68$$

$$\int_{\mu-2\sigma}^{\mu+2\sigma} \mathcal{N}(x \mid \mu, \sigma^2) \, dx \approx 0.95$$
$$\int_{\mu-3\sigma}^{\mu+3\sigma} \mathcal{N}(x \mid \mu, \sigma^2) \, dx \approx 0.997$$

Bayesian Learning of Gaussians

Scalar Gaussian Likelihood Function:

$$p(x \mid \mu) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Assume variance σ^2 is known and fixed.

Gaussian Prior Distribution:

$$p(\mu) = \mathcal{N}(\mu \mid \mu_0, \sigma_0^2) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}$$

Gaussian Posterior Distribution: Prior is conjugate to likelihood. $p(\mu \mid x^{(1)}, \dots, x^{(L)}) = \mathcal{N}(\mu \mid \mu_L, \sigma_L^2) \qquad \frac{1}{\sigma_L^2} = \frac{1}{\sigma_0^2} + \frac{L}{\sigma^2}$ $\mu_L = \frac{\sigma^2}{L\sigma_0^2 + \sigma^2} \mu_0 + \frac{L\sigma_0^2}{L\sigma_0^2 + \sigma^2} \bar{x}_L \qquad \bar{x}_L = \frac{1}{L} \sum_{\ell=1}^L x^{(\ell)}$

Posterior Mean versus Empirical Mean

Optimal Estimator:

Posterior mean, Posterior mode, & Posterior median

$$\hat{\mu} = \mu_L = E[\mu \mid x]$$
$$\mu_L \to \bar{x}_L \text{ as } L \to \infty$$

Example:

Posterior given varying amounts of data N=L

$$\mu = 0.8$$

$$\sigma^2 = 0.1$$

Gaussian Posterior Distribution: $p(\mu \mid x^{(1)}, \dots, x^{(L)}) = \mathcal{N}(\mu \mid \mu_L, \sigma_L^2)$ $\mu_L = \frac{\sigma^2}{L\sigma_0^2 + \sigma^2} \mu_0 + \frac{L\sigma_0^2}{L\sigma_0^2 + \sigma^2} \bar{x}_L$

$$\frac{1}{\sigma_L^2} = \frac{1}{\sigma_0^2} + \frac{L}{\sigma^2}$$
$$\bar{x}_L = \frac{1}{L} \sum_{\ell=1}^L x^{(\ell)}$$

Impact of Prior Variance

Aside: Sums of Exponential Variables

Probability density in multiples of

 \prec

Bayesian Learning of Variances

Scalar Gaussian Likelihood Function:

$$p(x \mid \lambda) = \mathcal{N}(x \mid \mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp\left\{-\frac{\lambda}{2}(x-\mu)^2\right\}$$

Assume mean μ is known and fixed.

Gamma Prior Distribution on Inverse Variance (precision): $p(\lambda) = \text{Gamma}(\lambda \mid a_0, b_0) = \frac{b_0^{a_0}}{\Gamma(a_0)} \lambda^{a_0 - 1} \exp\{-b_0 \lambda\}$

Bayesian Learning of Variances

Scalar Gaussian Likelihood Function:

$$p(x \mid \lambda) = \mathcal{N}(x \mid \mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp\left\{-\frac{\lambda}{2}(x-\mu)^2\right\}$$

Assume mean μ is known and fixed.

Gamma Prior Distribution on Inverse Variance (precision): $p(\lambda) = \text{Gamma}(\lambda \mid a_0, b_0) = \frac{b_0^{a_0}}{\Gamma(a_0)} \lambda^{a_0 - 1} \exp\{-b_0 \lambda\}$

Gamma Posterior Distribution: Prior is conjugate to likelihood. $p(\lambda \mid x^{(1)}, \dots, x^{(L)}) = \text{Gamma}(\lambda \mid a_L, b_L)$ $a_L = a_0 + \frac{L}{2} \qquad b_L = b_0 + \frac{L}{2}\bar{\sigma}^2 \qquad \bar{\sigma}^2 = \frac{1}{L}\sum_{\ell=1}^{L} (x^{(\ell)} - \mu)^2$

Multivariate Gaussian Distribution

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{N/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}^x$$

Moment Parameterization: Mean & Covariance $\mu = \mathbb{E}[x] \in \mathbb{R}^{N \times 1}$ $\Sigma = \mathbb{E}[(x - \mu)(x - \mu)^T] = \mathbb{E}[xx^T] - \mu\mu^T \in \mathbb{R}^{N \times N}$

For simplicity, assume covariance positive definite & invertible.

$$\begin{split} \Lambda &= \Sigma^{-1} \\ \vartheta &= \Sigma^{-1} \mu \end{split}$$
Information Parameterization: Canonical Parameters $\mathcal{N}(x \mid \mu, \Sigma) \propto \exp\left\{-\frac{1}{2}x^T \Sigma^{-1} x + \mu^T \Sigma^{-1} x - \frac{1}{2}\mu^T \Sigma^{-1} \mu\right\}$ $\mathcal{N}^{-1}(x \mid \vartheta, \Lambda) \propto \exp\left\{-\frac{1}{2}x^T \Lambda x + \vartheta^T x\right\} \propto \exp\left\{\left[\sum_{s=1}^N \vartheta_s x_s - \frac{1}{2}\Lambda_{ss} x_s^2\right] - \left|\sum_{s \neq t} \Lambda_{st} x_s x_t\right|\right\}$

 $p(x \mid \theta) = \exp\{\theta^T \phi(x) - \Phi(\theta)\}\$

Recall general exponential family form:

Normal-Inverse-Wishart Prior Distributions

The Wishart distribution generalizes gamma to positive definite matrices
 For multivariate normal, conjugate prior is Wishart on inverse covariance, and multivariate Gaussian (with dependent covariance) on mean

Normal-Inverse-Wishart Prior Distributions

$$\begin{split} \bar{\kappa} &= \kappa + L \\ \bar{\nu} &= \nu + L \\ \bar{\kappa}\bar{\vartheta} &= \kappa\vartheta + \sum_{\ell=1}^{L} x^{(\ell)} \\ \bar{\nu}\bar{\Delta} &= \nu\Delta + \sum_{\ell=1}^{L} x^{(\ell)} x^{(\ell)^{T}} + \kappa\vartheta\vartheta^{T} - \bar{\kappa}\bar{\vartheta}\bar{\vartheta}\bar{\vartheta}^{T} \\ p(\mu,\Lambda \mid \kappa,\vartheta,\nu,\Delta) \propto |\Lambda|^{-\left(\frac{\nu+d}{2}+1\right)} \exp\left\{-\frac{1}{2}\operatorname{tr}(\nu\Delta\Lambda^{-1}) - \frac{\kappa}{2}(\mu-\vartheta)^{T}\Lambda^{-1}(\mu-\vartheta)\right\} \end{split}$$