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Abstract
Users of modern data-processing services such as tax

preparation or genomic screening are forced to trust them
with data that the users wish to keep secret. Ryoan protects
secret data while it is processed by services that the
data owner does not trust. Accomplishing this goal in
a distributed setting is difficult because the user has no
control over the service providers or the computational
platform. Confining code to prevent it from leaking secrets
is notoriously difficult, but Ryoan benefits from new
hardware and a request-oriented data model.

Ryoan provides a distributed sandbox, leveraging hard-
ware enclaves (e.g., Intel’s software guard extensions
(SGX) [15]) to protect sandbox instances from potentially
malicious computing platforms. The protected sandbox
instances confine untrusted data-processing modules to
prevent leakage of the user’s input data. Ryoan is designed
for a request-oriented data model, where confined mod-
ules only process input once and do not persist state about
the input. We present the design and prototype implemen-
tation of Ryoan and evaluate it on a series of challenging
problems including email filtering, heath analysis, image
processing and machine translation.

1. Introduction
Data-processing services are widely available on the

Internet. Individual users can conveniently access them
for tasks including image editing (Pixlr), tax preparation
(TurboTax), data analytics (SAS OnDemand) and even
personal health analysis (23andMe). However, user inputs
to such services are often sensitive, such as tax documents
and health data, which creates a dilemma for the user. In
order to leverage the convenience and expertise of these
services, she has to disclose sensitive data to them, poten-
tially allowing them to disclose the data to further parties.
If she wants to keep her data secret, she either has to give
up using the services or hope that they can be trusted—
that their service software will not leak data (intentionally
or unintentionally), and that their administrators will not
read the data while it resides on the server machines.

Companies providing data-processing services for
users often wish to outsource part of the computation to
third-party cloud services, a practice called “software as
a service (SaaS).” For example, 23andMe may choose to
use a general-purpose machine learning service hosted
by Amazon. SaaS encourages the decomposition of prob-
lems into specialized pieces that can be assembled on
behalf of a user, e.g., combining the health expertise of

23andMe with the machine learning expertise and robust
cloud infrastructure of Amazon. However, 23andMe now
finds itself a user of Amazon’s machine learning service
and faces its own dilemma—it must disclose proprietary
correlations between health data and various diseases in
order to use Amazon’s machine learning service. In these
scenarios, the owner of secret data has no control over the
data-processing service.

We propose Ryoan1, a distributed sandbox that allows
users to keep their data secret in data-processing services,
without trusting the software stack, developers, or admin-
istrators of these services. First, it provides a sandbox to
confine individual data-processing modules and prevent
them from leaking data; second, it uses trusted hardware
to allow a remote user to verify the integrity of individ-
ual sandbox instances and protect their execution; third,
the sandbox can be configured to allow confined code
modules to communicate in controlled ways, enabling
flexible delegation among mutually distrustful parties.
Ryoan gives a user confidence that a service has protected
her secrets.

A key enabling technology for Ryoan is hardware
enclave-protected execution (e.g., Intel’s software guard
extensions (SGX) [15]), a new hardware primitive that
uses trusted hardware to protect a user-level computation
from potentially malicious privileged software. The pro-
cessor hardware keeps unencrypted data on chip, but en-
crypts data when it moves into RAM. The hypervisor and
operating system retain their ability to manage memory
(e.g., move memory pages onto secondary storage), but
privileged software sees only an encrypted version of the
data that is protected from tampering by a cryptographic
hash. Haven [21] and SCONE [19] are examples of sys-
tems that use enclaves to protect a user’s computation
from potentially malicious system software, including a
library operating system to increase backward compati-
bility.

Ryoan faces issues beyond those faced by enclave-
protected computation such as Haven [21]. Enclaves
are intended to protect an application that is trusted by
the user, which does not collude with the infrastructure,
though it may unintentionally leak data via side chan-
nels. In Ryoan’s model, neither the application nor the
infrastructure is under the control of the user, and they
may try to steal the user’s secrets by colluding via covert
channels—even if the application itself is isolated from

1 Ryoan is a sandbox and its name is inspired by a famous dry landscape
Zen garden that stimulates contemplation (Ryōan-ji).
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the provider’s infrastructure using enclave protection.
Ryoan’s goal is to prevent such covert channels and stop
an untrusted application from intentionally and covertly
using users’ data to modulate events like system call ar-
guments or I/O traffic statistics, which are visible to the
infrastructure.

An untrusted application in Ryoan is confined by a
trusted sandbox. For the Ryoan prototype we chose Na-
tive Client (NaCl) [64, 74], a state of the art user-level
sandbox, as our basis (it can be built as a standalone bi-
nary, independent from the browser). NaCl uses compiler-
based techniques to confine untrusted code rather then
relying on address space separation, a property necessary
to be compatible with SGX enclaves. The Ryoan sandbox
safeguards secrets by controlling explicit I/O channels,
as well as covert channels such as system call traces and
data sizes.

The Ryoan prototype uses SGX to provide hardware
enclaves. Each SGX enclave contains a NaCl sandbox
instance that loads and executes untrusted modules. The
NaCl instances communicate with each other to form a
distributed sandbox that enforces strong privacy guaran-
tees for all participating parties—the users and different
service providers. Ryoan provides taint labels (similar
to secrecy labels from DIFC [57]) defined by users and
service providers, which allow them to ensure that any
module that processes their secrets is confined by Ryoan.
Confining untrusted code [47] is a longstanding problem
that remains technically challenging, but Ryoan benefits
from hardware-supported enclave protection. Also, Ryoan
assumes a request-oriented data model, where confined
modules only process input once and cannot read or write
persistent storage after they receive the input. This model
limits Ryoan’s applicability to request-oriented server
applications—but such servers are the most common way
to bring scalable services to large numbers of users.

Ryoan’s security goal is simple: prevent leakage of
secret data. However, confining services over which the
user has no control is challenging without a centralized
trusted platform. We make the following contributions:

• A new execution model that allows mutually dis-
trustful parties to process sensitive data in a distributed
fashion on untrusted infrastructure.

• The design and implementation of a prototype dis-
tributed sandbox that confines untrusted code modules
(possibly on different machines) and enforces I/O policies
that prevent leakage of secrets.

• Several case studies of real-world application sce-
narios to demonstrate how they benefit from the secrecy
guarantees of Ryoan, including an image processing sys-
tem, an email spam/virus filter, a personal health analysis
tool, and a machine translator.

• Evaluation of the performance characteristics of our
prototype by measuring the execution overheads of each

of its building blocks: the SGX enclave, confinement, and
checkpoint/rollback. The evaluation is based on both SGX
hardware and simulation.

2. Background and threat model
We assume a processor with hardware-protected en-

claves, e.g., Intel’s SGX-enabled Skylake (or later) archi-
tecture. SGX provides a cryptographic hash of code and
initial data (called a measurement), allowing a program
running in a protected enclave to verify code and data
integrity and giving it access to private data encrypted
by keys that the host software does not know and cannot
find out. The address space of a protected enclave has its
privacy and integrity guaranteed by hardware. Hardware
encrypts and hashes memory contents when it moves off
chip, protecting the contents from other users and also
from the platform’s privileged software (operating system
and hypervisor). Code within an enclave can manipulate
user secrets without fear of divulging them to the under-
lying execution platform. Code within an enclave cannot
have its code or control manipulated by the platform’s
privileged software.

SGX’s security guarantees are ideal for Ryoan’s dis-
tributed NaCl-based sandbox. The sandbox confines the
code it loads ensuring that the code cannot leak secrets
via storage, network or other channels provided by the
underlying platform. Ryoan instances communicate with
each other using secure TLS connections. By collecting
SGX measurements and by providing trusted initializa-
tion code, Ryoan can demonstrate to the user that their
processing topology has been set up correctly.
2.1 Threat model

We consider multiple, mutually distrustful parties in-
volved in data-processing services. A service provider is
not trusted by the users of the service to keep data secret;
if the service provider outsources part of the computation
to other services, it becomes a user of them and does
not trust them to provide secrecy, either. Each service
provider can deploy its software on its own computational
platform, or use a third-party cloud platform that is mutu-
ally distrustful of all service providers. We assume that
users and providers trust their own code and platform,
but do not trust each other’s code or platforms. Everyone
must trust Ryoan and SGX.

A service provider might be the same as its compu-
tational platform provider, and the two might collude to
steal secrets from their input data. Besides directly com-
municating data, untrusted code may use covert channels
via software interfaces, such as syscall sequences and
arguments, to communicate bits from the user’s input to
the platform.

A user of a service does not trust the software at
any privilege level in the computational platform. For
example, the attacker could be the machine’s owner
and operator, she could be a curious or even malicious
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administrator; she could be an invader who has taken
control of the operating system and/or hypervisor; she
might own a virtual machine physically co-located with
the VM being attacked; she could even be a developer of
the untrusted application or OS, and write code to directly
record user input.

Ryoan takes no steps to prevent each party from leak-
ing its own secrets intentionally (or via bugs). This model
is suited for the case where the service provider deploys
code on its own computational platform (see §4.2 for
more discussion). When executing on a different plat-
form provider, Ryoan provides protections against a mali-
cious OS, e.g., system call validation to prevent Iago
attacks [28] (similar to Haven [21], Inktag [40], and
Sego [46]) and encryption to protect data secrecy. Or-
thogonal techniques [27, 31, 42, 61, 78] may be used to
mitigate software bugs that unintentionally leak secret
input data to a computation’s output. Similarly, we as-
sume a computational platform provider is responsible
for protecting its own secrets (e.g., the administrator’s
password).

Denial of service is outside of the scope of our threat
model. Untrusted applications can simply refuse to run
or the underlying untrusted operating system can simply
refuse to schedule our code.

Although we consider covert channels based on soft-
ware interfaces like system calls, in this paper we do
not consider side or covert channels based on hardware
limitations (§2.3) or execution time. Untrusted enclaves
can leak bits by modulating their cache accesses, page
accesses, execution time, etc. Such channels are them-
selves technically difficult and often require dedicated
systems to address adequately [33, 35, 44, 49, 80]. Many
well-regarded secure system designs factor out side/covert
channels based on hardware limitations or execution time,
at least to some degree [21, 52, 60, 69, 76], because do-
ing so enables progress in designing and building secure
systems. While we do not claim to prevent the execution-
time channel, Ryoan does limit the use of this channel to
once per request (§5.2).
2.2 Intel Software Guard Extensions

Software Guard Extensions (SGX), which is available
in new Intel processors, allow processes to shield part of
their address space from privileged software. Processes on
an SGX-capable machine may construct an enclave which
is an address region whose contents are protected from
all software outside of the enclave (via encryption and
hashing). Code and data loaded into enclaves, therefore,
can operate on secret data without fear of unintentional
disclosure to the platform. These guarantees are provided
by the hardware [15].

SGX provides attestations of enclave identities. For
our purposes it is enough to think of an enclave identity
as a hash of the enclave’s initial state, i.e. valid memory

contents, permissions, and relative position in the enclave.
Our trust of the hardware extends to these identities;
particularly we assume that the initial state of an enclave
cannot be impersonated under standard cryptographic
assumptions. Ryoan uses SGX to attest that all enclaves
have the same initial state and thus the same identity.
Before passing sensitive data to Ryoan a user will request
an attestation from SGX and verify that the identity is the
Ryoan identity.

Knowing the initial state of an enclave ensures that
Ryoan instances are not compromised. SGX restricts
enclave entry to special offsets defined in the enclave
preventing return-to-libc [26, 34] style attacks.

Enclave code may access any part of the address space
which does not belong to another enclave. Enclave code
does not, however, have access to all x86 features. All
enclave code is unprivileged (ring 3), and any instruction
that would raise its privilege results in a fault.
2.3 Hardware security limitations

We discuss some known security limitations in modern
Intel processors. We believe these limitations must be
addressed independently from Ryoan, and we hope they
will be. Each of these limitations compromise Ryoan’s
security goals. If there are others, they also must be
addressed independently from Ryoan.

SGX page faults. As currently defined, privileged soft-
ware can manipulate the page tables of an enclave to ob-
serve a page-granularity trace of its code and data. Devas-
tating attacks have been demonstrated where application-
level information is used to recreate fine-grained secrets
from these coarse addresses, e.g., words in a document
and images [71]. If SGX enclaves serviced their own page
faults, this leakage channel would disappear.

Cache timing. Two processes resident on the same core
can use cache timing to obtain fine-grained information
about each other. For instance Zhang et al. demonstrated
(on an Amazon EC2 like plaform) the extraction of ElGa-
mal keys from a non-colluding VM [81]. The problem is
worse when processes can collude; others have demon-
strated high-bandwidth covert channels using cache be-
havior [70, 73]. There are hardware proposals to address
cache timing attacks [51].

Address bus monitoring. Although SGX encrypts data
in RAM, if an attacker monitors the address bus via a
sniffer or a modified RAM chip, it forms a cacheline-
granularity side or covert channel. Ryoan cannot prevent
such attacks without new architectural changes.

Processor monitoring. Processor monitoring units
(PMUs) provide extensive performance counter infor-
mation for on-chip events. If the PMU is updated about
events that occur in enclave-protected execution, the oper-
ating system could use the information as a covert channel
to learn secrets via untrusted code which could modulate
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Module property Enforce Reason
OS cannot access module memory (§2.2). SGX Security
Initial module code and data verified (§2.2). SGX Security
Can only address module memory (§2.4). NaCl Security
Ryoan intercepts syscalls (§2.4,§4.3). NaCl Security
Cannot modify SGX state (§5). NaCl Security
User defines topology (§4.1). Ryoan Security
Data flow tracked by labels (§4.2). Ryoan Security
Memory cleaned between requests (§5). Ryoan Security
Module defines initialized state (§5.4). Ryoan Perf.
Unconfined initialization (§5). Ryoan Compat.
In-memory POSIX API (§5.1) Ryoan Compat.

Table 1: Properties Ryoan imposes on untrusted modules, the technology
that enforces them, and the reason Ryoan imposes them.

its behavior to e.g., inflate certain event counts.
According to measurements on Skylake processors,

certain monitoring facilities are turned off during enclave
execution (e.g., Precise Event Based Sampling (PEBS)),
however the uncore counters (e.g., cache misses, TLB
misses) are enabled [32]. It is unknown at this time how
effective attacks based on processor monitoring will be.

Part of the purpose in constructing the Ryoan prototype
is to demonstrate the importance of addressing these
hardware-based information leaks.
2.4 Native Client

Google Native Client (NaCl), is a sandbox for running
x86/x86-64 native code (a NaCl module) using software
fault isolation. NaCl consists of a verifier and a service
runtime. To guarantee that the untrusted module cannot
break out of NaCl’s SFI sandbox, the verifier disassembles
the binary and validates the disassembled instructions as
being safe to execute.

NaCl executes system calls on behalf of the loaded
application. System calls in the application transfer con-
trol to the NaCl runtime which determines the proper
action. Ryoan cannot allow the application to use its sys-
tem calls to pass information to the underlying operating
system. For example, if Ryoan passed read system calls
from the application directly to the platform, the applica-
tion could use the size and number of the calls to encode
information about the secret data it is processing. We dis-
cuss the details of the confinement provided by Ryoan in
Section 5.1.

3. Design overview
Ryoan is a distributed sandbox that executes a directed

acyclic graph (DAG) of communicating untrusted mod-
ules which operate on sensitive data. Ryoan’s primary
job is to prevent the modules from communicating any
of the sensitive data outside the confines of the system
(including external hosts and the platform’s privileged
software).

Ryoan prevents modules from leaking sensitive data
by decoupling externally visible behaviors from the con-
tent of secret data. SGX hardware limits externally visible
behaviors to explicit stores to unprotected memory and

Privileged Software (OS/Hypervisor)

Linux Process

SGX Enclave

Ryoan Sandbox
Module

Untrusted

Trusted

Trampoline code and Buffers

Hardware

Notation:

Figure 1: A single instance of Ryoan’s distributed sandbox. The privi-
leged software includes an operating system and an optional hypervisor.

use of system services (syscalls). Unprotected stores are
eliminated by the NaCl tool chain and run time. Ryoan
mostly eliminates system calls by providing their func-
tionality from within NaCl. For example, Ryoan provides
mmap functionality by managing a fixed-sized memory
pool within the SGX enclave. However, untrusted mod-
ules must read input and write output so Ryoan provides
a restricted IO model that prevents data leaks (e.g., the
output size is a fixed function of input size). Table 1 sum-
marizes the properties Ryoan imposes on untrusted code
to achieve secure decoupling of observable behavior from
secret input data.

Figure 1 shows a single instance of the Ryoan dis-
tributed sandbox. A principal (e.g., a company providing
software as a service) can contribute a module which
Ryoan loads and confines, enabling the module to safely
operate on secret data. A module consists of code, initial-
ized data, and the maximum size of dynamically allocated
memory. The NaCl sandbox uses a load time code valida-
tor to ensure that the module cannot violate the sandbox
by reaching outside of its address range or making syscalls
without Ryoan intervention.

For backward compatibility, Ryoan modules support
programs written for libc, which could include fully
compiled languages and runtimes built on top of libc.
To reduce memory use, our Ryoan prototype does not
support a just-in-time compiler (JIT), though NaCl sup-
ports it [17]. Ring 0 execution is disallowed in enclaves
so Ryoan cannot directly support an operating system or
hypervisor. A Ryoan module can be a Linux program, or
it could contain a library operating system [21].

Ryoan does not trust other software on the computa-
tional platform, including privileged software, i.e., operat-
ing system and hypervisor. Instead, Ryoan assures its own
secrecy and integrity by executing in a hardware-protected
enclave. Hardware attests to Ryoan’s initial state becom-
ing the anchor for Ryoan’s chain of trust (Figure 2). SGX
generates an unforgeable remote attestation for the user
that an Ryoan instance is executing in an enclave on the
platform. The user can establish an encrypted channel
that she knows terminates within that Ryoan instance.
SGX guarantees the enclave cryptographic secrecy and
integrity against manipulation by privileged software.
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Enclave Description

Hash

Ryoan Sandbox

Hash Module

HardwareSGX

Signature Signature
Meta

Figure 2: The Ryoan chain of trust. SGX hardware attests that a
valid instance of Ryoan is executing (Hash) with an intended SGX
configuration (Meta). Ryoan ensures that the expected binary is loaded
with a signed hash from the software provider (grey).

A master enclave creates all Ryoan instances and
they establish cryptographically protected communication
channels among themselves as specified by the user. Once
the distributed topology has been established, the master
forwards the attestations for each node in the topology to
the user who verifies that the configuration matches her
specification. Then the user inputs her secret data. Ryoan
provides simple labels to protect secret data added by
modules in the DAG. All of Ryoan’s instances together
form a distributed sandbox that protects secret input data
from being leaked by the untrusted code modules that
operate on it.

Ryoan identity and module identity. SGX attests to the
Ryoan sandbox using processor hardware and the Ryoan
sandbox attests to the module’s initial state (Figure 2)
using software cryptography. SGX supports two forms of
identity, one based on a hash of the module’s initial state
(MRENCLAVE) and one based on a public key, product
identifier and security version number (MRSIGNER).
SGX can verify Ryoan using either form of identity;
our prototype uses MRENCLAVE. Ryoan can support
software analogs of either identity for untrusted modules;
the prototype identifies modules by the public key that
signs them.

In the next section, we will describe Ryoan’s dis-
tributed properties and how they are enforced, followed by
a more detailed explanation of how individual instances
confine modules.

4. The Ryoan distributed sandbox
The Ryoan sandbox is distributed, with different in-

stances confining untrusted modules while all instances
communicate to enforce global properties like the com-
munication topology and secrecy labels for code and data.
4.1 Enforcing Topology

The user either defines the communication topology of
confined modules or explicitly approves it. A topology is
a DAG of modules with unidirectional links (see §5.2 for
why Ryoan requires a DAG). The DAG specification is
first passed to an initial enclave which we call the master.
It contains standard, trusted initialization code provided
by Ryoan. The master requests that the operating system
start enclaves that contain Ryoan instances for modules
listed in the specification. These enclaves can be hosted
on different machines. The master uses SGX to perform

local or remote attestation to verify the validity of indi-
vidual Ryoan enclaves, then lets neighbor enclaves in
the DAG establish cryptographically protected commu-
nication channels via key exchange using the untrusted
network or local inter-process communication as a trans-
port. The user can verify the validity of the master via
attestation, and ask it whether a desired topology has been
initialized. After that, the user establishes secure channels
with the entry and exit enclaves of the DAG, and starts
data processing.

The master enclave is convenient but not essential to
our design. We could instead append a DAG specification
to each user request, and have each enclave verify the
identities of its neighbors according to the specification
before sending its output.

Figure 3 shows an example of Ryoan processing input
from user Alice whose sensitive data is processed by both
23andMe and Amazon. Each Ryoan instance executes in
an enclave on the same or different machines. The host
machine(s) might be provided by 23andMe, Amazon, or
a third party. In all cases, Ryoan assures no leakage of
the user’s secrets and also prevents leakage of any trade
secrets used by 23andMe and Amazon.
4.2 Label-based model for communication
Ryoan labels. Ryoan adapts previous label-based sys-
tems to enable multiple mutually distrustful modules to
cooperate on sensitive data. Ryoan uses secrecy labels
to mark secret data and enclaves which have seen that
secret data. Ryoan’s labels are similar to a DIFC sys-
tem [45, 52, 60, 69, 76], but far simpler. Ryoan labels
could also be thought of as taint tracking [30] at enclave-
level granularity, with per-principal classes of taint. Taint
is attached to data at unit of work granularity (where units
of work are application defined). Conceptually, a label is
a set of tags, where each tag is an opaque identifier drawn
from a large universe that identifies a principal, indicating
secrets from this principal.

In our prototype, a user’s tag is his/her public key.
A company can use its private key to sign its module
binaries, and use the associated public key as the tag for
those modules. The company can also use different key
pairs to sign its module binaries to make them different
principals, enabling privilege separation.

Label manipulation rules. Each module has the ability
to add or remove a single tag that corresponds to its
principal — each module can declassify its own secrets.
When a module reads data with a non-empty label (e.g.,
from a user or another module’s output), it merges the
data’s label with its current label which becomes the new
label for both the module and the data. Ryoan marks a
module’s output data with the module’s label.

In Figure 3, input from Alice is labeled with her tag,
and the first 23andMe module adds the 23andMe tag, to
make sure that its secrets cannot flow back to the user after
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23andMe
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by sandbox:

3. 23andMe adds its label and delegates
to Amazon Machine Learning

4. Amazon Machine Learning 
sends result to 23andMe after 
removing its own label

6. Sandbox removes 
Alice's label

Amazon

5. 23andMe 
removes its label

23andMe
Alice

23andMe
Alice

Ryoan instance

23andMe

23andMe
Alice23andMe

Alice

Alice

out_size =
const

out_size = const
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Figure 3: Ryoan’s distributed sandbox. Ryoan instances manage labels on data and modules. The user’s tag is propagated to all modules, making
them confined after receiving input; For example, 23andMe’s tag is kept when it outsources to Amazon Machine Learning to prevent leaking secrets
from 23andMe.

handing them off to Amazon’s machine learning module.
This control is important since the user is in control of
the topology. The second 23andMe module removes its
tag from its output’s data label. In a sense, the public key
of 23andMe creates a group and both of its modules are
members of the group—verified by Ryoan because both
are signed with that key. Ryoan is trusted to remove the
user’s tag when it communicates over a protected and
authenticated connection to the user.
4.2.1 Non-confining labels

A Ryoan instance is created with an empty label,
and the module can add the tag that corresponds to
its principal at any time. If the label does not contain
tags from other principals, the module is not confined
and may perform any file system operation, network
communication, or address space modification permitted
by Ryoan and NaCl. For example, it can freely initialize
its state by reading from the network or file system. Ryoan
allows unfettered access to external resources because
the principal’s own tag means that the module may have
seen secrets only from itself. In Ryoan’s threat model,
principals trust their own module not to leak its own
secrets (§2.1).

In many DIFC systems [45, 52, 60, 69, 76], principals
are independent from the application code, e.g., multiple
users (principals) use the same wiki Web application,
and the users do not trust the application. Ryoan allows
application owners (service providers) to be principals
who trust their own code, which is different from the
standard DIFC model. Although a service provider’s code
may have bugs that cause it to release its own secrets
in its output, that is not within the threat model for
Ryoan and can be mitigated using orthogonal techniques
(§2.1). Ryoan protects a principal’s data when that data
is processed by modules that are not under control of the
principal.

A service provider can host its modules and secret
data on its own machines to protect them. However, if it
chooses to use a third-party computational platform that
it does not trust, its modules containing non-confining
labels need encryption to protect persistent secrets from
the platform. Ryoan uses the SGX sealing feature to store
secret data on behalf of modules. Sealing provides an
encryption key only accessible to enclaves with the same
identity executing on the same processor. For Ryoan, all

enclaves are Ryoan instances and have the same identity.
Any data that the module wants to persist securely is
passed to Ryoan, which adds its own metadata, including
the public key of the requesting module. Ryoan seals
the data and metadata and writes the result into a file.
The metadata allows Ryoan to persist data on behalf of
different modules and allows it to restrict any module’s
access to its own data.
4.2.2 Confining labels

When a module’s label contains tags of other princi-
pals (as a result of receiving secrets from a user or another
module’s output), it enters a confined environment strictly
enforced by Ryoan. Ryoan must prevent confined mod-
ules from leaking data that belong to other principals.
Such labels are called confining labels.

Modules with confining labels are disallowed to per-
sist data. As a result, Ryoan’s label system is far sim-
pler than DIFC systems [45, 57, 60, 69, 76]. Confined
modules have seen secret data from other principals, so
allowing them persistent storage violates Ryoan’s “one-
shot” request-oriented data model—a module processes a
request’s data once and only once.
4.2.3 Ryoan data audit trail

As data traverses the DAG of modules, Ryoan tracks
which modules process each piece of user work. The audit
trail for each work unit is available to the user as part of a
DAG’s output. While Ryoan cannot verify that modules
are performing their intended or claimed function, an
audit trail can still be useful. For example, a given piece
of data might have been processed by a version of a
module which is known to be faulty. Whether a user wants
the audit trail and for what purpose is dependent on the
application and the user.
4.3 Data oblivious communication

One of the primary safety functions of Ryoan is to
prevent the computational platform from inferring secrets
about the input data by observing data flow among mod-
ules. Therefore, data flow must be independent from the
contents of the input data: Ryoan never moves data in re-
sponse to activity under the control of the untrusted mod-
ule once the module has read its input data. This safety
property is sometimes called being data oblivious [58].

Units of work can be any size, but Ryoan ensures that
data flow patterns do not leak secrets from input data by
making module output size a fixed, application-defined
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function of the input size. Ryoan protects communication
with the following rules: (1) each Ryoan instance reads its
entire input from every input-connected Ryoan instance
before the module starts processing. (2) the size of the
output is a polynomial function of the input size, specified
as part of the DAG. Ryoan pads/truncates all outputs to the
exact length determined by the polynomial and the size
of the input. (3) Ryoan is notified by the module when its
output is complete , and it writes the module’s output to all
output-connected Ryoan instances. Ryoan encapsulates
module output in a message that contains metadata which
describes what is module output and what is padding
(if any). The metadata is interpreted, and any padding is
stripped away by the next Ryoan instance before exposing
the data to its module. These rules are sufficient because
they ensure that output traffic is independent from input
data (though there are possible alternatives, for example,
each request could specify its output size).

Consider the scenario in Figure 3. Each input comes
from a user. The user can choose to leak the size of the
input, or she can hide the size by padding the input. The
description of the DAG specifies that (1) the output of
23andMe’s first module is padded to a fixed size defined
by 23andMe which can hold the largest possible user
input, (2) the output of Amazon Machine Learning’s
classifier module is padded to a fixed size to encode
the classification result, and (3) the response to the user
from 23andMe’s second module is also padded to a fixed
size that can hold the largest possible result. Each Ryoan
instance must receive the complete input of a work unit
before executing its module.

Ryoan ensures that output size is a fixed function of the
input, so it is a module’s mistake if the output is not large
enough. Ryoan will truncate outputs that are too large and
pad outputs that are too small. However, a module author
should be able to describe the maximum possible output
for a given sized input request. For example, a spam
detector’s output will be the size of the input mail message
(which is just copied) plus a constant size sufficient to
hold the spam rating for the email.

5. Module confinement
Ryoan relies on instances of its sandbox to prevent

modules from leaking sensitive data to an adversary,
including the platform’s privileged software. To that end,
a sandbox instance enforces the life cycle, system service
restrictions, and input-output behavior of the module.

Module validation Ryoan module validation ensures
that modules are safe to execute by enforcing a set of con-
straints on the code being loaded. Ryoan uses NaCl’s load-
time code validator to ensure that the module’s code ad-
heres to a strict format. NaCl’s code format is designed to
be efficiently verified and efficiently sandboxed, restrict-
ing control flow targets and cleanly separating code from

data. Memory accesses are confined to remain within the
address space occupied by the module, including fetches
for execution. The detailed guarantees of NaCl are avail-
able as prior work [64, 74] and Ryoan does not change
the base guarantees of the NaCl sandbox. Ryoan adds
the constraints that modules may not contain any SGX
instructions, and that control flow is constrained to the
initial module code; i.e., Ryoan disallows dynamic code
generation.

Module life cycle A Ryoan instance enforces the follow-
ing life cycle on its module: creation, initialization, wait,
process, output, destruction/reset. The sandbox begins
by validating its module and verifying that its identity
matches the DAG specification. It allows the module to
initialize with an empty label and the module can give
itself a non-confining label (§4.2.1). In both cases the
module has full access to the system services exposed
by vanilla NaCl. Non-confined initialization makes mod-
ule creation more efficient and it makes porting easier
because initialization code can remain unchanged.

Modules signal Ryoan when initialization is complete
by calling wait for work, a routine implemented by
Ryoan. Once a module is initialized, it processes a request,
generates its output, and then is destroyed or reset to
prevent accumulating secret data. Ryoan instances are
request oriented: input can be any size, but each input
is an application-defined “unit of work.” For example, a
unit of work can be an email when classifying spam, or
a complete file when scanning for viruses. Each module
gets a single opportunity to process its input data.
5.1 Ryoan’s confined environment

Any module with a confining label is executed in
Ryoan’s confined environment. Ryoan’s confined envi-
ronment is intended to prevent information leakage while
reducing porting effort. When a module receives the se-
cret data contained within a request, it enters the confined
environment and loses the ability to communicate with
the untrusted OS via any system call. Therefore, Ryoan
must provide a system API sufficient for most legacy code
to perform their function. Ryoan provides these services.

• The most important service is an in-memory virtual
file system. First, Ryoan allows files to be preloaded in
memory, and the list of preloaded files must be determined
before the module is confined; e.g., they can be listed in
the DAG specification, or requested by the module during
initialization. Ryoan presents POSIX-compatible APIs
to access preloaded files that are available even after the
module is confined. Second, a confined module can create
temporary files and directories (which Ryoan keeps in
enclave memory). When the module is destroyed or reset,
all temporary files and directories are destroyed, and all
changes to preloaded files are reverted.

• mmap calls are essential to satisfy dynamic memory
allocation, so Ryoan supports anonymous memory map-
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pings by returning addresses from a pre-allocated memory
region. The maximum size of the region must be decided
before the module becomes confined.

Ryoan’s confined environment is sufficient for many
data-processing tasks. For example, ClamAV, a popular
virus scanning tool loads the entire virus database during
initialization; when scanning the input such as a PDF file,
it creates temporary files to store objects extracted from
the PDF. Ryoan’s in-memory file system satisfies these
requirements.

However, if an application needs a large database that
does not fit in memory when processing data, Ryoan
cannot support it as a single module. A workaround would
be to partition the database, and use multiple modules to
load different partitions and perform different parts of the
task, if that is feasible for a particular application.

Any design alternative that allows access to persistent
files (as opposed to Ryoan’s in-memory files) must cope
with the covert channel created by allowing the OS to see
file reads, which might occur based on computation within
the untrusted module. Ryoan eliminates this channel by
executing from memory only. All Ryoan modules must
fit into memory for their entire lifetime because any
“swapping” done by Ryoan will create a covert channel
between the module and the operating system. File access
techniques based on oblivious RAM (ORAM [50, 62])
can hide data access patterns, but at a performance and
resource cost we deem too high for Ryoan.
5.2 Processing-time channels

A confined module cannot communicate with the
untrusted OS via system calls, but it determines when
its data processing is finished, which can be a channel to
the OS to leak secrets by choosing different processing
times depending on the data.

Fixed processing time. Timing channels can be elimi-
nated by forcing a fixed processing time whose length is
determined before the module has seen any data. The OS
cannot directly determine when the module completes,
so the Ryoan runtime can pad execution time by busy
waiting. However, controlling its timing without the co-
operation of the operating system is a challenge. Fixed
processing time can be quite expensive for computations
with widely variable run times, because all runtime would
be padded to the worst case. However, fixed processing
time can be quite modest for computations with highly
predictable run times (e.g., evaluating certain machine
learning models like decision trees) or with light through-
put requirements. Fixed time execution does not leak
information, though we defer to future work building a
Ryoan instance that supports it. To add some flexibility
with no loss of security, execution time could also be a
fixed function of input length.

Quantized processing time. Processing time channels
are mitigated by reducing the granularity of potential

processing times by padding execution to a fixed number
of quantized, pre-defined values [20, 67, 79, 80]. Because
Ryoan only allows modules to see sensitive data once,
individual modules can only leak a number of bits that
is proportional to the logarithm of the number of distinct
execution durations (e.g., if the code terminates after one
of eight different statically determined intervals, it leaks
three bits).

Randomness. Users can specify whether confined mod-
ules need access to randomness. If the user allows, a mod-
ule can access randomness via the processor, e.g., Intel’s
RDRAND instruction. Ryoan does not allow confined
modules to get randomness from the operating system.
Access to randomness means a malicious module can
leak random bits from an input, for example choosing an
input bit at random and leaking it using its processing
time. If the user repeats input data, a malicious module
with access to randomness can eventually leak the entire
input over its processing-time channel, even though it
only leaks once for each input unit of work. Using a fixed
processing time eliminates this channel.

One shot at input data. Ryoan is designed to allow each
module a single opportunity to process its input data, with
no opportunity to carry forward state from one input to the
next. This one-shot policy limits data leakage. Therefore,
Ryoan must prevent a module from accessing the same
input again after reset. Ryoan enforces the one-shot
policy by 1) requiring that the data processing topology
is a DAG to avoid cycles; 2) Ryoan’s reset mechanism
deletes all data dependent on state modified after secret
data is read; 3) Ryoan prevents input replay attacks by
reinitializing all secure connections if any connection is
ever broken. Secure communication protocols contain
protection against replay attacks [75], so reinitializing
broken links prevents input replay. Note that the OS can
pause or stop the execution of an SGX enclave, but it
cannot rollback its state [15], which means the state of
a secure connection cannot be rolled back. Ryoan itself
uses high-quality randomness available via the processors
RDRAND instruction to establish secure connections,
which does not rely on the OS.
5.3 Protecting Ryoan from privileged software

A Ryoan instance requires services provided by the
untrusted operating system and possibly the hypervisor.
The Ryoan instance must check the results coming from
the untrusted operating system to make sure the OS
is not being misleading. Most of these checks can be
transparently inserted into libc, the lowest level of
software that communicates with the operating system.
Ryoan-libc is Ryoan’s replacement for libc and it
manages system call arguments and checks their return
values. The Ryoan sandbox code invokes Ryoan-libc
through standard libc functions, such as the wrappers
for system calls (e.g., read).
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Iago attacks. Ryoan-libc guards against all known Iago
attacks [28] by keeping state in enclave memory and
carefully checking the results of system calls e.g., making
sure that addresses returned from mmap do not overlap
with previously allocated memory (like the stack). For
Linux, the system call interface can be secured e.g.,
by maintaining semaphore counts in enclave memory
and duplicating futex [37] memory inside and outside
the enclave. Ryoan shares the need for this type of
checking with all systems distrustful of the operating
system [29, 40, 46], though some check at a lower level
than system calls [21].

Controlling an enclave’s address space. SGX provides
user control of memory mapping, including permissions.
Ryoan-libc maintains a data structure that is equivalent
to the kernel’s list of virtual memory areas (VMAs). It
knows about each mapped region and its permissions.
Map requests are fulfilled eagerly and verified by Ryoan-
libc at the time of the request (i.e., as part of the mmap
call), not at page fault time.

SGX dictates a very specific procedure for verifying
enclave mappings. A typical new mapping proceeds as
follows: (1) Untrusted code notifies the kernel of a new
desired mapping via a system call made by Ryoan-libc.
(2) The kernel selects new enclave page frames to satisfy
the mapping and modifies the page tables to map the
frames at the requested virtual address with the requested
permissions. (3) Untrusted user code resumes and passes
control to enclave code. (4) Enclave code verifies that
the mapping completed as expected by invoking the SGX
instruction EACCEPT on every new page. The EACCECPT
instruction accepts a virtual address and protection bits
and verifies that the current address space maps that page
to a valid, SGX protected 4KB physical frame. New pages
added to the enclave always start out with read and write
permissions and their contents are zeroed by hardware.

If the user wants something other than read and write
permission, SGX provides the EMODPE instruction to
make them more permissive and the EMODPR instruction
which makes them less permissive. EMODPE is only avail-
able to enclave code while EMODPR is only available to
privileged software (ring 0, outside of the enclave). If an
enclave desires less permissive page access rights, it must
signal privileged software to request the restriction, but
can validate that it was done correctly through another use
of the EACCEPT instruction. Note that the OS can always
restrict page permissions against the enclave’s wishes,
which will create more permission faults.

Ryoan-libc emulates mmap behavior by doing work
required by SGX on behalf of the user. For instance, if
the user expects new pages to have particular contents
(e.g., she privately mapped a file) and to be read-only,
Ryoan-libc can copy the requested portion of the file into
enclave memory and ensure those pages have read-only

create init wait process output destroy

create init wait process output resetcheckpoint

unoptimized life cycle

checkpoint-based life cycle

Figure 4: Instance life cycle: unoptimized vs checkpoint-based.

permissions before returning.
5.4 Optimizing module reset

The restrictions necessary to confine modules create
execution time and memory space overheads. In this sec-
tion we discuss strategies for mitigating these overheads.

Checkpoint-based enclave reset. Creating and initial-
izing modules often requires far more CPU time than
processing a single request (see Section 8 for measure-
ments). For instance, loading the data necessary for virus
scanning takes 24 seconds; orders of magnitude greater
than the ≈0.124 seconds it takes to process a single email.
Ryoan manages the module life cycle efficiently using
checkpoint-based enclave reset.

Creating and initializing a hardware protected enclave
is slow (e.g., we measured 30 ms for a small enclave).
Compounding the problem is that applications often do
not optimize their own initialization sequence on the as-
sumption that it is not frequently executed. But Ryoan
does not allow any data from one input to be carried for-
ward to the next, so each input requires that computation
begins from the same, non-secret state, making initializa-
tion a bottleneck.

Ryoan provides a checkpoint service that allows the ap-
plication to be rolled back to an untainted, but initialized,
memory state (Figure 4). In our prototype this state is
at the first invocation of wait for work. Ryoan does
not allow an enclave that has seen secret input to be
checkpointed, because its data model is request-oriented:
modules should not depend on past requests to operate.
Checkpointing a module that has seen secret data would
(potentially) give that module multiple execution opportu-
nities on a single request’s data.

Checkpoint restore allows Ryoan to save the cost of
tearing down and rebuilding the SGX enclave and it
saves the cost of executing the application’s initialization
code. Ryoan checkpoints are taken once, but restored
after each request is processed. Therefore, Ryoan makes
a full copy of the module’s writeable state and simply
tracks which pages get modified (avoiding a memory
copy during processing). Only the contents of pages that
were modified during input processing are restored (§6.6).
SGX provides a way for enclave code to verify page
permissions and be reliably notified about memory faults,
which is necessary to track which pages are written.

Batch requests before reset. A user might want more
efficiency by allowing a module to process several input
units of work before it is reset. Whether batching multiple
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inputs within a single request constitutes a threat is user
and application dependent. But if a module can process
more than one unit for the same data source, it can
accumulate secrets across two wait-process-output cycles.
Having access to more secret data for longer exacerbates
the problem of slow leaks (e.g., timing channel leaks). For
example, an email-filtering module allowed to process
multiple emails without resetting could leak a password
contained in one email by using the processing-time
channel across multiple wait-process-output cycles.

6. Implementation
The Ryoan instance prototype is based on NaCl version

2d5bba1 with the last upstream commit on Jan 19 2016.
We leverage NaCl’s existing sandboxing guarantees to
control the module’s access to the platform. NaCl ensures
that the module in the sandbox has no direct access to
OS services. We ported NaCl for use in SGX with the
introduction of the Ryoan-libc layer. NaCl depends on libc
to interface with the platform. Ryoan-libc makes system
calls on behalf of a Ryoan instance after checking that
the system call is allowed. We modified eglibc’s dynamic
linker to support loading Ryoan into enclaves, but all
modules must be statically linked. We base Ryoan-libc
on eglibc 2.19 which is compatible with our version of
NaCl.
6.1 Constraints of current hardware

Ryoan relies on features from version 2 of the SGX
hardware, while only version 1 is currently available. Ver-
sion 2 adds the ability to modify enclaves dynamically,
i.e., augmenting an executing enclave with new memory
and changing protections on existing enclave memory.
Furthermore, our first generation SGX-capable machine
makes only a limited amount of physical memory avail-
able to SGX (128MB on our machine).
6.2 Ryoan-libc

Ryoan-libc manages interactions with the untrusted op-
erating system. It is impossible for the OS to read enclave
memory; so Ryoan-libc marshals system call arguments
into the process’ untrusted memory and copies back re-
sults. Interposition from libc is common for applications
that do not trust the operating system [29, 40, 46], while
Haven protects a smaller system interface [21].

Fault handling. Signals allow user-level code to be
interrupted by the system. The source of most signals
is unreliable when the OS is untrusted, but SGX allows
us to get reliable information about memory faults; this
allows Ryoan-libc to expose this information to Ryoan
instances though the normal signal handler registration
interface. Ryoan-libc signal support is currently limited
to the memory fault signal (SIGSEGV).

After any fault, exception, or interrupt the OS returns
control to untrusted trampoline code contained within
the process. In the case of a memory fault, rather than

simply resuming the enclave where it was paused (as in
the normal case), our trampoline code enters the enclave
where it can read reliable information about the fault from
SGX and make necessary arrangements to fix the fault
(e.g., change permissions). After handling the fault, the
enclave exits and then our trampoline resumes the enclave
at the instruction that caused the memory fault. We cannot
protect the trampoline code from the OS, but it can only
enter the enclave using the EENTER instruction, which
will transfer control to our fault-checking entry point,
or resume the enclave using the ERESUME instruction
which will re-execute the instruction that faulted. If the
enclave is resumed without calling the enclave fault
handler, the instruction will simply refault.
6.3 Module address space

x86-64 NaCl allocates a 84 GB region for a NaCl
module with 4 GB of module address space flanked above
and below by 40 GB of inaccessible guard pages, but
current SGX hardware only allows enclaves with 64
GB of virtual address space. Fortunately, the original
x86-64 NaCl design [64] overestimated the amount of
guard pages needed to allow for future changes in the
architecture. A detailed analysis [6] indicates we can
remain safe by keeping the upper guard region unchanged
but reducing the lower region from 40 GB to 4 GB.
A Ryoan instance therefore requires 48 GB of virtual
address space which fits into current SGX hardware.
6.4 I/O control

A Ryoan instance controls its module’s access to files
and request (work unit) buffers when it is confined, pre-
venting the module from leaking data via direct syscalls.

In-memory virtual file system. A confined module can-
not access the file system, but Ryoan implements POSIX-
compatible APIs for in-memory virtual files, including
preloaded files and temporary files. An in-memory file is
backed by a set of 4 KB blocks that are indexed by a two-
level tree structure (similar to a page table). The blocks of
a file are allocated on demand as the file grows. The max-
imum size of an in-memory file is 1 GB. An in-memory
directory is backed by a hash table, and we use refer-
ence counts to track the lifetime of files. This virtual file
system supports standard APIs including open, close,
read, write, stat, lseek, unlink, mkdir, rmdir and
getdents. When the module writes a preloaded file, the
Ryoan instance keeps the original file blocks. When the
module is reset, preloaded files are restored to their origi-
nal versions and temporary files are deleted.

Input/output buffers. For each unit of work, a mod-
ule calls wait for work (a system service implemented
by Ryoan), and the Ryoan instance reads its entire input
from all input channels into memory buffers before re-
turning to the module. After processing the work unit,
the module’s output is written to a buffer, and in the
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next wait for work call, the Ryoan instance flushes the
buffer to output channels after padding or truncating the
output to a size calculated using a polynomial function of
input size according to the DAG specification. The mod-
ule accesses these buffers via file descriptors using APIs
implemented in the virtual file system, just like using
regular pipes or sockets.
6.5 Key establishment between enclaves

Ryoan instances implement protected channels using
an authenticated encryption algorithm (AES-GCM [55])
provided by the libsodium [9] library. Encryption keys
are agreed on at runtime using Diffie-Hellman key ex-
change. SGX allows you to embed the key parameters in
attestations, accelerating a Diffie-Hellman key exchange
between enclaves [16]. On our hardware (§8), SGX key
exchange takes 1.78ms while OpenSSL takes 1.90ms.
Randomness is required for key exchange and Ryoan uses
the x86 instruction RDRAND to obtain it.
6.6 Checkpointing confined code

Ryoan uses page permission restriction and fault infor-
mation to detect module writes. Recall that SGX provides
reliable memory page permissions and information about
memory faults; Ryoan does not trust the OS (§6.2). The
entire module is write protected by the OS when it is
confined. Ryoan verifies that the protection was done
using EACCECPT. As the module writes, the Ryoan in-
stance catches permission faults and records the page’s
address before changing the permissions to allow writes
and resumes the module. However, it still needs the OS
to change permissions in the page table, which requires
ring-0 privilege. In fact, the page fault causes an exit from
the enclave; the kernel catches it and invokes the Ryoan
instance’s signal handler. The handler first executes out-
side enclave mode and makes an mprotect syscall to
change page permissions, then enters enclave mode to
update SGX page permissions with EMODPE. After that,
the handler returns and normal execution resumes.

To reset the enclave, all written pages are restored to
their initial value and made unwritable again. In our pro-
totype, before an untrusted module is confined for the
first time, the Ryoan instance creates a checkpoint by
copying the module’s complete writable memory state.
This copy-on-initialize strategy optimizes the case where
Ryoan instances are created once and then used and reset
for many requests. If the copy-on-initialize cost is too
high, Ryoan could incrementally create the checkpoint
by doing copy-on-write for each request, gradually accu-
mulating and preserving unmodified versions of any page
modified during any execution.

In our prototype the checkpoint is taken when the mod-
ule is blocking on wait for work, and restore occurs the
next time the module blocks on wait for work. This
gives module writers clear semantics about what state
will not persist across invocations, and allows the Ryoan

instance to purge any secrets kept in registers.
Restoring a checkpoint does incur additional page

faults which could be used as a channel to leak data. We
find these additional faults acceptable as even normal page
accesses by the module are a channel between module
and OS that SGX does not close [71]. Page faults will
continue to leak information about enclave execution until
future generations of hardware enclaves can service their
own page faults (§2.3). To make Ryoan execution on
current SGX hardware more secure, we could save/restore
all writable regions of the module instead of tracking
individual pages using write protection. This strategy
is less efficient but does not leak additional per-page
information.

7. Use cases
This section explains four scenarios where Ryoan

provides a previously unattainable level of security for
processing sensitive data. For all examples, the Ryoan
instances could execute on the same platform or on
different platforms, e.g., the entire computation might
execute on a third-party cloud platform like Google
Compute Engine, or a provider’s module might execute
on its own server. Ryoan’s security guarantees apply to
all scenarios.
7.1 Email processing

A company can use Ryoan to outsource email filtering
and scanning while keeping email text secret. We consider
spam filtering and virus scanning, using popular legacy
applications — DSPAM 3.10.2 and ClamAV 0.98.7.

The computation DAG for this service contains four
Ryoan instances, each confining a data processing module
(see Figure 5). An email arrives at the entry enclave over
a secure channel, which simply distributes the email text
and attachments to the enclaves containing DSPAM and
ClamAV, respectively. The results of virus scanning and
spam filtering are sent to a final post-processing enclave
which constructs a response to the user over a secure
channel.
7.2 Personal health analysis

Consider a company (e.g., 23andMe) that provides
customized health reports for users based on a variety
of health data. 23andMe accepts a user’s genetic data,
medical history, and physical activity log as input, extracts
important health features from these data, and predicts
the likelihood of certain diseases [1]. Since genetic and
health information is extremely sensitive, users may not
feel comfortable with the company keeping their data. To
encourage use of the service, 23andMe can deploy it with
Ryoan, assuring users that the code that processes their
data cannot retain or leak their secrets.

23andMe owns its research results about the associ-
ations between diseases and health features, but it may
want to use a third-party cloud machine learning service

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    543



Recognize
Face

Recognize
Smile

Recognize
Horse

Recognize
NSFW

Combine
Results

Images

Distribute

Confined, Untrusted Module

- Entry - Exit

Virus
Scan

Spam
Filter

Email

Combine

Distribute

Notation:

Translate

Translation Classifier

Health

Amazon Machine 
Learning23andMe

Parse Input Return
Results

23andMe

Figure 5: Topologies of Ryoan example applications. Nodes in the graph
are Ryoan instances, though we identify them by their untrusted module.
Users establish secure channels with trusted Ryoan code for the source
and sink nodes to provide input and get output respectively.

(e.g., Amazon Machine Learning [2]), to train its model
and generate predictions. 23andMe’s trade secret would
be how to map a user’s complex, multi-modal health data
onto machine learning features. Amazon Machine Learn-
ing provides a way to train models based on unlabeled
features and software (a classifier) which queries that
model. After training a model this way 23andMe want to
keep the input to the classifier a secret from parties which
have the means to map the inputs back to secret heath
data: users of their service. Ryoan enables 23andMe to
outsource machine learning tasks to Amazon while pro-
tecting its proprietary transformation from user data to
health features.

Secrecy for both users and 23andMe is protected with
a DAG shown in Figures 3 and 5. 23andMe compiles
a training data set which it transmits to Amazon to
construct a model. Amazon provides the classifier which
queries that model as a Ryoan module. Users provide their
genetic information, medical history, and activity log in
a request. Upon receiving a user’s request, 23andMe’s
first module constructs a boolean vector of health features
and forwards it to Amazon’s module. Amazon’s module
generates predictions based on the model and forwards the
result to 23andMe’s second enclave, which then forwards
the result back to the user.

The user’s label is kept throughout the entire pipeline,
so that all the enclaves are confined when they receive
the user’s input, and prevented from leaking information
about the input. Further, 23andMe keeps its label with
the request sent to Amazon, so that Amazon cannot leak
data about 23andMe’s heath features to other parties (in
particular the user), since they cannot remove 23andMe’s
label in order to release data out of Ryoan’s confinement.
Amazon’s module passes the results of classification to
another module owned by 23andMe which verifies its
proprietary transformations are not being leaked before
removing the 23andMe label and allowing results to be
returned to the user.

The actual prediction model is unknown to us and
out of scope for this paper; but our workload uses our
knowledge of best practices. We train a support vector
machine (SVM), and choose 20 well studied diseases and
the top 500 genes that have correlations with the them,
according to a database provided by DisGeNet [14]. The
SVM models are trained using synthetic data based on that
database. Our prototype uses stochastic gradient descent
as the training algorithm [24] which allows incremental
updates to existing models.
7.3 Image processing

Image classification as a service is an emerging area
that could benefit from Ryoan’s security guarantees (e.g.,
Clarifai [3] or IBM’s Visual Recognition service [5]).
We envision a scenario where a user wants different
image classification services based on their expertise.
For example, one service might be known for accurate
identification of adult content [53] while another might do
an excellent job recognizing and segmenting horses. The
image processing DAG in Figure 5 shows an example
where an image filtering service outsources different
subtasks to different providers and then combines the
results. The user’s label is propagated to all processing
enclaves, causing Ryoan to confine their execution. Our
prototype implements all of these detection tasks using
OpenCV 3.1.0, and each detection task loads a model that
is specialized to the detection task and would represent a
company’s competitive advantage.
7.4 Translation

A company uses Ryoan to provide a machine transla-
tion service while keeping the uploaded text secret. Users
upload text to the translation enclave and get the translated
text back. Our prototype uses Moses [10], a statistical ma-
chine translation system. We train a phrase-based French
to English model using the News Commentary data set re-
leased for the 2013 workshop in machine translation [13].

8. Evaluation
We quantify the time and space costs of Ryoan and its

components by measuring the execution of the use cases
described in the previous section using a combination of
real hardware and emulation.

All benchmarks are measured on a Dell Inspiron 7359
laptop with Intel Core i5-6200U 2.3 GHz processor
(with Skylake microarchitecture and SGX version 1) and
4 GB RAM. We use a laptop because it contains the
first SGX-enabled processor we could purchase. We use
Intel’s SGX Linux Driver [8] and SDK [7] to measure
the costs of SGX instructions. We inserted delays based
on those measurements, and appropriate TLB flushes
consistent with Intel’s SGX specification to measure the
performance of Ryoan. To test our implementation and
overcome the limitations of our hardware, we built an
SGX emulator based on QEMU [11] (full emulation
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Figure 6: Runtimes of applications with Ryoan sources of overhead
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native. (Enc: encryption; Marsh: syscall marshaling; CPR: checkpoint
restore; Ryoan: Sandbox+Enc+Marsh+CPR+SGX)

mode), augmented with SGX version 2 instructions. We
could not use OpenSGX [41], because it lacked 64-bit
signals. Our emulator can run a complete software stack
including an SGX-aware Linux kernel.

Figure 6 shows a breakdown of the various sources
of overheads for Ryoan. The baseline is to run applica-
tions built for a native Linux environment and then add
sandboxing, encryption, syscall marshaling, checkpoint
restore and SGX (where SGX overheads are a mix of
emulation and measurements, see the discussion below).
Table 2 shows the inputs for each of the workloads, as
well as detailed measurements for each module in the
DAG and counts of important events (the workloads are
explained in Section 7).

Inputs. Workload inputs are designed to be realistic.
Email bodies are taken from a spam training set [4]. Email
attachments are a set of PDFs randomly attached to 30%
of emails (figure taken from a study of corporate email
characteristics [12]). Images are a mix of photographs,
computer generated patterns, and logos. Gene data was
synthesized based on DisGeNet [14]. Translation text
comes from the News Commentary dataset [13].

Confinement overhead. In Figure 6, the Sandbox and
Sandbox+Enc overheads are necessary for confinement,
and across all workloads encryption does not add signifi-
cant overheads. For Genes, the confinement overhead is
high (100%) because it runs a very simple SVM classifier
and the actual data processing time is small, which am-
plifies the effect of Ryoan’s data buffering/padding and
serves as a worst-case scenario. For Images, the work-
load involves heavy computation with OpenCV and the
confinement overhead is 18%.

Checkpoint restore overhead. The CPR Size column
in Table 2 shows the amount of memory copied/zeroed on
checkpoint restore. Figure 6 (the difference between the
Sandbox+Enc+Marsh and Sandbox+Enc+Marsh+CPR
columns) shows that checkpoint restore’s impact on per-
formance is significant (55%) for Genes, because it has

Load Inited Init CPU CPR Sys. PF Intrp
Size Size Time Time Size Calls
(MB) (MB) (sec) (sec)

E
m

ai
l

Distribute 18.0 18.1 0.59 1.32 11.6MB 47k 60k 473
DSPAM 19.6 273.5 11.15 22.10 45.3MB 1.29m 1.81m 6k
ClamAV 21.1 403.9 24.96 29.17 83.3MB 247k 423k 7k
Combine 18.0 18.1 0.59 0.11 16KB 12k 2k 77

H
ea

lth

LoadModel 19.3 19.4 0.58 12.52 28KB 82k 280k 56k
Classifier 19.3 19.4 0.58 18.23 36KB 1.84m 359k 151k
Return 18.0 18.1 0.59 6.77 16KB 668K 162k 3k

Im
ag

es Distribute 18.0 18.1 0.59 0.42 632KB 2k 2k 36
Recognize 26.6 27.1 0.63 24.79 83.2MB 88k 174k 6k
Combine 18.0 18.1 0.59 0.36 2.5MB 14k 3k 129
Translation 25.3 386.9 2.34 26.65 29.1MB 303k 248k 8k
Email Input 250 emails, 30% with 103KB-12MB attachment

Health Input 20,000 1.4KB Boolean vectors from different users
Images Input 12 images, sizes 17KB-613KB
Trans. Input 30 short paragraphs, sizes 25-300B, 4.1KB total

Table 2: For each workload, report counts of significant events during
one execution of each module. Load Size: the size of the loaded
module before execution, Inited Size: module size after initialization.
Init Time: module initialization time. CPU Time: Processing time of
enclave (seconds), CPR size: data copied/zeroed on checkpoint restore,
Sys. Calls: system calls, PF: page faults, Intrp: interrupts. “Images:
Recognize” reports the maximum of all 4 image recognition enclaves.

the lightest per-unit workload (≈1ms) and the relative
cost of page fault handling is high; in contrast, its impact
on Images is only 3%, which has the heaviest per-unit
workload (≈2s).

SGX overhead. Executing code in an SGX-protected
enclave imposes several overheads. We simulate SGX
hardware overheads by using delays to model the per-
formance of SGX instructions and we flush the TLB
on all enclave exits (we could not measure execution
on our hardware because it lacks SGX version 2 fea-
tures (§6.1)). Besides explicit EEXIT instructions, we
also model exits due to events like exceptions and inter-
rupts (Table 2). The amount of delay for EENTER and
EEXIT is based on our hardware measurement (3.9µs for
each EENTER/EEXIT pair); in kind, the amount of delay
added for each ERESUME/Async-Exit pair is based on our
hardware measurement (3.14µs).

Version 2 instructions EACCEPT, EMODPE, EMODPR
are simpler, so we model their cost at one-tenth of
one EENTER/EEXIT pair. Figure 7 explores the effect
of varying this cost on the runtime of our workloads.
If the version 2 instruction turn out to be as costly as
an EENTER/EEXIT pair (3.9µs), for instance, the run-
ning times of our email, health, images, and translation
workloads increase by 25%, 14%, 7%, and 4% respec-
tively. Every checkpoint-related page fault requires one
EMODPE to extend page permissions. Every page reverted
after checkpoint requires one EMODPE followed by one
EACCEPT. Unfortunately version 2 of SGX also imposes
extra synchronization (via extended behaviors of ETRACK)
when modifying enclave page state [56]. We believe the
performance effect on these workloads will be negligi-
ble, given that our applications only have one thread per
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enclave. SGX execution also requires syscall marshaling
to copy system call arguments and results to and from
untrusted memory, but the overhead of marshalling is
negligible. All results are shown in Figure 6.

Checkpoint restore vs initialization. Creating an en-
clave and loading a module takes less than 0.5s for all
our cases, but Table 2 shows application-level initializa-
tion times are over 20 seconds for DSPAM and ClamAV
because they need to load and parse databases. As a re-
sult, for this workload it is preferable to use Ryoan’s
checkpoint-based reset rather than reinitialize the mod-
ules for every work unit. Enclave construction imposes
further overheads on reinitialization. Even creation of
small enclaves (e.g., 298KB) incur a penalty of 30 mil-
liseconds. In comparison, Ryoan’s checkpoint-based reset
is much more efficient, and the per-unit cost is under
10ms.

9. Related work
Haven [21] allows a trusted program and its library

operating system to execute in an SGX enclave that
protects them from attack by host software. VC3 [63]
secures trusted MapReduce using SGX. MiniBox [48]
uses Native Client and a trusted computing module (TPM)
to protect an application and the OS from each other.
Systems like Overshadow [29], InkTag [40] and Sego [46]
use a trusted hypervisor to protect trusted applications
from an untrusted operating system, and InkTag/Sego also
allow a trusted application to verify untrusted operating
system services (e.g., a file system) with help from the
hypervisor. These systems are designed to protect trusted
applications in an untrusted environment, while Ryoan
confines untrusted code that processes sensitive data.

Attempts to use late launch and TPMs (e.g., Flicker [54])
for user assurance suffer from poor usability due to the
restricted execution environment (even in their modern
incarnations such as Ironclad [39]). Code executing in an
enclave can be more complex than what is practical to
execute on a TPM. SGX also encrypts data in RAM to
keep them secret to an enclave, thus preventing a mali-
cious administrator from monitoring the memory bus to

steal secrets, which cannot be guaranteed by TPMs.
Decentralized information flow control (DIFC) al-

lows untrusted applications to access secret data but pre-
vents them from leaking data to unauthorized parties.
However, most DIFC systems require that all trusted
code is deployed in a centralized platform or adminis-
trative domain under a trusted, privileged reference mon-
itor [18, 45, 52, 60, 69, 76]; similar enforcements have
also been realized in a browser (COWL [66]) and a mobile
device (Maxoid [72]). An exception is DStar [77], which
does not have a centralized reference monitor; however,
although the user does not need to trust all machines in-
volved in the system, she has to trust the machine that she
wants to process her data, which means a correct reference
monitor (the OS that supports DIFC) is properly installed
on the machine, and that the machine’s administrator does
not use root privilege to steal secret data. Such trust is not
required in Ryoan. Systems that track information flow
down to the hardware gate level [67, 68] form a basis for
strong information flow guarantees, but such hardware is
not available and as designed does not include the privacy
and integrity guarantees provided by SGX.

Timing and termination channels are studied in pre-
vious work [36, 43] in the context of information flow
control. In Ryoan, a module has to terminate for each
unit of work, and the processing-time channel can only be
used once per unit; different units will not interfere due
to module reset.

Homomorphic encryption [25, 38] and order-preserving
encryption [22] share similar motivations with Ryoan.
They allow untrusted code to perform certain opera-
tions directly on encrypted data, in order to protect
secrecy. There are also systems built on these primi-
tives [23, 59, 65]. However, these techniques usually
suffer from limited application scenarios, weak secu-
rity guarantees, or significant performance overhead.
In comparison, Ryoan’s confinement does not require
domain-specific knowledge about the applications.

10. Conclusion
Ryoan allows users to safely process their secret data

with software they do not trust, executing on a platform
they do not control, thereby benefiting users, data process-
ing services, and computational platforms.
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