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Abstract—Gun violence results in a significant number of
deaths in the United States. Starting in the 1960’s, the US
Congress passed a series of gun control laws to regulate the sale
and use of firearms. One of the most important but politically
fraught gun control measures is a national gun registry. A US
Senate office is currently drafting legislation that proposes the
creation of a voluntary national gun registration system. At a
high level, the bill envisions a decentralized system where local
county officials would control and manage the registration data
of their constituents. These local databases could then be queried
by other officials and law enforcement to trace guns. Due to the
sensitive nature of this data, however, these databases should
guarantee the confidentiality of the data.

In this work, we translate the high-level vision of the proposed
legislation into technical requirements and design a crypto-
graphic protocol that meets them. Roughly speaking, the protocol
can be viewed as a decentralized system of locally-managed
end-to-end encrypted databases. Our design relies on various
cryptographic building blocks including structured encryption,
secure multi-party computation and secret sharing. We propose
a formal security definition and prove that our design meets
it. We implemented our protocol and evaluated its performance
empirically at the scale it would have to run if it were deployed
in the United States. Our results show that a decentralized and
end-to-end encrypted national gun registry is not only possible
in theory but feasible in practice.

I. INTRODUCTION

Gun violence accounts for a considerable number of deaths
in the United States. 36, 000 Americans are killed by guns
every year and another 100, 000 are injured. Around 2/3 of
gun deaths are suicides and 1/3 are homicides. Among high-
income countries, 93% of children (14 and under) that are
killed by guns are American. Each year 600 Women are shot
and killed by an intimate partner and 4.5 million Women have
been threatened with a gun. Black people are 10 times more
likely to be killed by a gun than Whites and Black men account
for 52% of gun deaths [18].

Gun control. In the US, firearms are regulated by a set
of laws, regulations and policies commonly referred to as
gun control laws. At the national level, the most prominent
gun control laws are the Omnibus Crime Control and Safe
Streets Act of 1968, which prohibited the interstate sale of
handguns and increased the minimum age to purchase a gun
to 21; the Gun Control Act of 1968 which established the
Federal Firearms License system which requires gun sellers
to be licensed; and the Brady Act of 1993 which instituted

the system of background checks, requiring sellers to check
the criminal history of buyers. Another important gun control
law is the Firearm Owner Protection Act (FOPA) of 1986
which amends some of the provisions of the Gun Control
Act. One of the main provisions of FOPA was to prohibit
Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF)
from keeping a registry that maps guns to their owners. More
precisely, the Act states:

No such rule or regulation...may require that
records...be recorded at or transferred to a facility
owned, managed, or controlled by the United States
or any State or any political subdivision thereof, nor
that any system of registration of firearms, firearms
owners, or firearms transactions or dispositions be
established.

Gun tracing. Gun tracing is the tracking of guns recovered
by law enforcement. In the US, it is conducted by the ATF’s
National Tracing Center in West Virginia. When a gun is
recovered by law enforcement, a trace can be requested based
on the gun’s serial number and characteristics. Because FOPA
prohibits the existence of databases that map owners to guns
and prevents data on firearms from being searchable [37], gun
tracing is done manually by searching through physical stacks
of paper. This requires, on average, 4 to 7 business days [36].
Furthermore, searches cannot be run on the text of a record or
using specific tags or identifiers. On average there are 1, 500
traces a day and about 370, 000 a year and only 65% of search
requests are successfully answered. FOPA even requires gun
dealers to get a special exemption by the ATF to use electronic
or cloud-based computing systems to store their data [26].

A decentralized national registry. US Senator Wyden’s office
is currently drafting legislation that proposes the creation of a
voluntary national system of firearm licensing and registration.
The core idea behind the bill is to provide financial and
legislative incentives for US counties that choose to participate
in the system. Two crucial aspects of the proposed design
are to guarantee: (1) the confidentiality of the data; and
(2) that local officials maintain complete control of their
constituents’ data. Control, here, means the ability to “pull”
the data from the system at any point in time. From a technical
perspective, these requirements roughly translate to designing
a distributed and decentralized system of locally-managed end-
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to-end encrypted databases that would allow for efficient gun
tracing without compromising the privacy of gun owners.

At a high level, the legislation would require all gun owners
in a participating US county to register their firearms with a
local official by providing information about the make, model,
caliber or gauge, and serial number along with the owner’s
registration number. This information would be stored in an
end-to-end encrypted database whose key is known only to the
local official. The encrypted database itself would be hosted
on state servers or the cloud to guarantee a higher degree of
availability. A county’s encrypted database would be queryable
by law enforcement agents and other officials but the query
process would be overseen by the county’s official. In addition,
the system needs to remain functional even if a county’s local
official is offline. As mentioned above, county officials should
also have the ability to pull their database from the system
entirely at any point in time.

Impact of the proposed system. The system envisioned by
this legislation would be part of a broader set of existing gun
control laws and background check system. It would allow for
faster and more accurate gun tracing which, in turn, would
help in violent criminal cases and possibly act as a deterrent
from illegally transferring firearms. A possible critique of the
system is the expense of running it. Another possible critique
is allowing law enforcement to obtain and query this data
could lead to the Federal government confiscating people’s
firearms and, therefore, violating the second amendment. The
legislation and envisioned system addresses these concerns by
requiring that the databases that store registration records be
end-to-end encrypted with a key held and managed by a local
county official.

Our contributions. The purpose of this work is to ascertain
whether the high-level design goals of the proposed legisla-
tion are technically feasible. Towards this end we make the
following contributions:

• (Cryptographic design) as a first step, we translated
the high-level requirements of the legislation to a set
of technical requirements. We then designed a novel
cryptographic protocol to satisfy them. The protocol
can be roughly viewed as a decentralized collection of
end-to-end multi-user encrypted databases. It makes use
of a variety of cryptographic building blocks including
two-party and multi-party secure computation, structured
encryption and secret sharing. At a very high level, the
system is composed of a encrypted global directory that
allows authorized parties to find the county associated to
a serial number; and of a set of local encrypted databases
that store the full records and that are owned and managed
by a local county official. As far as we know, this kind
of protocol and system has never been considered in the
past.

• (Formal security definition) we formulate a security defi-
nition for such a decentralized registry and show that our
protocol satisfies it. Our definition is in the ideal/real-
world paradigm which is standard in cryptography.

• (Deployment considerations) in our setting, there are
many real-world considerations that need to be taken into
account that are not captured by our abstract protocol.
We identify these considerations and describe how our
cryptographic protocol should be deployed in practice.

• (Prototype & evaluation) we implement our protocol
and evaluate it empirically. Our evaluation shows that
the protocol is practical at the scale of the US. More
precisely, assuming the system stores 400 million records,
where the largest county has 50 million records 1 it takes
300 ms to identify the county that a gun is registered in
and at most 1 minute to query the county’s local database
on a query that matches 100 records. Adding a batch of
10, 000 records to the system takes 45 minutes.

Though our work was motivated directly by the legislation
mentioned above and our solution is relatively unique, we be-
lieve that our design could prove useful for other decentralized
systems that need to store sensitive data.

II. RELATED WORK

Gun registries exists at the state level in the United States
and in other countries. Canada implemented a national firearms
registry through its Firearms Act in 1995, which was later
dismantled in 2012. Since then, Quebec has implemented its
own Firearms Registry. In 2019, New Zealand proposed legis-
lation to create a national firearms registry, in response to the
Christchurch shooting. Within the United States, California,
Connecticut, Delaware, Hawaii, Maryland, New Jersey, and
New York currently have firearm registration requirements for
some subset of firearms, depending on the state [19].

Cryptographic building blocks. Our encrypted registry sys-
tem relies on secure computation, secret sharing and structured
encryption. Secure two-party computation was introduced by
Yao [52] and secure multi-party computation by by Gold-
wasser, Micali and Wigderson [28]. Formal definitions of
security for MPC in the standalone setting were given by
Canetti in [13]. Secret sharing was introduced by Shamir
in [45]. We also make use of structured encryption and,
specifically, of dictionary, multi-map and (NoSQL) database
encryption schemes. Structured encryption was introduced
by Chase and Kamara as a generalization of indexed-based
symmetric searchable encryption (SSE) constructions [22].
SSE was introduced by Song, Wagner and Perrig [46] and
formalized by Curtmola et al. [22]. In the standard setting
of structured encryption (STE), the client encrypts its data,
stores it in on an untrusted server, and performs queries on
the encrypted structure. In this work, however, the client also
needs the ability to allow other parties to query its encrypted
data. This multi-user setting considered in [22], [29], [42],
[43].

Federated encrypted databases. Our system has some su-
perficial similarities to federated encrypted databases like

1The US is estimated to have 393, 347, 000 guns. The largest county in
the US is Los Angeles county with a population of 10 million. Assuming an
average of 5 guns per person, this county would have 50 million guns
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Conclave [49] and SMSQL [6]. These are systems that also
leverage MPC to privately query multiple databases. Their
goal, however, is to support private queries on the union of
disjoint databases, each of which is held by different parties.
On the other hand, in our setting, queries are executed over a
single local database (after it has been found using the global
dictionary). Furthermore, in our system, 2PC and MPC are
not used to process the databases but, roughly speaking, to
generate tokens that, in turn, are used to query the STE-
encrypted databases. To summarize, our system is designed
to enable a party to efficiently find the local database it needs
to query, whereas federated encrypted databases are designed
to query the union of multiple databases owned by different
parties.

III. PRELIMINARIES

Notation. The set of all binary strings of length n is denoted
as {0, 1}n, and the set of all finite binary strings as {0, 1}∗.
The output y of an algorithm A on input x is denoted by x←
A(x). When we wish to make A’s random coins r explicit,
we write y ← A(x; r). Given a sequence s of n elements, we
refer to its ith element as si. If S is a set then #S refers to its
cardinality. Throughout, k will denote the security parameter.

Dictionaries & multi-maps. A dictionary DX with capacity n
is a collection of n label/value pairs {(`i, vi)}i≤n and supports
get and put operations. We write vi := DX[`i] to denote
getting the value associated with label `i and DX[`i] := vi
to denote the operation of associating the value vi in DX with
label `i. A multi-map MM with capacity n is a collection of
n label/tuple pairs {(`i,vi)i}i≤n that supports Get and Put
operations. We write vi := MM[`i] to denote getting the tuple
associated with label `i and MM[`i] := vi to denote operation
of associating the tuple vi to label `i. Multi-maps are the
abstract data type instantiated by an inverted index. In the
encrypted search literature multi-maps are sometimes referred
to as indexes, databases or tuple-sets (T-sets).

Document databases. A document database DB of size n
holds n records {r1, . . . , rn} each of which is a collection
of field/value pairs field:value. Here, we consider databases
that support boolean queries, i.e., queries of the form ϕ =(
field1 = value1 ∧ field2 = value2 ∨ field3 = value3

)
.

Basic cryptographic primitives. A symmetric-key encryption
scheme is a set of three polynomial-time algorithms SKE =
(Gen,Enc,Dec) such that Gen is a probabilistic algorithm that
takes a security parameter k and returns a secret key K;
Enc is a probabilistic algorithm that takes a key K and a
message m and returns a ciphertext c; Dec is a deterministic
algorithm that takes a key K and a ciphertext c and returns m
if K was the key under which c was produced. Informally,
a private-key encryption scheme is secure against chosen-
plaintext attacks (CPA) if the ciphertexts it outputs do not
reveal any partial information about the plaintext even to an
adversary that can adaptively query an encryption oracle. In
addition to encryption schemes, we also make use of pseudo-
random functions (PRF), which are polynomial-time com-

putable functions that cannot be distinguished from random
functions by any probabilistic polynomial-time adversary. We
refer the reader to [35] for formal security definitions.

Secret sharing. A threshold secret sharing scheme SS =
(Share,Recover) consists of two efficient algorithms [45].
Share takes as input a secret s, a threshold t and total number
of shares n and outputs n shares s1, . . . , sn. Recover takes
as input t out of n shares and outputs s. A secret sharing
scheme SS is secure if no efficient adversary can learn any
partial information about the secret s given any set of r < t
shares. We refer the reader to [25] for formal definitions.

Secure multi-party computation. Secure multi-party com-
putation [52] allows n parties to securely compute a function
over their joint inputs without revealing any information about
their inputs beyond what can inferred from the output. In our
work, we make use of two-party secure computation (2PC) and
of multi-party secure computation (MPC). For modularity and
conciseness, we describe our protocol in the (Ff2PC,F

f
MPC)-

hybrid model which functions like a real-world protocol
execution except that all parties also have access to ideal
2PC and MPC functionalities denoted by Ff2PC and FfMPC.
We only consider security against semi-honest adversaries so,
in practice, these ideal functionalities can be instantiated with
standard semi-honest two-party and multi-party protocols. We
refer the reader to [25] for an overview of MPC and standard
security definitions.

A. Structured Encryption

A (non-interactive, response-hiding and semi-
dynamic) structured encryption scheme ΣDS =
(Init,Token,Query,AddToken,Add,Resolve) for data
structures DS consists of six efficient algorithms. Init takes
as input a security parameter 1k and outputs an encrypted
dictionary EDS and a secret key K. Token takes as input a
key K and a query q and outputs a token tk. Query takes as
input an encrypted structure EDS and a token tk and outputs
a ciphertext ct. AddToken takes as input a key K and an
update u and outputs an add token atk. Add takes as input an
encrypted structure EDS and an add token atk and outputs a
new encrypted structure EDS′. Resolve takes as input a key
K and a ciphertext ct and outputs a value v.

In this work, we also rely on STE schemes that include a
ResKey algorithm that takes as input a secret key K and a
query q and outputs a restricted key Kq which can be used to
resolve the encryption of v. We refer to such schemes as STE
schemes with restricted resolve.

Security. There are two adversarial models for STE: persistent
adversaries and snapshot adversaries. A persistent adversary
observes: (1) the encrypted data; and (2) the transcripts of the
interaction between the client and the server when a query is
made. A snapshot adversary, on the other hand, only receives
the encrypted data after a query has been executed. Persistent
adversaries capture situations in which the server is completely
compromised whereas snapshot adversaries capture situations
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where the attacker recovers only a snapshot of the server’s
memory.

The security of STE is formalized using “leakage-
parameterized” definitions following [20], [22]. In this frame-
work, a design is proven secure with respect to a security
definition that is parameterized with a specific leakage profile.
Leakage-parameterized definitions for persistent adversaries
were given in [20], [22] and for snapshot adversaries in [5].2

The leakage profile of a scheme captures the information
an adversary learns about the data and/or the queries. Each
operation on the encrypted data structure is associated with
a set of leakage patterns and this collections of sets forms
the scheme’s leakage profile. We recall the informal security
definition for STE and refer the reader to [5], [20], [22] for
more details.

Definition III.1 (Security vs. persistent adversary (Infor-
mal)). Let Λ =

(
LS,LQ,LU

)
=
(
patt1, patt2, patt3

)
be

a leakage profile. A structured encryption scheme STE for
data structures DS is Λ-secure if there exists a PPT simula-
tor that, given patt1(DS) for an adversarially-chosen struc-
ture DS, patt2(DS, q1, . . . , qt) for adaptively-chosen queries
(q1, . . . , qt), and patt3(DS, u1, . . . , ut) for adaptively-chosen
updates (u1, . . . , ut) can simulate the view of any PPT adver-
sary. Here, the view includes the encrypted data structure and
the tokens of the queries.

Encrypted dictionaries & multi-maps. When the data struc-
ture DS in the definitions above is a dictionary, then ΣDX

is a dictionary encryption scheme. Similarly, if DS above is
a multi-map then ΣMM is a multi-map encryption scheme.
Also, note that dictionary encryption schemes are a special
case of multi-map encryption schemes since dictionaries are
just multi-maps with single-item tuples. There are many well-
known practical multi-map encryption schemes that achieve
different tradeoffs between query and storage complexity,
leakage and efficiency [5], [10], [11], [16], [17], [17], [22],
[24], [27], [31]–[34], [44], [47]. We note that all these con-
structions either implicitly have a ResKey algorithm or can
be trivially modified to have one. From a security point of
view, we require that, given a value v, one can simulate a
ciphertext ct and a key KR such that Resolve(KR, ct) outputs
v and that the ciphertexts output by Query be computationally
indistinguishable form random. Again, these properties are
trivially achievable by the mentioned schemes.

Encrypted document databases. Encrypted multi-maps can
be combined with standard symmetric encryption to yield an
encrypted document database. This is equivalent to the notion
of index-based searchable symmetric encryption (SSE). For
completeness we recall the details in Appendix A.

2Even though parameterized definitions were introduced in the context
of SSE and STE, they can be (and have been) applied to other primitives,
including to fully-homomorphic encryption, property-preserving encryption,
oblivious RAM, secure multi-party computation and functional encryption.

IV. OVERVIEW OF LEGISLATION

Our design is based directly on legislation that is cur-
rently being drafted by Sen. Wyden’s office. This proposal
envisions a national firearm registry instantiated as a system
of distributed, decentralized, and locally managed encrypted
databases. The following details and requirements strictly
come from drafted legislation.

Under this system, each county in the United States stores li-
cense and registration data in its own database. Each State then
operates a server, which stores and maintains the availability
of all of county databases corresponding to the state. The state
server should not have any other responsibility outside of this
role and does not act as a authorized user of the system nor
should it have access to any of the data it stores.

In order to ensure the security and privacy of the data, each
county designates a local official who is responsible for an
encryption key. This key is required in order to view, query,
update, and encrypt any registration data corresponding to
the county. No additional parties may access any licensing
or registration data from a county without this key. The local
official must also upload any new licensing or registration data
to the system.

Authorized users of the system include, but are not limited
to, other local county officials, law enforcement personnel,
and firearm distributors. These individuals are permitted to
query the system for registration and licensing data but may
not delete or update this data, unless they are the county’s des-
ignated local official. At minimum the data collected includes
basic personal information about a licensed firearm owner,
including their license number, and information about their
individual firearms (specifically, the make, model, caliber, and
serial number). The legislation dictates that bulk queries (in the
sense of being overly broad) and attempts at collecting large
amounts of information from the system must be prohibited
and reported. The system must therefore have some means of
rate limiting queries while protecting the privacy of the data.

Given that different regions in the United States differ in
infrastructure and have varying levels of Internet connectivity,
the legislation makes an explicit requirement that authorized
users must be able to make queries, even if the key held by
the county’s local official is offline. Offline access, however,
must be bounded by some predetermined time. Once the key
has been offline beyond this time, any data pertaining to
this county should be entirely inaccessible. Another important
feature of the system is that counties should have the ability
to retract their database from the system at any point.

The system is voluntary in the sense that States can elect
to participate by operating a server and counties can elect
to participate by storing a database within the State server.
This allows for local laws to dictate participation and ac-
commodates for changes to those laws, if a state or county’s
constituents choose to later opt out of the system, without
affecting the ability for other states or counties to participate.

To understand the type of data collected, we additionally
reviewed existing firearm registration forms from New York
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[41], Washington D.C. [39], and the ATF [12]. Ultimately in
our empirical evaluation, we based our sample record off of the
minimum data requirements from this draft legislation since it
contained the intersection of common attributes among these
forms. Throughout this process, we have been in conversation
with Sen. Wyden’s office in order to understand the priorities
of the legislation and the infrastructure constraints that must
be accounted for when designing a system across counties in
all 50 states. In our evaluation, we specifically chose virtual
machines that would reflect the different resources available at
the state and county level. Based on feedback from their office,
we also explicitly included a cost analysis in our evaluation to
understand the monetary feasibility of running a system like
this at scale.

V. PROTOCOL

In this section we describe the design of our en-
crypted registry system and its usage. The protocol
Ω = (InitGlobal, InitLocal,Add,Find,Query,OfflineQuery)
consists of six protocols which we describe at a high-level
below. We provide in Appendix C the detailed pseudo-code
of the protocol (see Figures 5 and 6 in the Appendix). We
stress that the protocol we propose is one of many possible
ways to instantiate the requirements outlined in Section IV but
that this design received positive feedback from members of
the team responsible for drafting the legislation.

Parties. The system is designed to be executed among: a large
(constant) number of parties P1, . . . ,Pθ, three backups B

(i)
1 ,

B
(i)
2 and B

(i)
3 for each party Pi, two custodians C1 and C2,

and a server S. While the legislation envisions that every
state hosts a server for its counties, in our model we only
include a single server S for ease of exposition and because
it captures the worst-case scenario from a security point of
view (i.e., it captures the case where all state-level servers are
corrupted and collude). The parties P1 through Pθ correspond
to the local county officials in the Bill who are responsible for
registering gun owners. The parties C1 and C2 are custodians
who we assume do not collude. The server S is untrusted. We
stress that while we chose to use three backups per party,
two custodians and one server; the protocol can be trivially
extended to handle a different number of custodians, backups
and servers.

We sometimes refer to a party Pi by the role it plays during
a particular operation. For example, if Pi queries Pj’s local
database, we refer to Pi as the querier and denote it by Q
and to Pj as the local official and denote it by L.

Initializing the global directory. To initialize the system, the
two custodians C1 and C2 and the server execute Ω.InitGlobal.
This sets up an encrypted dictionary EDX on the server which
we call the global directory and provides each custodian with
a share of its key. The global directory maps serial numbers to
county identifiers and its purpose is to enable a querier to find
the county a given gun is registered in. With this information,
it can then interact directly with that county’s local official to
query its local database.

Initializing the local databases. After the global directory is
initialized, each party Pi initializes its own local encrypted
database by executing Ω.InitLocal. This results in a secret key
Ki and an empty encrypted database EDBi which it sends to
the server. In addition, Pi splits its key into three shares and
sends a share to each of its backups.

Adding a new record. A new record r is added by a local
official L ∈ {P1, . . . ,Pθ} by executing the Ω.Add protocol
with the custodians and the server. At a high-level, the protocol
works as follows. First, L needs to add the label/value pair
(r.SN, r.CID) to the global dictionary. To do this, it splits the
pair into two shares p1 and p2 which it sends to the custodians.
This guarantees that neither custodian will learn the pair. The
custodians, then use 2PC to securely compute a function that:
(1) recovers the key K to the global directory from their key
shares; (2) recovers the serial/id pair from their pair shares;
(3) computes an add token for the pair; and then (4) splits that
token into two shares. The custodians then send the shares of
the add token to the server which reconstructs it and uses to
update the global directory.

After updating the global directory, the official updates its
local (but remotely stored) encrypted database by generating
an add token for the local database and sending it to the server.

Querying the global directory. When a querier Q ∈
{P1, . . . ,Pθ} wants to query the registry with a serial number
SN but does not know in which county the gun is registered,
it first queries the global directory EDX by executing the
Ω.Find protocol with the custodians C1 and C2 and the server.
This results in Q recovering the identifier of the county that
registered the gun. At a high level, the protocol works as
follows. Q splits SN into two shares which it sends to the
custodians. The custodians then use 2PC to securely compute
a function that: (1) recovers the key K to the EDX from their
key shares; (2) recovers SN from their serial number pairs;
(3) computes a token for the serial number; (4) generates the
resolve key for the serial number; and (5) splits both the token
and the resolve key into two shares, outputting a share of each
to each custodian. The custodians then send their shares to the
server and the querier who recovers the token and the resolve
key, respectively. It then uses the token to query the global
directory EDX and returns the encrypted result to Q who can
then recover the county identifier CID using the resolve key.

Querying a local database. To query the database
of a specific county on a boolean formula ϕ, such as
((first:Jon or first:John) and last:Smith),
Q executes the Ω.Query protocol with the local official
L ∈ {P1, . . . ,Pθ} and the server. This results in Q
recovering the plaintext records that match its query. At a
high level, the protocol works as follows. L and Q use 2PC
to securely compute a function that generates a token for ϕ
using the key KL for L’s local database. Q sends the token
to the server who uses it to query L’s database and returns
an encrypted response to Q. Q and L then execute another
2PC to resolve the encrypted response into a set of plaintext
records for Q.
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Offline querying. If Q wishes to query L’s local database
when L is offline, it interacts with L’s backups, B1,B2,B3,
and the server. Here, we refer to B1 as the designated backup
because it will play a slightly different role than the other
backups but we note that any of B1, B2 or B3 could be
the designated backup. First, Q and the backups use MPC
to securely compute a function that: (1) recovers the local
official’s key from the backups’ shares; (2) splits the key into
two new shares; and (3) outputs one share to the designated
backup B1 and one to Q. B1 and Q then use 2PC to securely
compute a function that: (1) recovers the key from the new
shares; (2) computes a token for Q’s query ϕ. Q then sends
the token to the server who uses it to recover and return a set
of encrypted records that match the query. Q and B1 then use
2PC to securely resolve the encrypted response.

A. Deployment Considerations

As described, our protocol does not capture many real-world
considerations that would have to be taken into account to
deploy it. Here, we discuss some of those issues.

Local infrastructure. One can expect local county officials to
manage only a minimal computing infrastructure. Specifically,
a consumer-level desktop computer or laptop but not a server-
level machine. In addition, especially in rural regions, one
should expect poor Internet connectivity and intermittent ac-
cess. These challenges motivate two important features of our
protocol: (1) a relatively lightweight amount of computation
for the officials; (2) no storage requirements for officials
(besides the secret key); and (3) an offline query protocol in
case the official is disconnected from the Internet.

Licensing. In practice, our protocol would be used to store two
kinds of records: (1) licenses, which are issued to individuals
who wish to own a gun; and (2) firearm registrations, which
are issued when a gun is purchased. In our system, both
licenses and registrations can be stored as records so we do
not differentiate between them.

Rate limiting. To prevent a querier from making excessive
queries, rate limiting can be achieved by both the server
and the official. The server can rate limit when it receives
search tokens since it can keep track of the number of
encrypted records it has returned from the official’s encrypted
database. Furthermore, it can be set to cap the maximum
number of records it returns per query. Similarly, the local
official can also rate limit during the execution of the query
protocol; specifically during the second 2PC execution where
the encrypted results are resolved. Here, the official could
simply refuse to execute the 2PC if the number of records
returned by the search exceeds some threshold.

Moving & history. When a gun owner moves from county A
to county B, it is expected to re-register the gun in county B.
Note that, in our protocol, the new registration would overwrite
the old serial number and county ID pair in the global directory
and insert a new record in county B’s local database. The old
record in county A would still persist but this is by design so
that a history of the gun can be recovered. The new record

in county B’s database would include the old county ID so
that the two records are linked. If, on the other hand, one
needed to support deletion from county A’s database it would
suffice to instantiate ΣDB with a dynamic database encryption
scheme instead of a semi-dynamic one. There are many such
constructions one could choose from [5], [10], [11].

Sales. If a gun is sold by owner A to owner B then a new serial
number/county identifier pair will be created in the global
directory and a new record will be added to a local database.
To keep history, the new record will contain the license number
of owner A. Note that if multiple records are found for the
same serial number in the same county, they can be ordered
using the previous owner’s license number, e.g., if record Y’s
previous owner is the owner of record X then record Y was
created after record X.

Custodians. An important deployment consideration for our
protocol is the choice of custodians. The security of the
protocol relies on the custodians not colluding so they should
be picked carefully. One could imagine choosing, for example,
gun rights and civil liberties organizations like the National
Rifle Association (NRA) and the ACLU under the assumption
that local officials would trust that the NRA would not collude
with the ACLU in order to subvert the system and recover
the private information of gun owners. Also, we note that in
our protocol description and prototype we use two custodians
but this number can be easily increased to any number in
the natural way (i.e., increasing the number of shares used
throughout the protocol and using MPC instead of 2PC).

Batch updates. For ease of exposition, we describe the Add
operation of our protocol as taking a single record to add to
the database. In practice, however, local officials may prefer to
add a batch of new records (e.g., one per day or week). The
naive way to handle this is to execute the Add protocol on
each record in the batch but a more efficient approach (which
we implement) is to process the entire batch of new records
at once and to execute the 2PC in Add over multiple records.

Number of backups. In our protocol description and proto-
type, we chose to use three backups but this can be trivially
extended to any number.

Removing local databases. As discussed in Section IV, an
important requirement is that local officials have the ability to
remove their database from the system at any point in time.
This feature is easy to achieve in our protocol since the local
databases are all end-to-end encrypted. In fact, to remove a
database from the system it suffices to erase the secret key. A
more usable approach could be to store the secret key on a
hardware token like a Yubikey that remains connected to the
official’s device and to physically remove it in order to pull the
database. Note that to removing the database should include
asking the backups to erase their shares. If enough backups
are honest and erase their shares then no keying material will
remain. Alternatively, one could augment our design to include
a form of key rotation so that the shares become useless or a
revocation mechanism to revoke shares.
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VI. SECURITY DEFINITION AND PROOF

We formalize the security of our design in the ideal/real-
world paradigm [13]. Roughly speaking, we require that an
execution of the protocol in the real-world is indistinguishable
from an ideal gun registry functionality which we define
below.

Parties. The two executions take place between an en-
vironment Z , an adversary which we denote A in the
real-world execution and S in the ideal-world execu-
tion, θ = poly(k) parties P1, . . . ,Pθ, 3θ backup parties
B

(1)
1 ,B

(1)
2 ,B

(1)
3 , . . . ,B

(θ)
1 ,B

(θ)
2 ,B

(θ)
3 , two custodians C1 and

C2 and a server S. While the legislation proposes that every
state manage a server for its counties, in our model we only
include a single server S for ease of exposition and because it
captures the worst-case scenario from a security point of view
(i.e., the case where all state-level servers are corrupted and
collude). ”

Corruptions. We consider two classes of corruptions: external
corruptions and internal corruptions. External corruptions can
include: (1) the server; (2) either C1 or C2 but not both; and
(3) for all parties Pi, at most 1 of Pi’s backup parties. Internal
corruptions can include at most one party in {P1, . . . ,Pθ}.
Hybrid-world execution. In the hybrid-world execution every
party has access to ideal F2PC and FMPC functionalities. The
environment Z takes as input a string z ∈ {0, 1}∗ and starts
by choosing a set of parties I for the adversary to corrupt,
where I is either external or internal. Z sends I to A which
corrupts all the parties in I . After the parties in I have been
corrupted, C1, C2 and S execute Ω.InitGlobal and each party
Pi executes Ω.InitLocal with S and its backup parties B

(i)
1 ,

B
(i)
2 and B

(i)
3 .

Z then adaptively chooses a polynomial number of
commands (comm1, . . . , commm) of the form commj =
(Pj , opj), where opj is either an add operation (add, ri),
a find operation (find, SN), a query operation (query, ϕ) or
an offline query operation (offline, ϕ). More precisely, for
1 ≤ j ≤ m, Z sends commj to Pj . If opj is an add, Pj
executes Ω.Add with the custodians and the server. If opj is a
find, Pj executes Ω.Find with the custodians and the server.
If opj is a query, Pj executes Ω.Query with a local official
L ∈ {P1, . . . ,Pθ} and the server. If opj is an offline query,
Q executes Ω.OfflineQuery with the local official’s backup
parties and the server. In all cases, Q returns its output to Z .
At then end of the execution, A sends an arbitrary message to
Z which outputs a bit b. We denote this bit HybridZ,A(k).

Ideal-world execution. In the ideal-world execution every
party has access to an ideal functionality FGR described
in Figure 1. The environment Z takes as input a string
z ∈ {0, 1}∗ and starts by choosing a set of parties I for the
adversary to corrupt, where I is either external or internal.
Z sends I to S and FGR and adaptively chooses a poly-

nomial number of commands (comm1, . . . , commm) of the
above form. More precisely, for 1 ≤ j ≤ m, Z sends commj

to Pj who, in turn, forwards the operation opj to FGR and

returns its output to Z . At the end of the execution, S sends
an arbitrary message to Z which outputs a bit b. We denote
this bit IdealΛZ,S(k).

Definition. We can now state our security definition based on
the above experiments.

Definition VI.1 (Security). We say that Ω is a Λ-secure
registry if for all PPT semi-honest adversaries A, there exists
a PPT ideal adversary S such that for all PPT standalone
environments Z , for all z ∈ {0, 1}∗,∣∣∣Pr
[
HybridZ,A(k) = 1

]
− Pr

[
IdealΛZ,S(k) = 1

]∣∣∣ ≤ negl(k).

VII. SECURITY ANALYSIS

We conduct a leakage analysis of our protocol and formalize
its leakage profile. We first provide a black-box leakage
analysis and then a concrete one.

Black-box leakage analysis. Black-box leakage analysis,
introduced in [30], is a way to describe the leakage profile of a
scheme or protocol as a function of the leakage profiles of its
underlying building blocks. The value of such an analysis is
that it remains useful even when the protocol’s building blocks
are replaced or instantiated with different concrete schemes. In
particular, this means that as new schemes are developed with
more desirable tradeoffs the protocol’s leakage profile can be
easily updated. Suppose the leakage profile of ΣDX is

ΛDX =

(
Ldx
I ,Ldx

Q ,Ldx
A

)
=

(
pattdxI , pattdxQ , pattdxA

)
and that the leakage profile of ΣDB is

ΛDB =

(
Ldb
I ,Ldb

Q ,Ldb
A

)
=

(
pattdbI , pattdbQ , pattdbA

)
then the leakage profile of Ω is

ΛΩ =

(
LΩ
IG,LΩ

IL,LΩ
A ,LΩ

F ,LΩ
Q,LΩ

OQ

)
=

(
pattdxI , pattdbI ,

(
pattdxA , pattdbA

)
, pattdxQ , pattdbQ , pattdbQ

)
.

Theorem VII.1. If SS is secure, ΣDX is ΛDX-secure and ΣDB

is ΛDB-secure, then the registry Ω described in Figures 5 and
6 is ΛΩ-secure.

Due to space limitations, the proof sketch of Theorem VII.1
is in Appendix E.

Concrete leakage analysis. In our implementation (detailed
in Section VIII) we instantiate ΣDX with a forward-secure
variant of Pibase [17] and ΣDB with the scheme that results
from applying standard techniques from [22] (outlined in
Appendices A and B) to the BIEX construction of [30]. We
provide below a high-level description of the leakage profile
of our registration system, with a more formal description
in Appendix A. For each pattern that the system reveals,
we provide some high-level intuition of what the disclosure
implies from a real-world perspective. We stress that all end-
to-end encrypted solutions that are sub-linear reveal some
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Functionality FΛ
GR

The functionality is parameterized with a leakage profile Λ = (LIG,LIL,LA,LF,LQ,LO) and interacts with θ parties {P1, . . . ,Pθ},
3θ backups B

(1)
1 ,B

(1)
2 ,B

(1)
3 , . . . ,B

(θ)
1 ,B

(θ)
2 ,B

(θ)
3 , two custodians C1 and C2 and an ideal adversary S. It stores and manages a gun

registry GR = (DX,DB1, . . . ,DBθ) using the following operations:
• upon receiving (initglobal) from C1, C2 and S, initialize and store an empty dictionary DX and send the message

(globalinitialized) to C1, C2 and S and the message LIG(1k) to S;
• upon receiving (initlocal) from Pi, initialize and store an empty database EDB and send the message (localinitialized) to Pi

and S and the message (i,LIL(1k)) to S;
• upon receiving (add, r) from L = Pi store r in DBi and add the pair (r.SN, r.CID) to DX. Send the message (add, i) to C1,

C2 and S and the message
(
i,LA(GR, r)

)
to the ideal adversary S;

• upon receiving (find, SN) from Q = Pi compute CID := DX[SN]. Return CID to Q and send the message (find, i) to C1, C2

and S and the message
(
i,LF(GR, ϕ)

)
to the ideal adversary S if the corruptions are external and

(
i,LF(GR, ϕ), SN, CID

)
if the

corruptions are internal.
• upon receiving (query, CID, ϕ) from Q = Pi return the records (r1, . . . , rm) in DBCID that match ϕ to Q. Send the

message (query, i) to S and the message
(
i,LQ(GR, ϕ)

)
to the ideal adversary S if the corruptions are external and(

i,LQ(GR, ϕ), ϕ, (r1, . . . , rm)
)

if the corruptions are internal.
• upon receiving (offline, CID, ϕ) from Q = Pi return the records (r1, . . . , rn) in DBCID that match ϕ to Q. Send the message

(query, i) to B
(CID)
1 , B(CID)

2 , B(CID)
3 and S and the message

(
i,LO(GR, ϕ)

)
to the ideal adversary S if the corruptions are external

and
(
i,LO(GR, ϕ), ϕ, (r1, . . . , rm)

)
if the corruptions are internal.

Fig. 1: FΛ
GR : The registry functionality parameterized with leakage profile Λ.

leakage; even ORAM-based systems. For more on concrete
leakage attacks we refer the reader to [8].

• (global directory) our concrete instantiation of ΣDX has
no init leakage. The query leakage is composed solely of
the query equality pattern which reveals if and when the
same serial number was been queried in the past. Note
that this is only disclosed to the server and not to the
two custodians. Similarly, the add leakage reveals if and
when the county id was modified for some serial number.
With both these patterns, a server can learn the frequency
that a serial number is accessed or modified. Note that
the server does not learn the value but only the frequency
of the serial number.

• (local databases) our concrete instantiation of ΣDB has
no init leakage. The add leakage only reveals the size
of the sub-EMMs which itself discloses the number
of added records. Depending on the complexity of the
query, the query leakage will be different. If the query
is for a single keyword, then the server will learn the
query equality pattern and the response identity pattern.
Concretely, the former reveals if and when the same query
has been made, while the latter reveals the identifiers
of the matching records. If the query is a disjunction,
then the query equality will reveal the query equality
pattern on all the keywords that compose the query. It
will also reveal the response identity pattern of the query
and of a subset of keyword pairs that compose the query.
Finally for a boolean query in CNF form, the server
learns the same information mentioned above for the first
disjunction, the query equality of all the keywords that
compose the other disjunctions, and the response identity
pattern on all pairs of keywords in the disjunctions. As a
consequence, the server can learn the number of records
that share a specific sets of keywords, the frequency they
are accessed with, but not the queries or the records’

content. Finally, we note that even though we instantiated
the database encryption scheme so that it could support
boolean queries, this level of expressivity may not be
necessary in practice; at the very least not for all queries.

VIII. EMPIRICAL EVALUATION

In this section, we describe and evaluate our prototype
implementation of the encrypted registry system of Section
V. In particular, we evaluate: (1) the time it takes to add a
record; (2) the time it takes to find the county id of a serial
number; and (3) the time it takes to query a local database
both when the official is online and offline; (4) the size of the
global directory and of the local databases; and (5) the impact
of our optimizations. First, we describe our implementation
and testing environment.

A. Implementation

Our implementation is written in C++, Java, Javascript and
Python. It is 3261 lines of code in total. In addition, it includes
451 lines for experimental testing and 71 lines to load and
generate records, all calculated using CLOC [2]. The prototype
has a client-server architecture. All communication between
the parties uses the Node.js framework. The same framework
is used to run child processes on the server and call the needed
cryptographic libraries.

Testing environment. We conducted our experiments on
Amazon Elastic Compute Cloud (EC2) [3] in the East region
(Ohio). Given the distributed nature of our system, we set
up our testing environment over the public network. We used
three different types of EC2 instances: t2.micro, which
has 1 virtual CPU and 1GB of RAM; t3.micro which
has 2 virtual CPUs and 1GB of RAM; and t3.xlarge,
which has 4 virtual CPUs and 16GB of RAM to which
we associated 500GB of Elastic Block Store with generic
SSDs for disk storage. We used a different instance depending
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on the computation and memory requirements of each role:
t2.micro for the local official’s backups, a t3.micro for
the local officials, t3.xlarge for the custodians and server.
All the instances are running a 64-bit Ubuntu Server 18.04
LTS.

Data generation. For each of our experiments involving the
global directory, we randomly generated serial/id pairs based
on the test case. The maximum number of pairs generated was
400 million in order to reflect the estimate of the number of
firearms in the United States [1]).

For the experiments involving local databases, we created
sample records, based on the test case, using the Python library
Faker. Each record is a collection of field/value pairs. In
particular, we use the following fields: first name, last name,
address, birth date, license number, model, make, caliber,
serial number, and history. In order to control selectivity for
our query experiments (i.e., the number of matching records)
we partially forge some records by choosing the values of
some of their attributes.

Query generation. For our evaluation of the Query and the
OfflineQuery protocols, we consider three scenarios: (1) high
selectivity; (2) medium selectivity; and (3) low selectivity.
This categorization helps us assess the time it takes to query
a local database. We consider the following queries:
• (low selectivity): license:123456789;
• (medium selectivity): address:987 Xyz St. OR
address:987 Xyz Street;

• (high selectivity): last:Smith.
For these test scenarios, the low selectivity query returns 1

record, the medium selectivity query returns 10 records, and
the high selectivity query returns 100 records. These queries
were selected to demonstrate the performance of the system
but as mentioned previously, bulk queries are not permitted.
Therefore a query that returns 10 or 100 records may not be
a valid query, depending on the county.

B. Cryptographic primitives

Our encrypted registry makes use of several cryptographic
primitives as building blocks. In the following, we discuss our
instantiations along with the libraries used. We stress that that
our protocols make black-box use of these primitives so the
instantiations and libraries can be changed.

Multi-party computation. For all 2PCs, our prototype
uses the EMP toolkit library [50]. In particular, we use
emp-sh2pc which is an implementation of Yao’s 2PC pro-
tocol [51] in the semi-honest setting. For our purposes, we
wrote an EMP-compatible implementation of HMAC-SHA256
on variable size inputs based on an existing EMP-compatible
implementation of SHA256 for fixed-size inputs [9]. For MPC,
we used the the JIFF library [23].

Encrypted data structures. We used the Clusion library
[40] to implement all the encrypted data structures; including
the global directory and the encrypted multi-maps needed
for the encrypted databases. In particular, we implemented

the global directory with Clusion’s Pibas implementation
[17]. The EMMs of the local database were implemented with
Clusion’s BIEX-2Lev implementation [17], [30]. We made
two changes to Clusion: (1) we changed the underlying
PRFs from AES-CMAC to HMAC-SHA256; and (2) we re-
placed the use of AES in counter mode with HMAC-SHA256
in counter mode (i.e., we encrypt each bloc by XORing it
with the output of HMAC-SHA256 on a counter). 3 These two
modifications were needed so that our 2PC-based decryption
of records in the Query and OfflineQuery protocols would be
compatible with the Clusion-based encrypted structures stored,
updated and queried at the server.

Unfortunately, Clusion only implements of the static
variant of BIEX, whereas we need a dynamic variant. To
handle this, we implemented a dynamic variant of BIEX using
the approach outlined in Appendix B.

Secret sharing. Our protocol uses both threshold and 2-out-
of-3 secret sharing. We instantiated the former with Shamir
secret sharing [45] and the latter with XOR secret sharing.

Overview of our results. Here, we summarize the main
takeaways from our empirical evaluation and provide a more
detailed analysis in Section VIII-C.

• (add efficiency) our experiments show that during an
add operation, the time to add the serial/id pair to the
global directory dominates the time needed to add the
record to the encrypted database. For example, to add
a batch of 10, 000 records, it takes 2, 627 seconds to
add the corresponding 10, 000 serial/id pairs to the global
directory, whereas it only takes 14.8 seconds to add the
10, 000 records to the local official’s encrypted database.
In total, this is about 264 milliseconds per record.

• (query efficiency) our experiments show that querying the
global directory to identify the county of a serial number
takes less than 300 milliseconds. They also show that
the time to query an official’s encrypted database mainly
depends on the selectivity of the query. Interestingly, the
number of records, as well as the number of updates
performed in the past, have limited impact on the query
time. In particular the time is dominated by the 2PCs
required to decrypt the response. As an example, it
takes about 1 minute to query and retrieve 100 matching
records. For offline queries, the protocol has similar
behavior. The MPC needed to reconstruct and re-share
the local official’s secret key is negligible compared to
the total time of offline queries which is dominated by
the 2PCs required to decrypt the response.

• (storage overhead) our results show that the size of the
global directory is linear in the number of pairs stored.
Recall that the encrypted databases are composed of a
BIEX-2Lev EMM and a set of encrypted records. The
size of the EMM has quadratic behavior as a function
of the number of records. Moreover, the size of the
encrypted records is negligible compared to the size of

3This construction was formally analyzed by Bellare et al. in [7].
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the EMM. In particular, for 400 million pairs, the size of
the global directory is 110GB. For 100, 000 records, the
size of the encrypted database’s EMM is 1.7GB and the
size of its encrypted records is less than 40MB.

C. Detailed Evaluation

1) Add Time: We evaluate the time of the Add protocol as
a function of the number of records inserted in the system.
For this, we evaluate each step of the protocol including: (1)
the time to add a serial/id pair to the global directory as a
function of its size; (2) the time to add a batch of serial/id
pairs; and (3) the time to create a new EMM as a function of
the number of records.

Adding pairs. The goal of this experiment is to assess how
the time of adding a new serial/id pair behaves as a function
of the size of the global directory, which includes the number
of registered guns in the US. In Figure 2a, we vary the size
from 100 up to 1 million pairs and then extrapolate the results
to reach 1 billion. We used a logistic regression to extrapolate
the results for when 1 million and 1 billion are already stored
in the global directory. Our results demonstrate that adding
a new pair is independent of the size of the global directory
and takes 366 milliseconds. For completeness, we tested the
time to add a new pair on a global directory containing 400
million pairs. The total time was 377 milliseconds, with 349
milliseconds spent on the 2PC. The time required for the 2PC
computation dominates the other tasks. In Figure 2b, we show
that the time to add the pair in the global directory takes less
than 1 millisecond.

Adding batches of pairs. In this experiment, we measure the
time it takes to add multiple pairs at once to the global direc-
tory. In particular, we want to know whether inserting multiple
pairs affects the overall time of the protocol. In Figure 2c, our
experiment shows that the amortized time to insert a single
pair in a batch is around 269 milliseconds which is 27% more
efficient than adding a single pair at a time. For this set of
experiments, we used a batch size of 100 pairs. Increasing the
batch size beyond this did not lead to better execution times
mainly because of the increasing communication overhead
incurred by the 2PC needed to accommodate for a higher
circuit size. Like above, the 2PC computation dominates the
execution time. In Figure 2d, we show the execution time
without the 2PC. In particular, inserting 10, 000 pairs into the
global directory requires less than 0.5 milliseconds.

Setting up the encrypted database. In this experiment, we
measure the time to encrypt the multi-map and the records.
Figure 4a shows that the setup of the EMM dominates the
overall execution time. In particular, setup takes around 220
seconds while the encryption of the records takes only 22
seconds.

Total add time. The time to execute the Add protocol is the
sum over the time do a batch update, the time to prepare and
the time to encrypt the local database (which itself consists
of the time prepare the EMM and encrypt the records). For
clarity, we consider a concrete example in which the local

official has an add rate of 10, 000 records per week. The time
to add 10, 000 serial/id pairs is 2, 627 seconds while the time
to add a new batch of records to the encrypted database is
either of the following (depending on the update number).
If the update number is a power of 2, then the execution
time is simply the time to create a new EMM along with
the encrypted records which is 14.58 seconds. Otherwise, if
the update number is not a power of 2, then the execution
time is less than 220.42 seconds, which is the time to create
an EMM for 100, 000 records. 4 For n = 10, 000 and u = 53
, the largest EMM has a size less than 100, 000. In summary,
the Add protocol requires less than 48 minutes.

2) Find Time: We are interested in measuring the time it
takes a querier to identify the county a given gun is registered
in. As above, we vary the number of pairs in the global
directory from 100 to 1 million and then extrapolate to 1
billion. We used a logistic regression to extrapolate the results
for when 1 million and 1 billion are already stored in the
global directory. In Figure 2e, we show that the time is
independent of the size of the directory. In particular, it takes
around 230 milliseconds to retrieve the county identifier. For
completeness, we tested the time to query for a county ID a
global encrypted directory containing 400 million pairs. The
total time was 247 milliseconds, with 230 milliseconds spent
on the 2PC. Similar to the Add protocol, the 2PC computation
takes the most time. Figure 2f shows that the server requires
less than 1 millisecond to retrieve the encrypted pair.

3) Query Time: In this experiment, we measure the time
it takes for a querier to retrieve the matching records from
a local database. There are two dimensions we varied in
the experiment: (1) the selectivity of the query; and (2) the
number of records stored in the server. Figure 3 summarizes
our results. As an example, retrieving 100 records from the
database, requires about 1 minute. We noticed that the query
time is independent of the number of records in the database.
However, the selectivity of the query does impact query time;
especially the time to do the decryption in the 2PC which
represents 99.5% of the overall execution time, and sharply
increases with more records to decrypt. Note that in our current
prototype, each decryption requires a new 2PC. And since
the decryptions occur sequentially, the query time is almost
proportional to the selectivity of the query. In Figure 3, we also
notice that the time to query the EMM on the server side is
negligible compared to the time required to generate the token
using 2PC. In particular, the former takes 3 milliseconds which
accounts for 0.006% of the overall time, while the latter takes
260 milliseconds which accounts for 0.4% of the overall time.
Note that the 2PC computation for selectivity 10 is slightly
larger as we need to compute a token for a more complex
query, refer to Section VIII-A for more details on our queries.

Query time with dynamic databases. We assessed the query
and offline query times while dynamically expanding the

4Note that one can show that the smallest structure on the server has a size
O(u · n/ log(u)), where u is the number of updates and n the number of
records, respectively.
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(a) Global directory add time for a single
pair.

(b) Global directory add time for a single
pair (without 2PC).

(c) Global directory add time for batched
pairs.

(d) Global directory add time for batched
pairs (without 2PC).

(e) Global directory find time for a single
county.

(f) Global directory find time for a single
county (without 2PC).

Fig. 2: Performance of operations with varying number of pairs in the global directory. In (a), (b), (e), (f), the values for when
108 and 109 pairs are in the global directory are extrapolated.

database and, in particular, the EMM. Note that the main
effects of using the dynamic BIEX-2Lev EMM are that: (1)
we need to generate tokens that increase linearly as a function
of the number of sub-EMMs; and (2) the query algorithm
needs to query all the sub-EMMs. In Figure 4b and 4c, we
provide a simulation based on the empirical numbers from the
previous experiment. Specifically, we use the average time for
querying an EMM and multiply it by the number of EMMs
that exist after x updates have been made, which is log2(x).
Recall that the number of sub-EMMs, as well as the token
size, grows logarithmically as a function of the number of
adds. In particular, our simulation demonstrates that dynamism
has a little to no impact on the execution time of the query
protocols. This was expected since the 2PC decryption step
greatly dominates the other tasks.

4) Offline Query Time: We show in Figure 7 (in Ap-
pendix D) the overall time spent by the OfflineQuery protocol
as a function of the selectivity, but also the number of
records in the dataset. This protocol is similar to the Query
protocol. The main differences are that the backups need to:
(1) reconstruct the local official’s key; and (2) generate new
shares for the key. In particular, the time for reconstruction is
around 5.68 seconds, while the time for generating the new
shares is around 450 milliseconds.

5) Storage Overhead: In this experiment, we are interested
in assessing the size of the encrypted databases (including its
EMM and encrypted records) and the size of the global direc-

tory. Figure 4d summarizes our results. We observe that the
size of the EMM dominates the overall size of the encrypted
databases. The encrypted records only accounts for 0.2% of
the overall storage. With respect to the global directory, we
varied the number of pairs it holds from 1000 up to 100
million. The storage overhead is summarized in Figure 4e.
We notice that the size of the global directory grows linearly
as a function of the number of pairs. As an example, storing
100 million serial/id pairs requires 28GB.

D. Cost analysis

We estimated the yearly cost of running the system in order
to provide a sense of its financial feasibility. Our numbers are
based on the AWS pricing calculator [4] and our own AWS
usage data. We assume that the yearly cost would be paid
upfront. Note that these costs are based on regular billing rates
while government entities would be billed at a discounted rate.
We only consider the servers that store the global directory and
the encrypted databases and the custodians since a standard
laptop is sufficient for local officials and queriers. The base
cost reflects the price of running a single AWS instance with
no additional storage and no data transfer. Depending on a
server’s role, it incurs different storage and data transfer costs,
which we describe. For the custodians and the global directory
server, we assume 400 million adds and finds are executed.
This captures the estimated number of gun ownership in the
US that was previously mentioned. For the encrypted database
servers, which would store the databases of each county in a
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(a) Query time with 1,000 records in
local database.

(b) Query time with 10,000 records in
local database.

(c) Query time with 100,000 records in
local database.

(d) Query time with 1,000 records in
local database (without 2PC decryption).

(e) Query time with 10,000 records in local
database (without 2PC Decryption).

(f) Query time with 100,000 records in
local database (without 2PC Decryption).

Fig. 3: Local database query times based on the selectivity of the query with varying records stored. The x-axis represents
low, medium, and high selectivity, which return 1, 10, 100 records respectively.

(a) Local database setup time. (b) Simulated local database query time
after updates

(c) Simulated local database query time
after updates (without 2PC decryption).

(d) Size of local database. (e) Size of the global directory.

Fig. 4: Performance of various operations on a local database and the storage sizes of a local database and global directory.
Record encryption refers to the amount of time taken to encrypt records. MM Encryption refers to the amount of time taken
to setup the EMM used to make queries over the local database.
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state, our estimate is based on the population of California
since it is the largest state with around 40 million people as
of 2019 [48].

Base costs. As mentioned, we used a t3.xlarge AWS
instance for our empirical evaluation, which has a yearly cost
of $853.22 when considering no additional storage and upfront
payment. If a more powerful instance were to be used, such
as the m5.metal, which has 96 vCPUs and 384GB of RAM,
the yearly cost with no additional storage and upfront payment
would be $23, 739.60.

Global directory server. Given that an EDX of 400 million
pairs is around 110GB, the directory server would require at
least this much storage. An attachment of 200GB of SSD EBS
storage would cost $461.28 a year. The data transfer cost is
assumed to be negligible since the server receives tokens that
are either 96 or 64 bytes. If 400 million updates were made
in a single year, the amount of data transferred would still be
less than 1 TB, which amounts to less than $10.

Custodians. The custodians have relatively low storage costs
but high data transfer costs due to the 2PCs they have to
execute as part of the add and find operations. We observed
that around 0.5 GB of data was transferred between the two
custodians for the 2PCs of 25 adds and the 2PCs of 25 finds.
Based on this number, at a price of $10 per TB, it would cost
roughly $80, 000 to execute the 2PCS of 400 million adds and
400 million finds.

Encrypted database servers. Given that an EMM that holds
100, 000 records is around 1.75 GB and that the encrypted
records are 384 bytes each, if the state of California were to
store a record for every person, it would need around 680
GB to store the EMMs and 15.36 GB to store the encrypted
records. An attachment 700 GB of SSD EBS storage would
cost $1586.28 a year.

The data transfer cost for a state-level encrypted database
server is negligible since the server only receives data in the
form of query tokens and encrypted records. Each encrypted
record is 384 bytes and a query token for the high selectivity
query used is 380 bytes. If each individual in California were
to be queried in a year, this would result in less than 40 GB
of data transferred, which would cost less than $10. These
estimates show an approximate range of costs. This does not
imply that the various government entities would choose to use
these specific machines or even a cloud provider such as AWS,
but rather it demonstrates that the financial cost of operating
our system would not be a significant barrier to deployment.

IX. RESPONSIBLE DESIGN

We believe that gun control laws, stricter licensing, and
firearm registries have a positive affect on public health. We
acknowledge, however, that introducing a protocol designed
specifically for data collection by law enforcement has the po-
tential for abuse and we recognize and strongly oppose existing
forms of non-consensual data collection by law enforcement.
We are also aware that giving law enforcement access to
data on citizens can enable the abuse of that data beyond

the original intent of its collection. Although driver license
and license plate databases are—like gun registries—intended
to increase public safety, unfettered access to this data by
various law enforcement agencies has lead to abuse. In 2019, it
was reported that US Immigration and Customs Enforcement
officers were given access to license plate databases which
were used to profile “foreign-looking” drivers, record their
license plates, look up personal information, and target them
for deportation [38]. Furthermore, it is known that the Federal
Bureau of Investigation has access to driver license photos in
multiple states and that it uses the data with facial recognition
algorithms to detect suspected criminals [21]. In registering
for a driver’s license, citizens do not explicitly consent to
these uses of their data and photos. This is exacerbated by the
fact that this data can misidentify them as criminals which is
particularly harmful to Black license holders, for whom facial
recognition algorithms have a lower accuracy rate.

In designing this system, we kept in mind how the data
it stores could be misused; particularly against marginalized
groups. We emphasize that people should consent to how their
registration data is used and by whom. The draft legislation
explicitly states that attempts to use the registry to collect large
amounts of data is prohibited and will be reported. We support
this rate limiting feature (and instantiate it via our 2PC-based
decryption) and urge that that access to the system (e.g., by
officials, sellers, police agencies, government agencies) be
clearly and transparently defined prior to deployment.

We also understand that once the technical infrastructure is
in place, firearm data could be be replaced and used for other
purposes beyond our intentions. While we cannot control how
this protocol is deployed, we strongly advocate for policies
and regulations that limit personal data collection by Law
Enforcement. While new developments in cryptography can
enhance privacy, the use of privacy-enhancing technologies
can also be used as cover to request access to more data.
Policies and laws that specifically outline what kind of data
can and cannot be collected by law enforcement before a
system such as ours is built and deployed would help curb
the potential for abuse.

X. CONCLUSION

In this work, we designed, implemented and evaluated
an end-to-end encrypted national gun registry. In designing
the system, we were in conversation with the Senate office
that drafted the legislation and followed their requirements
explicitly. We implemented the protocol and evaluated at the
scale it would have to run if it were deployed in the US. Our
empirical results confirmed that the design is not only possible
but practical.

The purpose of this work is to demonstrate the feasibility of
such a system, so our design can be improved by future work
in several respects. As designed (and implemented), the system
is secure in the standalone setting. Future work could improve
the protocol to be secure in the universal composability
model [14]. As mentioned in Section V, our protocol makes
black-box use of its underlying primitives. As such, different
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instantiations of these building blocks yield different tradeoffs
between efficiency and leakage. Future work could explore
how different instantiations (e.g., using techniques from [34])
improve the leakage profile of the system at what cost to
performance.
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APPENDIX A
ENCRYPTED DOCUMENT DATABASES

We recall the standard approach to designing an en-
crypted document database from a symmetric key encryption
SKE = (Gen,Enc,Dec) and a multi-map encryption scheme
ΣMM = (Init,Token,Query,AddToken,Add,Resolve). This is
equivalent to the index-based approach to desiogning SSE
schemes from Curtmola et al. [22]. Let Index be an algorithm
that takes as input a record and outputs label/tuple pairs
and ΣDB = (Init,Token,Query,AddToken,Add,Resolve) be a
(document) database encryption scheme that works as follows:

• Init(1k): takes as input a security parameter 1k and
computes (K1,EMM) ← ΣMM.Init(1k) and K2 ←
SKE.Gen(1k). It sets K = (K1,K2) and EDB = EMM
and outputs (K,EDB).

• Token(K, q): takes as input a key K and a query
q. It parses K as (K1,K2) and outputs tk ←
ΣMM.Token(K1, q).

• Query(EDB, tk): takes as input an encrypted
database EDB and a token tk. It parses
EDB as (EMM, ct1, . . . , ctn), computes I ←
ΣMM.Query(EMM, tk) and outputs {cti}i∈I .

• AddToken(K, r): takes as input a secret key K and
a record r. It parses K as (K1,K2) and com-
putes {(`1,v1), . . . , (`m,vm)} ← Index(r). Then,
for all 1 ≤ i ≤ m, it computes atki ←
ΣMM.AddToken(K1, (`i,vi)). Finally, it outputs atk =
(atk1, . . . , atkm, ct), where ct← SKE.Enc(K2, r).

• Add(EDB, atk): takes as input an encrypted
database EDB and an add token atk. It parses
EDB as (EMM0, ct1, . . . , ctn) and atk as
(atk1, . . . , atkm, ct). For all 1 ≤ i ≤ m, it computes
EMMi ← ΣMM.Add(EDBi−1, atki). It outputs
EDB = (EMMm, ct1, . . . , ctn, ct).

• Resolve(K, ct): takes as input a secret key K and a
set of ciphertexts ct. It parses K as (K1,K2) and

ct as (ct1, . . . , ctt). For all 1 ≤ i ≤ t, it computes
ri ← SKE.Dec(K2, cti).

Concrete instantiations. In this work, we instantiate ΣMM

with the BIEX-2Lev construction of [30]. The indexing algo-
rithm we use takes a record r as input and, for every field/value
pair f :v in r, outputs a label/value pair (f‖v, r.id). To search
for all records with f = v, it then suffices to query for
q = f‖v.

We now describe the leakage profile of BIEX-2Lev. Let

ϕ =

((
w1,1 ∨ · · · ∨ w1,q

)
∧ · · · ∧

(
w`,1 ∨ · · · ∨ w`,q

))
where wi,j

def
= fi,j‖vi,j . Then the query leakage of BIEX-2Lev

is

Lbiex
Q (DB, ϕ) =((

qeqg(w1,i), trsize(LMM1,i), qeqd(w1,i),

qeq1,i(w1,i+1), . . . , qeq1,i(w1,q), tag1,i(w1,1, . . . , w1,q)

)
1≤i≤q−1

,(
qeq1,1(wj,i), . . . , qeq1,q(wj,i),

tagj,i(w1,i, · · · , w1,q)

)
2≤j≤`,1≤i≤q

)
where tagi,j(w1, . . . , wq) = (fi,j(w1), . . . , fi,j(w1)) with fi,j
a random function, trsize(MM) is a stateful leakage pattern
that reveals the size of the multi-map MM, and qeqX(w) is
a stateful leakage pattern that reveals if and when w was
queried in the past. Note that qeqX and qeqY for X 6= Y
are not correlated in the sense that given qeqX(w) and
qeqY (w) one cannot tell that the leakages are for the same
w. The leakage profile of BIEX-2Lev is complex and can be
difficult to understand but we note that, currently, BIEX is the
boolean scheme with the smallest leakage profile. To achieve
a better leakage profile, one could use the leakage suppression
techniques of [34].

APPENDIX B
SEMI-DYNAMIC ENCRYPTED MULTI-MAPS

As described in Section V, our protocol relies on a semi-
dynamic database encryption scheme. Using the approach de-
scribed in Appendix A one can construct such a scheme from
a semi-dynamic multi-map encryption scheme and symmetric
key encryption. Since, in our setting, we want support for
boolean queries, we need the multi-map encryption scheme to
also support boolean queries. As far as we know, there are
three sub-linear boolean multi-map encryption schemes: the
scheme that underlies the Blind Seer construction [42], the
boolean variant of OXT [15] and the BIEX construction of
[30]. The latter is the most efficient but is only static so we
describe here how to make it semi-dynamic using a technique
described in [22]. More precisely, given a static multi-map en-
cryption scheme ΣMM = (Setup,Token,Query), we define a
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new semi-dynamic scheme ∆MM = (Init,Token,Query,Add)
that works as follows:
• Init(1k): takes as input a security parameter 1k, sets K =
⊥, st = 1 and EMM = ⊥ and outputs (K, st,EMM).

• Add
(
(K, st, {(`i,vi)i}),EMM

)
: is a two-party protocol

between the client and server where the client inputs
a key K, a state st and a set of label/tuple pairs
{(`1,v1), . . . , (`t,vt)} and the server inputs EMM. The
client first creates a new multi-map MM that stores
the pairs {(`1,v1), . . . , (`t,vt)}. It then parses st into
some positive integer i. If i a power of 2, it computes
(Ki,EMMi)← Setup(1k,MM), and sends EMMi to the
server who sets EMM := (EMM,EMMi). The client then
sets K := (K,Ki). On the other hand, if i is not a power
of 2, the client downloads the smallest EMM at the server,
decrypts it to recover MM? and computes (Ki,EMMi)←
Setup(1k,MMi), where MMi is a multi-map that holds
the pairs in both MM? and MM. It then sends EMMi to
the server who sets EMM := (EMM,EMMi). The client
then updates K := (K,Ki) and increments st by 1.

• Token(K, q): takes as input the secret key K and a query
q and uses each key in K = (K1, . . . ,Km) to generate a
token tki ← Token(Ki, ϕ) for each EMM stored on the
server. It outputs tk = (tk1, . . . , tkm).

• Query(EMM, tk): takes as input EMM =
(EMM1, . . . ,EMMm) and a token tk = (tk1, . . . , tkm).
For all 1 ≤ i ≤ m, it computes Ri ← Query(EDBi, tki)
and outputs (R1, . . . ,Rm).

The resulting semi-dynamic scheme ∆MM has O(time(Q) ·
log u) query time, where time(Q) is the complexity of
ΣMM.Query and u is the number of add operations. It has
the same asymptotic storage as ΣMM. It has O(log u) token
size and Add has communication complexity O(u/ log u). The
leakage profile of ∆MM is the same as ΣMM with the addition
of add leakage LA which reveals the size of R.

APPENDIX C
PSEUDO-CODE

The details of our encrypted registry system are described
in Figures 5 and 6.

APPENDIX D
EMPIRICAL EVALUATION

The time of an offline query is described in Figure 7.

APPENDIX E
PROOF OF THEOREM VII.1

Theorem VII.1. If SS is secure, ΣDX is ΛDX-secure and
ΣDB is ΛDB-secure, then the registry Ω described in Figures
5 and 6 is ΛΩ-secure.

Proof sketch:. Let SimDX be the simulator guaranteed to exist
by the ΛDX-security of ΣDX and SimDB be the simulator
guaranteed to exist by the ΛDB of ΣDB. Consider the simulator
S that simulates A and works as follows in the context of
external corruptions:

• (simulating InitGlobal) simulate Ff2PC and com-
pute EDX ← SimDX(Ldx

I (1k)) and (K1,K2) ←
SS.Share(0k, 2, 2). Send K1 to C1 and and K2 and EDX
to C2;

• (simulating InitLocal) compute EDB ←
SimDB(Ldb

I (1k)), sample Ki ← {0, 1}k and compute
(Ki,1,Ki,2,Ki,3) ← SS.Share(Ki, 2, 3). Send EDB to
S, and the shares Ki,1, Ki,2 and Ki,3 to B1, B2 and
B3, respectively.

• (simulating Add) compute atk ← SimDB(Ldb
A (DBi, r))

and send it to S. Compute (p1, p2) ←
SS.Share(0|SN|+|CID|, 2, 2) and send p1 and p2 to
C1 and C2, respectively. Simulate Ff2PC and compute
atk ← SimDX(Ldx

A (DX, SN‖CID)). Generate the shares
(atk1, atk2) ← SS.Share(atk, 2, 2) and output atk1 to
C2 and atk2 to C2.

• (simulating Find) compute (SN1, SN2) ←
SS.Share(0|SN|, 2, 2) and send SN1 and SN2 to
C1 and C2, respectively. Simulate Ff2PC and
compute tk ← SimDX(Ldx

Q (DX, SN)). Generate
the shares (tk1, tk2) ← SS.Share(tk, 2, 2) and
(KR,1,KR,2) ← SS.Share(0k, 2, 2) and output
(tk1,KR,1) to C1 and (tk2,KR,2) to C2.

• (simulating Query) compute tk ←
SimDB(Ldb

Q (DBL, ϕ)) and send tk to S.
• (simulating OfflineQuery) simulate the first Ff2PC in-

teraction and compute (K ′1,K
′
2) ← SS.Share(0k) and

send K ′1 to B1 and K ′2 to Q. Simulate the second Ff2PC
execution and compute tk← SimDB(Ldb

Q (DBL, ϕ)) and
output tk to Q and ⊥ to B1. Finally, simulate the FfMPC

execution and output ⊥ to B1.
We now turn to internal corruptions. Note that if L = Pi is

corrupted then its view only includes messages from Query.
In particular, it can be simulated by simulating the two Ff2PC
execution and returning ⊥ to Q in each case. The indistin-
guishability of A’s view in this case is trivial. If Q = Pi is
corrupted, then its view includes messages from Find, Query
and OfflineQuery. The simulator for this case is more complex
and, due to space limitations, is deferred to the full version of
this work.

The view of A during these simulations is guaranteed to
be indistinguishable from its view during a HybridZ,A(k)
execution by the ΛDX-security of ΣDX, the ΛDB-security of
ΣDB and the security of SS. Again, the details are deferred to
the full version of this work.

1535

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 30,2024 at 18:09:54 UTC from IEEE Xplore.  Restrictions apply. 



Let P1, . . . ,Pθ be θ parties, each of which has 3 designated backups B(i)
1 ,B

(i)
2 ,B

(i)
3 . Let C1 and C2 be two custodians, S be a server,

Q ∈ {P1, . . . ,Pθ} be a querier and L ∈ {P1, . . . ,Pθ} be a local official. Let SS = (Share,Recover) be a secret sharing scheme,
ΣDX = (Init,Token,Query,AddToken,ResKey,Resolve) be a response-hiding dictionary encryption scheme with restricted resolve and
ΣDB = (Init,Token,Query,AddToken,Resolve) be a response-hiding database encryption scheme. Consider the multi-party protocol
Ω = (InitGlobal, InitLocal,Add,Find,Query,OfflineQuery) defined as follows in the

(
F2PC,FMPC

)
-hybrid model:

• InitGlobalC1,C2,S(1k, 1k,⊥):

1) C1 samples r1
$← {0, 1}k and C2 samples r2

$← {0, 1}k;
2) C1 and C2 execute (K1, (K2,EDX))← Ff2PC(r1, r2)

where f(r1, r2):
a) (K,EDX)← ΣDX.Init(1k, r1 ⊕ r2);
b) (K1,K2)← SS.Share(K, 2, 2);
c) output K1 to C1 and (K2,EDX) to C2;

3) C2 sends EDX to S;
• InitLocalL,S,B1,B2,B3(1k,⊥,⊥,⊥,⊥):

1) L computes (KL,EDBL)← ΣDB.Init(1k) and sends EDBL to S;
2) L computes (KL,1,KL,2,KL,3)← SS.Share(KL, 2, 3) and sends KL,i to Bi;

• AddL,C1,C2,S ((KL, r),K1,K2,EGR):
1) S parses EGR as (EDX,EDB1, . . . ,EDBθ);
2) L computes atk← ΣDB.AddToken(KL, r) and sends it to S;
3) S computes EDB′L ← ΣDB.Add(EDBL, atk);
4) let SN = r.SN and CID = r.CID;
5) L computes (p1, p2)← SS.Share(SN‖CID, 2, 2) and sends p1 to C1 and p2 to C2;
6) C1 samples r1

$← {0, 1}k and C2 samples r2
$← {0, 1}k;

7) C1 and C2 execute (atk1, atk2)← Ff2PC ((K1, p1, r1), (K2, p2, r2))
where f((K1, p1, r1), (K2, p2, r2)):
a) computes K ← SS.Recover(K1,K2);
b) computes SN‖CID ← SS.Recover(p1, p2);
c) computes atk← ΣDX.AddToken(K, (SN, CID));
d) computes (atk1, atk2)← SS.Share(atk, 2, 2; r1 ⊕ r2);
e) outputs atk1 to C1 and atk2 to C2

8) C1 sends atk1 to S and C2 sends atk2 to S;
9) S computes atk← SS.Recover(atk1, atk2) and EDX′ ← ΣDX.Add(EDX, atk);

• FindQ,C1,C2,S (SN,K1,K2,EDX) :

1) Q computes (SN1, SN2)← SS.Share(SN, 2, 2) and sends SN1 to C1 and SN2 to C2;
2) C1 samples r1, r

′
1

$← {0, 1}k and C2 samples r2, r
′
2

$← {0, 1}k
3) C1 and C2 execute ((tk1,KU1), (tk2,KU2))← Ff2PC ((K1, SN1, r1, r

′
1), (K2, SN2, r2, r

′
2))

where f ((K1, SN1, r1, r
′
1), (K2, SN2, r2, r

′
2)):

a) recovers K ← SS.Recover(K1,K2);
b) computes SN ← SS.Recover(SN1, SN2);
c) computes tk← ΣDX.Token(K, SN);
d) computes KR := ΣDX.ResKey(K, SN);
e) computes (tk1, tk2)← SS.Share(tk, 2, 2; r1 ⊕ r2);
f) computes (KR,1,KR,2)← SS.Share(KR, 2, 2; r′1 ⊕ r′2);
g) outputs (tk1,KR,1) to C1 and (tk2,KR,2) to C2

4) C1 sends tk1 to S and KR,1 to Q;
5) C2 sends tk2 to S and KR,2 to Q;
6) S computes tk← SS.Recover(tk1, tk2) and ct← Query(EDX, tk) and sends ct to Q;
7) Q computes KR ← SS.Recover(KR,1,KR,2);
8) Q computes CID ← ΣDX.Resolve(KR, ct);

• QueryL,Q,S (KL, ϕ,EDBL)

1) L and Q execute (⊥, tk)← Ff2PC(KL, ϕ)
where f(KL, ϕ):
a) computes tk← ΣDB.Token(KL, ϕ)
b) outputs tk to Q

2) Q sends tk to S;
3) S computes (ct1, . . . , ctm)← ΣDB.Search(EDBL, tk) and sends (ct1, . . . , ctm) to Q;
4) L and Q compute (⊥, (r1, . . . , rm))← Ff2PC(KL, (ct1, . . . , ctm))

where f(KL, (ct1, . . . , ctm)):
a) for all 1 ≤ i ≤ m,

i) computes ri ← ΣDB.Resolve(KL, cti)
b) outputs (r1, . . . , rm) to Q;

Fig. 5: An encrypted registry (part 1).
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• OfflineQueryB1,B2,Q,S
(K1,K2, ϕ,EDBL)

1) B1 samples r1
$← {0, 1}k, B2 samples r2

$← {0, 1}k and Q samples r3
$← {0, 1}k;

2) B1, B2 and Q execute (K′1,⊥,K′2)← FfMPC

(
(K1, r1), (K2, r2), (⊥, r3)

)
where f :
a) computes K ← SS.Recover(K1,K2);
b) computes (K′1,K

′
2)← SS.Share(K, 2, 2; r1 ⊕ r2 ⊕ r3);

c) outputs K′1 to B1 and K′2 to Q;
3) B1 and Q execute (⊥, tk)← Ff2PC

(
K′1,K

′
2

)
where f :
a) computes K ← SS.Recover(K′1, (ϕ,K

′
2));

b) computes tk← ΣDB.Token(K,ϕ);
c) outputs ⊥ to B1 and tk to Q;

4) Q sends tk to S;
5) S computes (ct1, . . . , ctm)← ΣDB.Query(EDBL, tk) and returns (ct1, . . . , ctm) to Q;
6) B1 and Q execute (⊥, (r1, . . . , rm))← Ff2PC

(
K′1, (K

′
2, (ct1, . . . , ctm))

)
where f :
a) computes K ← SS.Recover(K′1,K

′
2);

b) for all 1 ≤ i ≤ m,
i) computes ri ← ΣDB.Resolve(K, cti);

c) outputs ⊥ to B1 and (r1, . . . , rm) to Q;

Fig. 6: An encrypted registry (part 2).

(a) Offline query time with 1,000
records in local database.

(b) Offline query time with 10,000
records in local database.

(c) Offline query time with 100,000
records in local database.

(d) Offline query time with 1,000
records in local database (without
2PC decryption).

(e) Offline query time with 10,000
records in local database (without
2PC decryption).

(f) Offline query time with 100,000
records in local database (without
2PC decryption).

Fig. 7: Local database offline query times based on the selectivity of the query with varying records stored. The x-axis represents
low, medium, and high selectivity, which return 1, 10, 100 records respectively.
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