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Abstract
Continuous compliance with privacy regulations, such as
GDPR and CCPA, has become a costly burden for com-
panies from small-sized start-ups to business giants. The
culprit is the heavy reliance on human auditing in today’s
compliance process, which is expensive, slow, and error-
prone. To address the issue, we propose PRIVGUARD,
a novel system design that reduces human participation
required and improves the productivity of the compliance
process. PRIVGUARD is mainly comprised of two com-
ponents: (1) PRIVANALYZER, a static analyzer based on
abstract interpretation for partly enforcing privacy reg-
ulations, and (2) a set of components providing strong
security protection on the data throughout its life cycle.
To validate the effectiveness of this approach, we proto-
type PRIVGUARD and integrate it into an industrial-level
data governance platform. Our case studies and evalu-
ation show that PRIVGUARD can correctly enforce the
encoded privacy policies on real-world programs with
reasonable performance overhead.

1 Introduction

With the advent of privacy regulations such as the EU’s
General Data Protection Regulation (GDPR) and Cal-
ifornia Consumer Privacy Act (CCPA), unprecedented
emphasis is put on the protection of user data. This is
a positive development for data subjects, but presents
major challenges for compliance. Today’s compliance
paradigm relies heavily on human auditing, and is prob-
lematic in two aspects. First, it is an expensive process to
hire and train data protection personnel and rely on man-
ual effort to monitor compliance. According to a report
from Forbes [12], GDPR cost US Fortune 500 companies
$7.8 Billion as of May 25th, 2018. Another report from
DataGrail [4] shows that 74% of small- or mid-sized

organizations spent more than $100,000 to prepare for
continuous compliance with GDPR and CCPA. Second,
human auditing is slow and error-prone. The inefficiency
of compliance impedes the effective use of data and hin-
ders productivity. Errors made by compliance officers
can harm data subjects and result in legal liability.

An ideal solution would enable data curators to easily
ensure fine-grained compliance with minimal human par-
ticipation and quickly adapt to new changes in privacy
regulations. A significant amount of academic work seeks
to address this challenge [2, 30, 32, 42, 43, 51, 53, 55, 57].
The European ICT PrimeLife project proposes to encode
regulations using Primelife Policy Language (PPL) [55]
and enforce them by matching the policies with user-
specified privacy preferences and triggering obligatory
actions when detecting specific behaviors. A-PPL [30]
extends the PPL language by adding accountability rules.
These two pioneering works play important roles in the
exploration of efficient policy compliance. However, as
they focus on Web 2.0 applications, they provide limited
support for fine-grained privacy requirement compliance
in complex data analysis tasks. The SPECIAL project [2]
partly inherits the design of the PPL project and, as a
result, suffers from similar limitations. The closest to our
work is by Sen et al. [53], which proposed a formal lan-
guage (LEGALEASE) for privacy policies and a system
(GROK) to enforce them. However, GROK uses heuristics
to help decide whether the analysis process is compliant
with a policy and human auditing is required to catch
false-negatives. Thus, effective compliance with privacy
regulations at scale remains an important challenge.

PRIVGUARD: Facilitating Compliance. This paper de-
scribes a principled data analysis framework called PRIV-
GUARD to reduce human participation in the compliance
process. PRIVGUARD works in a five-step pipeline under
the protection of cryptographic tools and trusted execu-



tion environments (TEEs).
First, data protection officers (DPOs), legal experts,

and domain experts collaboratively translate privacy reg-
ulations into a machine-readable policy language. The
translation process is application-specific and requires
domain-specific knowledge in both the application and
the privacy regulation (e.g. mapping legal concepts to
concrete fields.). The encoded policy is referred to as the
base policy. Encoding the base policy is the step with the
most human effort in PRIVGUARD’s workflow.

Second, before the data is collected, the data subjects
are aided by a client-side API to specify their privacy
preferences. They can either directly accept the base pol-
icy or add their own privacy requirements. The privacy
preferences are collected together with the data.

Third, data analysts submit programs to analyze the
collected data. Analysts are required to submit a cor-
responding guard policy no weaker than the base pol-
icy along with their program. Only data with policy no
stronger than the guard policy can be used.

Fourth, our proposed static analyzer, PRIVANALYZER,
examines the analysis program to confirm its compliance
with the guard policy. At the same time, the subset of the
data whose privacy preferences are no stronger than the
guard policy will be loaded to conduct the real analysis.

Finally, depending on the output of PRIVANALYZER,
the result will be either declassified to the analyst or
guarded by the remaining unsatisfied privacy require-
ments (called a residual policy).
Extension of LEGALEASE: Encoding Policies. PRIV-
GUARD is designed to be compatible with many machine-
readable policy languages such as [30, 55]. In this work,
we instantiate our implementation with LEGALEASE [53]
due to its readability and extensibility. We extend
LEGALEASE [53] by providing new attribute types, in-
cluding attributes requiring the use of privacy-enhancing
technologies like differential privacy.
PRIVANALYZER: Enforcing Policies. The core com-
ponent of PRIVGUARD is PRIVANALYZER, a static an-
alyzer checking the compliance of an analysis program
with a privacy policy. PRIVANALYZER performs static
analysis of the programs submitted by analysts to check
their compliance with the corresponding guard policies.

In contrast to previous approaches relying on access
control [28] or manual verification [2, 36, 53], PRIVANA-
LYZER is a novel policy enforcement mechanism based
on abstract interpretation [49]. PRIVANALYZER does
not rely on heuristics to infer policy or program seman-
tics, and provides provable soundness for some proper-
ties. PRIVANALYZER examines only the program and
the policy (not the data), so the use of PRIVANALYZER

does not reveal the content of the data it protects. Our
approach works for general-purpose programming lan-
guages, including those with complex control flow, loops,
and imperative features. Thus, PRIVANALYZER is able to
analyze programs as written by analysts—so analysts do
not need to learn a new programming language or change
their workflows. We instantiate our implementation with
Python, one of the most widely used programming lan-
guages for data analysis.

We implemented PRIVANALYZER in about 1400 lines
of Python and integrated it in an industrial-level data
governance platform to prototype PRIVGUARD. We eval-
uated the prototype experimentally on 23 open-source
Python programs that perform data analytics and ma-
chine learning tasks. The selected programs leverage
popular libraries like Pandas, PySpark, TensorFlow, Py-
Torch, Scikit-learn, and more. Our results demonstrate
that PRIVGUARD is scalable and capable of analyzing
unmodified Python programs, including programs that
make extensive use of external libraries.
Contributions. In brief, this paper makes the following
contributions.
• We propose PRIVGUARD, a novel framework for pri-

vacy regulation compliance minimizing human effort.
• We propose PRIVANALYZER, a static analyzer based

on abstract interpretation for enforcing privacy poli-
cies on unmodified analysis programs.

• We implemented PRIVANALYZER for LEGALEASE
and Python in about 1400 lines of Python. Our imple-
mentation supports commonly-used analysis libraries
such as Pandas, Scikit-learn, etc.

• We prototyped PRIVGUARD by integrating PRIVANA-
LYZER in PARCEL, an industrial-level data governance
platform. We simulated the execution of PRIVGUARD
with up to one million clients and the results show that
PRIVGUARD incurs about two-minute overhead when
dealing with one million clients.

2 PRIVGUARD Overview
In this section, we outline the design and implementation
of PRIVGUARD. We first walk through PRIVGUARD
using a toy example and then introduce the system design
and implementation. As last, the threat model and the
security of PRIVGUARD are discussed.

2.1 A Toy Example
We use a toy example to demonstrate the workflow of
PRIVGUARD, which also allows us to present the main
components used. A company launches a mobile ap-
plication and collects user data to help make informed



business decisions. To facilitate compliance with privacy
regulations, the company deploys PRIVGUARD to protect
the collected data.

First, the DPOs, legal experts, and domain experts en-
code two requirements in the base policy: (1) minors’
data shall not be used in any analysis; (2) any statistics
on the data shall be protected using differential privacy.

Second, the privacy preferences are collected from
the data subjects together with the data. Some data sub-
jects (Group 1) trust the company and directly accept the
base policy. Some (Group 2) are more cautious and want
their zip codes to be redacted before analysis. The others
(Group 3) do not trust the company and do not want their
data to be used for purposes except for legitimate interest.

Third, a data analyst wants to survey the user age dis-
tribution. It specifies a guard policy, that besides the base
policy, zip codes shall not be used in the analysis either.
The analyst submits a program calculating the user age
histogram to PRIVGUARD. She remembers to filter out
all the minor information and redact the zip code field but
forgets to protect the program with differential privacy.

Fourth, PRIVGUARD uses PRIVANALYZER to exam-
ine the privacy preferences and loads data of Group 1 and
2 into the TEE as their privacy preferences are no stricter
than the guard policy. PRIVGUARD runs the program and
saves the resulting histogram. However, after examining
the program and the guard policy, PRIVGUARD finds that
the program fails to protect the histogram with differen-
tial privacy. Thus, the histogram is encrypted, dumped to
the storage layer and guarded by a residual policy indi-
cating that differential privacy should be applied before
the result can be declassified.

Lastly, PRIVGUARD outputs the residual policy to the
analyst. The analyst, after checking the residual policy,
submits a program which adds noise to the histogram to
satisfy differential privacy. PRIVGUARD then decrypts
the histogram, loads it into TEE, and executes the pro-
gram to add noise to it. This time, PRIVGUARD finds
that all the requirements in the guard policy are satisfied,
so it declassifies the histogram to the analyst.

2.2 System Design

Base Policy Encoding. Encoding the base policy is the
step with the most human participation in PRIVGUARD’s
workflow. The base policy should be designed collabo-
ratively by DPOs, legal experts, and domain experts to
accurately reflect the minimum requirements of the pri-
vacy regulation. Note that only one base policy is needed
for each data collection and can be reused throughout all
the analyses on the data. The purpose of the base policy is

ALLOW ROLE
Physician

ALLOW SCHEMA
HealthInformation

AND FILTER age < 90
AND REDACT zip

(a) General encoding.

ALLOW ROLE
Physician

ALLOW SCHEMA
SerumCholestoral

AND FILTER age < 90

(b) Concrete encoding.

Figure 1: Encoding of several HIPAA requirements.

two-fold. First, the text version of the base policy is to be
presented to data subjects as the minimum privacy stan-
dard before they opt in the data collection. Second, the
data analysts need to understand the base policy before
conducting analysis. If their analysis satisfies a stricter
privacy standard, they can specify their own guard policy
to take advantage of more user data.

We demonstrate the encoding process using a subset
of the HIPAA safe harbor method1 (Figure 1). The DPOs
and legal experts first encode the regulation in a general
way without considering concrete data format. As shown
in Figure 1a, the first clause (line 1-2) allows the patient’s
physician to check his or her data. The second clause
(lines 3-7) represents some safe harbor requirements:
health information may be released if the subject is under
90 years old and the zip codes are removed. Then the
DPOs and domain experts map the encoding to a concrete
data collection by introducing real schemas and removing
unnecessary requirements. For example, in Figure 1b,
HealthInformation is replaced with a concrete column name
in the dataset, SerumCholestoral, and the last requirement is
removed as the dataset does not contain zip codes.
Data & Privacy Preference Collection. Besides the
base policy, the data subjects can also specify additional
privacy preferences to exercise their rights to restrict pro-
cessing. These privacy preferences are sent to the data
curator along with the data, where they will be kept to-
gether in the storage layer. To defend against attacks dur-
ing transmission and storage, the data is encrypted before
sent to the data curator. The decryption key is delegated
to a key manager for future decryption (Section 2.3).

A natural question is "how much expertise is needed
to specify privacy preferences in LEGALEASE?" Sen et
al. [53] conducted a survey targeting DPOs and found
that the majority were able to correctly code policies
after training. To complement their survey and better un-
derstand how much expertise is needed, we conducted
an online survey targeting general users without train-

1Recent research has shown that the approach prescribed in HIPAA
does not really protect the privacy of individuals. In the future, we
expect that many data subjects will add a PRIVACY attribute requiring
the use of a provable privacy technology like differential privacy.



ing. The survey reveals two interesting facts: (1) there
is a significant positive correlation between the diffi-
culty of understanding and encoding LEGALEASE poli-
cies and the user’s familiarity with other programming
languages; (2) most users cannot correctly understand
privacy techniques such as differential privacy without
training. According to these observations, we strongly
recommend the users without programming experience
directly accept the base policy instead of encoding their
own. Although out of scope, we deem it important future
direction to simplify privacy preference specification by
developing more user-friendly UI and translation tools.
The details of the survey are deferred to Appendix B.
Analysis Initialization. To initialize an analysis task,
the analyst needs to submit (1) the analysis program, and
(2) a guard policy, to PRIVANALYZER. A guard policy
should be no weaker than the base policy to satisfy the
minimum privacy requirements. The stricter the guard
policy is, the more data can be used for analysis.
PRIVANALYZER Analysis. After receiving the submis-
sion, PRIVANALYZER will load the privacy preferences
from the storage layer and compare them with the guard
policy. Only the data with preferences no stricter than
the guard policy will be loaded into the TEE, decrypted
using keys from the key manager, and merged to pre-
pare for the real analysis. Meanwhile, PRIVANALYZER
will (1) check that the guard policy is no weaker than
the base policy and (2) then examine the guard policy
and the program to generate the residual policy. To make
sure the static analysis runs correctly, PRIVANALYZER is
protected inside a trusted execution environment (TEE).

The compliance enforcement actually hinges on three
checks: (1) the guard policy is no weaker than the base
policy; (2) only data with privacy preferences no stronger
than the guard policy is used; (3) the guard policy should
be satisfied before declassification. For (3), the guard
policy can be satisfied either by a single program or by
multiple programs applied sequentially on the data. This
design endows PRIVGUARD with the ability to enforce
privacy policies in multi-step analyses.
Execution & Declassification. After PRIVANALYZER
finishes its analysis, the submitted program will be ex-
ecuted with the decrypted data inside the TEE. If the
residual policy generated in the previous step is empty,
then the result can be declassified to the analyst. Other-
wise, the output will be encrypted again and stored in the
storage layer protected by the residual policy.

Attentive readers might ask “why does PRIVGUARD
not directly reject programs that fail to comply with the
guard policy?” The design choice is motivated by two
considerations. First, it is not always possible to get an

Figure 2: PRIVGUARD prototype infrastructure. White:
data/policies; green: analysis programs; blue: off-the-
shelf components; yellow: newly-designed components.

empty residual policy when the guard policy contains
ROLE or PURPOSE attributes. These attributes will be sat-
isfied by human auditing after the real data analysis. Sec-
ond, PRIVGUARD is designed to be compatible with
multi-step analysis, a common case in real-world product
pipelines. In multi-step analysis, it is likely that privacy
requirements are satisfied in different steps.

2.3 System Security

In this section, we present the threat model and demon-
strate how to secure PRIVGUARD under the threat model.
Threat Model. Our setting involves four parties - (1)
data subjects (e.g. users), (2) a data curator (e.g. web ser-
vice providers, banks, or hospitals), (3) data analysts (e.g.
employees of the data curator), and (4) untrusted third
parties (e.g. external attackers). Data is collected from
data subjects, managed by the data curator, and analyzed
by data analysts. Both the data subjects and the data cu-
rator would like to comply with privacy regulations to
either protect their own data or avoid legal or reputational
risk. The data analysts, however, are honest but reckless,
and might unintentionally write programs that violate
privacy regulations. The only way that a data analyst
can interact with the data is to submit analysis programs
and check the output. The untrusted third parties might
actively launch attacks to steal the data or interfere with
the compliance process. A concrete example is the cloud
provider which hosts a small company’s service or data.
We protect data confidentiality and execution integrity
from third parties under the following two assumptions.
First, we assume that the untrusted third parties cannot
submit analysis programs to PRIVANALYZER or com-
promise insiders to do so. Second, we assume that the
untrusted third parties fit in the threat model of the cho-
sen TEE so that they cannot break the security guarantee
of the TEE.



Security Measure. PRIVGUARD takes the following
measures to defend against untrusted third parties and
establish a secure workflow under the above threat model.
First, data is encrypted locally by the data subjects before
transmitted to the data curator. The decryption key is
delegated to the key manager so no one can touch the
data intentionally or carelessly without asking the key
manager or the data subject for the decryption key. To
bind data and policy in an immutable way, the encrypted
data contains a hash value of the corresponding policy.
Second, all transmission channels satisfy transport layer
security standards (TLS 1.3). Third, PRIVANALYZER is
run inside a TEE to guarantee the integrity of the static
analysis. The key manager can attest remotely to con-
firm that PRIVANALYZER correctly examines the pro-
gram and the policies before issuing the decryption key.
Fourth, data decryption and analysis program execution
are protected inside the TEE as well.

Security of PRIVGUARD against untrusted third-
parties is based on the following sources of trust. First,
confidentiality and integrity of data are preserved inside
TEE and TLS channels. Second, the integrity of code ex-
ecution is preserved inside the TEE. Remote attestation
can correctly and securely report the execution output.
Third, the key manager is completely trusted such that
the confidentiality of decryption keys is preserved. The
design of trusted key managers is orthogonal to the focus
of the paper. Potential solutions include a key manager
inside TEE or a decentralized key manager [44].

3 PRIVANALYZER: Static Analysis for En-
forcing Privacy Policies

This section describes PRIVANALYZER, a static ana-
lyzer for enforcing the privacy policies tracked by PRIV-
GUARD. We first review the LEGALEASE policy lan-
guage [53], which we use to encode policies formally,
then describe how to statically enforce them. The formal
model is deferred to Appendix A.

3.1 Background & Design Challenges
LEGALEASE is one example of a growing body of work
that has explored formal languages for encoding privacy
policies [31, 32, 36, 39, 42, 43, 51, 53, 56, 57]. A complete
discussion of related work appears in Section 5. We adopt
LEGALEASE to express PRIVGUARD policies due to its
expressive power, formal semantics, and extensibility.

Sen et al. [53] developed a system called GROK
that combines static and dynamic analyses to enforce
LEGALEASE policies. GROK constructs a data depen-
dency graph which encodes all flows of sensitive data,

attr ∈ ROLE, SCHEMA, PRIVACY, FILTER,
REDACT,PURPOSE

A ∈ attribute ::= attr attrValue
C ∈ policy clause ::= A | A AND C | A OR C
P ∈ policy ::= (ALLOW C)+

Figure 3: Policy language surface syntax

then applies a set of inference rules to check that each
node in the graph satisfies the policy. GROK combines
analysis of system logs with limited static analysis to
construct the graph.

The GROK approach presents two challenges. First,
the approach is a heuristic: it examines syntactic prop-
erties of the program and individual executions of the
program (via system logs), and thus may miss policy
violations due to implicit flows [37, 48, 50, 59]. Second,
the GROK approach requires making the entire dataflow
graph explicit; in large systems with many data flows,
constructing this graph may be intractable.

PRIVANALYZER is designed as an alternative to ad-
dress both challenges. It uses static analysis based on
abstract interpretation instead of GROK’s heuristic anal-
ysis and avoids making the dataflow graph explicit by
constructing composable residual policies.

3.2 Policy Syntax & Semantics
PRIVANALYZER enforces privacy policies specified in
LEGALEASE [53], a framework for expressing policies
using attributes of various types. Attributes are organized
in concept lattices [3], which provide a partial order on
attribute values. We express policies according to the
grammar in Figure 3 (a slightly different syntax from
that of LEGALEASE). A policy consists of a top-level
ALLOW keyword followed by clauses separated by AND

(for conjunction) and OR (for disjunction). For example,
the following simple policy specifies that doctors or re-
searchers may examine analysis results, as long as the
records of minors are not used in the analysis:

ALLOW (ROLE Doctor OR ROLE Researcher)
AND FILTER age >= 18

Sen et al. [53] define the formal semantics of
LEGALEASE policies using a set of inference rules and
the partial ordering given by each attribute’s concept lat-
tice. We take the same approach, but use a new attribute
framework based on abstract domains [49] instead of
concept lattices. Our approach enables PRIVPOLICY to
encode policies with far more expressive requirements,
like row-based access control and the use of privacy-
enhancing technologies as described below.
Attributes. Attributes are the basic building blocks



in LEGALEASE. Sen et al. [53] describe a set of use-
ful attributes. We extend this set with two new ones:
FILTER encodes row-based access control requirements,
and PRIVACY requires the use of privacy-enhancing tech-
nologies.
Role. The ROLE attribute controls who may examine the
contents of the data. Roles are organized into partially
ordered hierarchies. A particular individual may have
many roles, and a particular role specification may repre-
sent many individuals. For example, the doctor role may
represent doctors with many different specialties. The
following policy says that only individuals with the role
Oncologist may examine the data it covers:

ALLOW ROLE Oncologist

Schema. The SCHEMA attribute controls which columns
of the data may be examined. For example, the follow-
ing policy allows oncologists to examine the age and
condition columns, but no others:

ALLOW ROLE Oncologist
AND SCHEMA age, condition

Privacy. The PRIVACY attribute controls how the data
may be used, by requiring the use of privacy-enhancing
technologies. As a representative sample of the spec-
trum of available mechanisms, our implementation sup-
ports the following (with easy additions): (1) De-
identification (or pseudonymization); (2) Aggregation;
(3) k-Anonymity [54]; (4) `-diversity [41]; (5) t-
closeness [40]; (6) Differential privacy [33,34]. For exam-
ple, the following policy allows oncologists to examine
the age and condition columns under the protection of
differential privacy with certain privacy budget:

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)

Filter. The FILTER attribute allows policies to specify that
certain data items must be excluded from the analysis.
For example, the following policy says that oncologists
may examine the age and condition of individuals over
the age of 18 with differential privacy:

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)
AND FILTER age > 18

Redact. The REDACT attribute allows policies to require
the partial or complete redaction of information in a col-
umn. For example, the following policy requires analysis
to redact the last 3 digits of ZIP codes (e.g. by replac-
ing them with stars). The (2 : ) notation is taken from
Python’s slice and indicates the substring between the
third character and end of the string.

ALLOW ROLE Oncologist
AND SCHEMA age, condition

Figure 4: PRIVANALYZER Overview. PRIVANALYZER
inputs an analysis program and policies, and produces
residual policies; it can be applied repeatedly (dashed
line) for multi-step analyses.

AND PRIVACY DP (1.0, 1e-5)
AND FILTER age > 18
AND REDACT zip (2 : )

Purpose. The PURPOSE attribute allows the policy to
restrict the purposes for which data may be analyzed. For
example, the following policy allows the use of age and
medical condition for public interest purposes with all
the above requirements:

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)
AND FILTER age > 18
AND REDACT zip (2 : )
AND PURPOSE PublicInterest

3.3 PRIVANALYZER Overview
PRIVANALYZER performs its static analysis via abstract
interpretation [49], a general framework for sound analy-
sis of programs. Abstract interpretation works by running
the program on abstract values instead of concrete (regu-
lar) values. Abstract values are organized into abstract
domains: partially ordered sets of abstract values which
can represent all possible concrete values in the program-
ming language. An abstract value usually represents a
specific property shared by the concrete values it repre-
sents. In PRIVANALYZER, abstract values are based on
the abstract domains described earlier.

Our approach to static analysis is based on a novel
instantiation of the abstract interpretation framework, in
which we encode policies as abstract values. The ap-
proach is summarized in Figure 4. The use of abstract
interpretation allows us to construct the static analysis
systematically, ensuring its correspondence with the in-
tended semantics of attribute values.
Analyzing Python Programs. The typical approach
to abstract interpretation is to build an abstract inter-
preter that computes with abstract values. For a complex,
general-purpose language like Python, this approach re-
quires significant engineering work. Rather than building
an abstract interpreter from scratch, we re-use the stan-



dard Python interpreter to perform abstract interpretation.
We embed abstract values with attached privacy policies
as Python objects and define operations over abstract
values as methods on these objects.

For example, the Pandas library defines opera-
tions on concrete dataframes; PRIVANALYZER defines
the AbsDataFrame class for abstract dataframes. The
AbsDataFrame class has the same interface as the Pandas
DataFrame class, but its methods are redefined to compute
on abstract values with attached policies. We call the re-
defined method a function summary, since it summarizes
the policy-relevant behavior of the original method. For
example, the Pandas indexing function __getitem__ is
used for filtering, so PRIVANALYZER’s function sum-
mary for this function removes satisfied FILTER attributes
from the policy.

def __getitem__(self, key):
......

If isinstance(key, AbsIndicatorSeries):
# ‘ runFilter ‘ removes satisfied FILTER attributes
newPolicy = self . policy . runFilter (...)
return Dataframe(..., newPolicy)

......

Multi-step Analyses & Residual Policies. As shown in
Figure 4, the output of PRIVANALYZER is a residual pol-
icy. A residual policy is a new policy for the program’s
concrete output—it contains the requirements not yet sat-
isfied by the analysis program. For a multi-step analysis,
each step of the analysis can be fed into PRIVANALYZER
as a separate analysis program, and the residual policies
in the previous step become the input policies for the next
step. PRIVANALYZER is compositional: if multiple anal-
yses are merged together into a single analysis program,
then the final residual policy PRIVANALYZER returns for
the multi-step analysis will be at least as restrictive as
the one for the single-step version. The use of residual
policies in PRIVGUARD enables compositional analy-
ses without requiring explicit construction of a global
dataflow graph, addressing the challenge of GROK [53]
mentioned earlier.

Handling libraries. Scaling to large programs is a ma-
jor challenge for many static analyses, including abstract
interpreters. Libraries often present the biggest challenge,
since they tend to be large and complex; it may be im-
possible to analyze even a fairly small target program if
the program depends on a large library. This is certainly
true in our setting (Python programs for data process-
ing), where programs typically leverage large libraries
like pandas (327,007 lines of code), scikit-learn (184,144
lines of code), PyTorch (981,753 lines of code) and Ten-
sorflow (2,490,119 lines of code). Worse, many libraries
are written in a mix of languages (e.g. Python and C/C++)
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Figure 5: Python library frequency statistics. We summa-
rized the top frequently used libraries.

for performance reasons, so analysis for each one of these
languages would be needed.

Our solution is to develop specifications of the abstract
functionality of these libraries, like the AbsDataFrame ex-
ample shown earlier, in the form of function summaries.
We use the function summaries during analysis instead of
the concrete implementation of the library itself. This ap-
proach allows PRIVGUARD to enforce policies even for
analysis programs that leverage extremely large libraries
written in multiple languages.

Our approach for handling libraries requires a domain
expert with knowledge of the library to implement its
specification. In our experience, the data science com-
munity has largely agreed upon a core set of important
libraries which are commonly used (e.g. NumPy, pan-
das, scikit-learn, etc.), so providing specifications for a
small number of libraries is sufficient to handle most
programs. To validate the conjecture empirically, we ran-
domly selected 200 programs from the Kaggle platform
and counted the libraries they use (Figure 5). The results
confirmed that most data analysis programs use similar
libraries. We have already implemented specifications
for the most frequently used libraries (Section 4). Fortu-
nately, the abstract behavior for a library function tends
to be simpler than its concrete behavior. We have imple-
mented 380 function summaries mainly for Numpy, Pan-
das, and scikit-learn and are actively working on adding
more function summaries for various libraries.

We require correct specifications to rigorously enforce
privacy policies. An illustrative example of the impor-
tance of correctly implementing specifications is the re-
naming function. Cunning inside attackers may want to
bypass the static analysis by renaming sensitive columns.
A correct specification which renames the columns in
both the schema and the privacy clauses should miti-
gate such attacks. To mitigate risks due to such errors,
function summaries should be open-sourced so the com-



munity can help check their correctness.
Comparison with dynamic approaches. Our choice
of a static analysis for PRIVANALYZER is motivated by
two major advantages over dynamic approaches: (1) the
ability to handle implicit data flows, and (2) the goal of
adding minimal run-time overhead. The ability to de-
tect implicit flows is a major advantage of static analysis
systems [37, 48, 50, 59], including PRIVANALYZER. Un-
like dynamic approaches, PRIVANALYZER cannot be
defeated by complex control flow designed to obfuscate
execution. For example, the data subject might specify
the policy ALLOW REDACT name (1 : ), which requires redact-
ing most of the name column. An analyst might write the
following program:

if data.name == ’Alice’:
return 1

else:
return 2

This program clearly violates the policy, even though it
does not return the value of data.name directly. This kind
of violation is due to an implicit flow of the name column
to the return value. A return value of 1 allows the analyst
to confirm with certainty that the data subject’s name is
Alice. This kind of implicit flow presents a significant
challenge for dynamic analyses, because dynamic analy-
ses only execute one branch of each conditional, and can
make no conclusions about the branch not taken. A dy-
namic analysis must either place significant restrictions
on the use of sensitive values in conditionals, or allow
for unsoundness due to implicit flows.

Static analyzers like PRIVANALYZER, on the other
hand, can perform a worst-case analysis that inspects
both branches. PRIVANALYZER’s analysis executes both
branches with the abstract interpreter and returns the
worst-case outcome of both branches. For loops with no
bound on the number of iterations, the analysis results
represent the worst-case outcome, no matter how many
iterations execute at runtime. This power comes at the
expense of a potential lack of precision—the analysis
may reject programs that are actually safe to run. Our
evaluation suggests, however, that PRIVANALYZER anal-
ysis is sufficiently precise for programs that perform data
analyses. Static analysis tools like PRIVANALYZER do
not require the policy specification to be aware of implicit
flows as it combines both types of flows in its results.

3.4 PRIVANALYZER by Example
The input to PRIVANALYZER is a single analysis pro-
gram, plus all of the policies of the data files it processes.
For each of the program’s outputs, PRIVANALYZER pro-
duces a residual policy. After running the analysis, PRIV-

GUARD will attach each of these residual policies to the
appropriate concrete output.

PRIVANALYZER works by performing abstract inter-
pretation, where the inputs to the program are abstract
values containing representations of the associated poli-
cies. The output of this process is a set of abstract values
containing representations of the residual policies.

A complete example of this process is summarized in
Figure 6. The analysis is a Python program adapted from
an open-source analysis submitted to Kaggle [9]. Impor-
tant locations in the program are labeled with numbers
(e.g. 1©) and the associated residual policy PRIVANA-
LYZER computes at that program location.
Reading Data into Abstract Values. The program be-
gins by reading in a CSV containing the sensitive data
(Fig. 6, 1©). PRIVANALYZER’s abstract interpretation li-
brary redefines read_csv to return an abstract dataframe
containing the policy associated with the data being read.
At location 1©, the variable df thus contains the full pol-
icy for the program’s input. In this example, the policy
allows the program to use the “age,” “credit,” and “dura-
tion” columns, requires filtering out the data of minors,
and
Mixing Concrete and Abstract Values. The next part
of the program defines some constants, which PRIV-
ANALYZER represents with concrete values lacking at-
tached policies. Then, the program drops one of the input
columns (Fig. 6, 2©); this action does not change the
policy, because the columns being dropped are not suffi-
cient to satisfy any of the policy’s requirements, so the df

variable is unchanged.
Satisfying FILTER Requirements. The next statement
(Fig. 6, 3©) performs a filtering operation. The PRIVAN-
ALYZER library redefines this operation to eliminate the
appropriate FILTER requirements from the policy; since
this filtering operation removes individuals below the age
of 25, it satisfies the FILTER requirement in the policy, and
the new value of df is an abstract dataframe whose policy
does not have this requirement.
Handling Loops. The next part of the program con-
tains a for loop (Fig. 6, 4©). Loops are traditionally a
big challenge for static analyzers. PRIVANALYZER is
designed to take advantage of loops over concrete values,
like this one, by simply executing them concretely. PRI-
VANALYZER can also handle loops over abstract values
(described later in this section), but these were relatively
rare in our case studies.
Libraries and Black-box Operations. The next pieces
of code (Fig. 6, 5© and 6©) first take the log of each
feature, then scale the features. Both of these operations
impact the scale of feature values. After these operations,



Figure 6: Example Abstract Interpretation with PRIVANALYZER.

it becomes impossible to satisfy policy requirements like
FILTER, because the original data values have been lost.
For lossy operations like these, which we call black-box
operations (detailed below), PRIVANALYZER is designed
to raise an alarm if value-dependent requirements (like
FILTER) remain in the policy.
Training a Model. The final piece of code (Fig. 6, 7©
and 8©) uses the KMeans implementation in scikit-learn
to perform clustering. We summarize this method to
specify that it satisfies de-identification requirements in
the policy. The result in our example is an empty residual
policy, which would allow the analyst to view the results.

3.5 Challenging Language Features
We now address the approach taken in PRIVANALYZER
for several challenging language features.
Conditionals. Conditionals depending on abstract val-
ues require the abstract interpreter to run both branches
and compute the upper bound on both results. Since
Python does not allow redefining if statements, we add
a pre-processing step to PRIVGUARD that transforms
conditionals by running both branches.
Loops. Loops are traditionally the most challenging
construct for abstract interpreters to handle. Fortunately,
loops in Python programs for data analytics often fall
into restricted classes, like the ones in the example of
Figure 6. Both loops in this example are over constant
values—so our abstract interpreter can simply run each
loop body as many times as the constant requires.

Loops over abstract values are more challenging, and
the simple approach may never terminate. To address
this situation, we define a widening operator [49] for
each of the abstract domains used in PRIVANALYZER.
Widening operators force the loop to arrive at a fixpoint;

in our example, widening corresponds to assuming the
loop body will be executed over the whole dataframe.
Aliasing. Another challenge for abstract interpretation
comes from the issue of aliasing, where two variables
point to the same value. Sometimes, it is impossible for
the analysis to determine what abstract value a variable
references. In this case, it is also impossible to determine
the outcome of the side effects on the variable.

Our approach of re-using the existing Python inter-
preter helps address this challenge: in PRIVANALYZER,
all variable references are evaluated concretely. In most
cases, references are to concrete objects, so the analysis
corresponds exactly to concrete execution. In a few cases,
however, this approach leads to less precise analysis. For
example, if a variable is re-assigned in both branches of
a conditional, PRIVANALYZER must assume the worst-
case abstract value (i.e. with the most restrictive policy)
is assigned to the variable in both cases. This approach
works well in our setting, where conditionals and aliasing
are both relatively rare.

3.6 Attribute Enforcement
We now describe some attribute-specific details of our
compliance analysis.
Schema, Filter, and Redact. The SCHEMA, FILTER, and
REDACT attributes can be defined formally and compli-
ance can be checked by PRIVANALYZER. In our im-
plementation, relevant function summaries remove the
attribute from the privacy policy if the library’s concrete
implementation satisfies the corresponding requirement.
Our summaries thus implement abstract interpretation for
these functions. Note that PRIVANALYZER assumes that
functions without summaries do not satisfy any policy
requirements. PRIVANALYZER is therefore incomplete:



some programs may be rejected (due to insufficient func-
tion summaries) despite satisfying the relevant policies.
Privacy. The PRIVACY attribute is also checked by
PRIVANALYZER. Analysis programs can satisfy de-
identification requirements by calling functions that re-
move identifying information (e.g. aggregating records
or training machine learning models). Programs can sat-
isfy k-Anonymity2, `-diversity2, t-closeness or differen-
tial privacy requirements by calling specific functions
that provide these properties. Our function summaries
include representative implementations from the cur-
rent literature: IBM Differential Privacy Library [38],
K-Anonymity Library [16], and Google’s Tensorflow Pri-
vacy library [26].

There are two subtleties when enforcing differential
privacy attributes. First, programs that satisfy differen-
tial privacy also need to track the privacy budget [34].
By default, PRIVGUARD tracks a single global cumu-
lative privacy cost (values for ε and δ) for each source
of submitted data, and rejects new analysis programs
after the privacy cost exceeds the budget amount. PRIV-
ANALYZER reports the privacy cost of a single analysis
program, allowing PRIVGUARD to update the global pri-
vacy cost. A single global privacy budget may be quickly
exhausted in a setting with many analysts performing
different analyses. One solution to this problem is to gen-
erate differentially private synthetic data, which can be
used in later analyses without further privacy cost. The
High-Dimensional Matrix Mechanism (HDMM) [45] is
one example of an algorithm for this purpose, used by
the US Census Bureau to release differentially private
data. In PRIVGUARD, arbitrarily many additional anal-
yses can be performed on the output of algorithms like
HDMM without using up the privacy budget. Another
solution is fine-grained budgeting, at the record level (as
in ProPer [35]) or a statically defined “region” level (as
in UniTraX [47]). The first is more precise, but requires
silently dropping records for which the privacy budget
is exhausted, leading to biased results. Both approaches
allow for continuous analysis of fresh data in growing
databases (e.g. running a specific query workload ev-
ery day on just the new data obtained that day). Second,
to calculate privacy budget, PRIVGUARD initializes a
variable to track the sensitivity of the pre-processing
steps before the differentially private function. The pre-
processing function summaries should manipulate the

2 k-Anonymity and `-diversity are vulnerable to disclosure attacks
as pointed out in [40]. k-Anonymity is vulnerable to homogeneity and
background knowledge attacks, and `-diversity suffers from skewness
and similarity attacks. We strongly encourage using t-closeness or dif-
ferential privacy for stronger protection. PRIVGUARD provides weaker
approaches only for compatibility purposes.

variable to specify their influence on the sensitivity. If
such specification is absent in any function before the
differentially private function, PRIVGUARD will throw
a warning and recognize the differential privacy require-
ment as unsatisfied.
Role. ROLE attributes are enforced by authentication tech-
niques such as password, 2-factor authentication , or even
biometric authentication . In addition, ROLE attributes are
also recorded in an auditable system log described in the
next paragraph, and the analysts and the data curators
will be held accountable for fake identities.
Purpose. The PURPOSE attribute is inherently informal.
Thus, we take an accountability-based approach to com-
pliance checking for purposes. Analysts can specify their
purposes when submitting the analysis program, and
may specify an invalid purpose unintentionally or mali-
ciously. These purposes will be used by PRIVANALYZER
to satisfy PURPOSE requirements. PRIVGUARD produces
an audit log recording analysts, analysis programs, and
claimed purposes. Thus, all the analysis happening in the
system can be verified after the fact, and analysts can be
held legally accountable for using invalid purposes.

4 Evaluation

The evaluation is designed to demonstrate that (1) PRIV-
ANALYZER supports commonly-used libraries for data
analytics and can analyze real-world programs, and (2)
PRIVGUARD is lightweight and scalable. To demonstrate,
we (1) test PRIVANALYZER using 23 real-world analy-
sis programs drawn from the Kaggle contest platform,
and (2) measure the overhead of PRIVGUARD using a
subset of these programs. The results show that PRIV-
GUARD can correctly enforce PRIVPOLICY policies on
these programs with reasonable performance overhead.

4.1 Experiment Setup
We implemented PRIVANALYZER in about 1400 lines of
Python and integrated it in an industrial-level data gov-
ernance platform, Parcel [1], to prototype PRIVGUARD.
We instantiated our implementation with Inter Planetary
File System (IPFS) for the storage layer, AES-256-GCM
for the encryption algorithm, and AMD SEV for TEE.

To evaluate PRIVGUARD’s static analysis on real-
world programs, we collect analysis programs for 23
different tasks from Kaggle, one of the most well-known
platforms for data analysis contests. These programs
analyze sensitive data such as fraud detection [15] and
transaction prediction [22]. We selected these programs
as case studies to demonstrate PRIVGUARD’s ability



Index Application Type # Features # Samples # LoC External libraries
1 Fraud Detection - Random [15] 435 590541 157 LightGBM, NumPy, pandas, scikit-learn
2 Fraud Detection - Top [15] 435 590541 157 LightGBM, NumPy, pandas, scikit-learn
3 Merchant Recommendation [11] 41 201917 199 LightGBM, NumPy, pandas, scikit-learn
4 Customer Satisfaction Prediction [21] 370 76020 104 NumPy, pandas, scikit-learn, XGBoost
5 Customer Transaction Prediction - Random [22] 201 200000 89 NumPy, pandas, scikit-learn
6 Customer Transaction Prediction - Top [22] 201 200000 89 NumPy, pandas, scikit-learn
7 Bank Customer Classification [6] 13 10000 276 NumPy, pandas, scikit-learn
8 Bank Customer Segmentation [7] 9 1000 75 NumPy, pandas, scikit-learn
9 Credit Risk Analysis [9] 9 1000 57 NumPy, pandas, sklearn

10 Bank Customer Churn Prediction [5] 13 10000 169 NumPy, pandas, SciPy, scikit-learn
11 Heart Disease Causal Inference [14] 14 303 83 NumPy, pandas, SHAP, scikit-learn
12 Classify Forest Categories [8] 52 1000 50 NumPy, pandas, PySpark
13 PyTorch-Simple LSTM [23] 45 1780832 178 NumPy, pandas, Keras, PyTorch
14 Tensorflow-Solve Titanic [25] 7 891 163 NumPy, pandas, scikit-learn, Tensorflow
15 Earthquake Prediction - Top [17] 2 1000 132 NumPy, pandas, tsfresh, librosa, pywt, SciPy
16 Display Advertising - Top [10] 41 1000 60 math
17 Fraud Detection - Top [24] 8 1000 106 NumPy, pandas, Keras, Tensorflow
18 Restaurant Revenue Prediction - Top [20] 42 1000 115 NumPy, pandas, FastAI, scikit-learn
19 NFL Analytics - Top [19] 18 1000 152 NumPy, pandas, SciPy, scikit-learn
20 NCAA Prediction - Top [13] 34 1000 561 NumPy, pandas, Pymc3
21 Home Value Prediction - Top [29] 58 1000 272 NumPy, pandas, sklearn, XGBoost
22 Malware Prediction - Top [18] 83 1000 194 NumPy, pandas
23 Web Traffic Forecasting - Top [27] 551 1000 346 NumPy, pandas

Table 1: Case Study Programs. # LoC = Lines of Code. Random suffix means the program is chosen randomly from the
contest. Top-ranked suffix means the program is chosen from the top-ranked programs on the leaderboard.

to analyze real-world analysis programs and support
commonly-used libraries. These case studies are chosen
to be representative of the programs written by data scien-
tists during day-to-day operations at many different kinds
of organizations. We surveyed 100 kaggle programs ran-
domly and found that approximately 85% programs are
less than 300 lines of code (after removing blank lines).
Correspondingly, our case studies range between 50 and
276 lines of code, total exactly 1600 lines of code and in-
clude randomly picked programs from Kaggle notebook
and top-ranked programs on the contest leaderboard. As
shown in Table 1, these programs use a variety of external
libraries including widely used libraries like pandas, PyS-
park, Tensorflow, PyTorch, scikit-learn, and XGBoost.

As the first step of the evaluation, we use PRIVANA-
LYZER to analyze the collected programs listed in Table 1.
In the experiment, we manually designed an appropri-
ate LEGALEASE policy for each program, and then at-
tached them to each of the datasets. For each program,
we recorded both the time running on the dataset and
the time for PRIVANALYZER to analyze the program.
We also manually checked that the analysis result out-
put by PRIVANALYZER was correct. All the experiments
were run on a Ubuntu 18.04 LTS server with 32 AMD
Opteron(TM) Processor 6212 with 512GB RAM. The
results appear in Table 2. As the second step of the evalu-
ation, we picked 7 case studies with open-source datasets,
ran them on the PRIVGUARD prototype, and measured

the system overhead.
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Figure 7: System overhead of PRIVGUARD prototype
with one million simulated users.

4.2 Results

Support for Real-World Programs. Our experiment
demonstrates PRIVGUARD’s ability to analyze the kinds
of analysis programs commonly written to process data in
organizations. The results in Table 2 show that the static
analysis took just a second or two for most programs, with
three outliers taking 3.32, 4.78, and 6.84 seconds. The
reason for the outliers is described in the next paragraph.

As in other abstract interpretation and symbolic execu-
tion frameworks, we expect that conditionals, loops, and
other control-flow constructs will have a bigger effect on
analysis time than program length. Fortunately, programs
for data analytics and machine learning tend not to make



Index
Exec
Time (s)

Analysis
Time (s)

Overhead Soundness

1 12571.01 1.41 1.12e−2% !

2 19951.10 3.32 1.66e−2% !

3 16762.65 1.18 7.04e−3% !

4 151.72 1.22 8.04e−1% !

5 17.14 1.08 6.30% !

6 33.71 0.96 2.84% !

7 32.66 2.03 6.22% !

8 86.82 2.19 2.52% !

9 4.65 1.01 21.72% !

10 295.16 1.29 4.37e−1% !

11 3.99 1.00 25.06% !

12 1017.83 1.01 1.00e−1% !

13 717.58 6.84 9.53e−1% !

14 13.33 4.78 35.86% !

15 217.36 2.26 1.04% !

16 3.60 1.20 33.33% !

17 5.19 1.37 26.40% !

18 47.12 1.57 3.33% !

19 202.96 1.33 6.55e−1% !

20 59.83 1.66 2.77% !

21 54.44 2.55 4.68% !

22 51.36 1.23 2.39% !

23 45.58 2.45 5.37% !

Table 2: Execution Time vs. Analysis Time. The index
of case studies is the same as in Table 1.

extensive use of these constructs, especially compared to
traditional programs. Instead, they tend to use constructs
provided by libraries, like the query features defined in
pandas or the model construction classes provided by
scikit-learn. The outliers mentioned above (case studies
2, 13, and 14) contain relatively heavy use of conditionals,
and as a result, their analysis took slightly longer than the
other programs. These results suggest that PRIVGUARD
will scale to even longer programs for data analytics and
machine learning, especially if those programs follow
the same pattern of favoring library use over traditional
control-flow constructs.

Table 2 reports performance overhead for all 23 case
studies. The results report analysis performance over-
head—the ratio of the time taken for static analysis to
the native execution time of the original program. The re-
sults show that this overhead is negligible. For case study
programs which take a significant time to run, the perfor-
mance overhead of deploying PRIVGUARD is typically
less than 1%. For faster-running programs, the absolute
overhead is similar—just a second or two, typically—but
this represents a larger relative change when the pro-
gram’s execution time is small. The maximum relative
performance overhead in our experiments was about 35%,
for a program taking only 13.33 seconds.

Overall Performance Overhead and Scalability. We
also evaluate 7 case studies on our prototype implementa-
tion and measure the total overhead of the PRIVGUARD
system. The results appear in Figure 7 and 8. For each
case study, we synthesize one million random policies by
combining possible attributes and changing parameters
in the attributes to simulate one million data subjects’ pri-
vacy preferences. The results show that the performance
overhead for ingesting one million policies is under 150
seconds. Concretely, over half of the overhead is spent
on Parcel’s system overhead such as data uploading, data
storage, data encryption, etc. Data ingestion takes about
one-third of the overhead and the static analysis only
takes less than 10 seconds.

We also benchmark the overhead with different num-
bers of users as shown in Figure 8. Parcel overhead refers
to the overhead incurred by the Parcel platform such as
data loading or transmission. Scan overhead refers to
the time spent on finding the policies no stricter than
the guard policy. Merge overhead refers to the time used
to merge the datasets inside TEE. Analysis overhead
refers to the overhead of running PRIVANALYZER. As
shown in Figure 8, Parcel overhead, scan overhead and
merge overhead are relatively stable when the number
of users is small and then scale linearly with the num-
ber of users. Note that we use the log10 scale to repre-
sent the x-axis. The curves are exponential but the rate
scales linearly. For all experiments except the static anal-
ysis: Overhead = O(#Users)+O(1). Not surprisingly,
the analysis overhead is almost constant for a fixed pro-
gram. The results show that PRIVGUARD is scalable to a
large number of users and datasets.

5 Related Work

Related work falls into two categories: (1) formalization
and (2) enforcement of privacy policies.
Privacy Policy Formalism. Tschantz et al. [56] use
modified Markov Decision Process to formalize purpose
restrictions in privacy policies. Chowdhury et al. [31]
present a policy language based on a subset of FOTL
capturing the requirements of HIPAA. Lam et al. [39]
prove that for any privacy policy that conforms to patterns
evident in HIPAA, there exists a finite representative
hospital database that illustrates how the law applies in
all possible hospitals. Gerl et al. [36] introduce LPL,
an extensible Layered Privacy Language that allows to
express and enforce new privacy properties such as user
consent. Trabelsi et al. [55] propose the PPL sticky policy
based on XACML to express and process privacy policies
in Web 2.0. Azraoui et al. [30] focus on the accountability
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(b) Scan overhead.
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Figure 8: PRIVGUARD overhead details. The scalability
is linear (note the logarithmic scale).

side of privacy policies and extend PPL to A-PPL.
Privacy Policy Compliance Enforcement. Going be-
yond the formalism of privacy regulations, recent re-
search also explores techniques to enforce formalized
privacy policies. Chowdhury et al. [32] propose to use
temporal model-checking for run-time monitoring of pri-
vacy policies. Sen et al. [53] introduce GROK, a data
inventory for Map-Reduce-like big data systems. PODS /
SOLID [43] focuses on returning control over data to its
owners. In PPL policy engine [55], the policy decision
point (PDP) matches the data curator’s privacy policy and
data subjects’ privacy preferences to decide compliance.
The privacy policy is enforced by the policy enforcement
point. Compared with our work, the PPL policy engine
provides limited support for fine-grained privacy compli-
ance in complex data analysis tasks as its enforcement
engine relies on direct trigger-to-action translation. In ad-
dition, PPL does not provide a rigorous soundness proof.
Similar differences exist in its extension A-PPL [30] and
the SPECIAL project [2]. Our work provides an enforce-
ment mechanism necessary to address these issues and
can be seen as a first step towards meeting the ambitious
challenge posed by Maniatis et al. [42].

6 Limitation

We would like to note several limitations of PRIVGUARD
and deem mitigating them as important future directions.
First, PRIVGUARD is vulnerable to insider attacks. In
our threat model, we assume the data analysts are hon-
est but reckless and might violate the privacy regulation

unintentionally. Such a threat model should be enough
to capture most real-world use cases. However, defend-
ing against malicious analysts is much more challenging.
Because PRIVANALYZER is implemented as a Python
library, it is possible to craft malicious programs that
evade its analysis. For example, a malicious program
might dynamically redefine PRIVANALYZER’s runFilter

function (used in our earlier example) to always report
that the policy has been satisfied. A syntactic analysis
that detects the use of dynamic language features before
the program is loaded could address this issue. However,
it is challenging to detect all such attacks due to the large
number of dynamic features in Python.

Second, many PURPOSE attributes cannot be automat-
ically enforced by PRIVGUARD as they are not related
to program properties. For example, whether a program
represents a “legitimate interest” can only be judged by
a human, and thus cannot be decided by any fully auto-
mated system without manual description by a human. To
address this challenge, we choose to log these attributes
and make the log accessible for human auditing. We em-
phasize that our goal is to minimize rather than eliminate
human efforts in the compliance process.

Third, PRIVGUARD relies on TEE such as AMD SEV
to defend against untrusted third parties. However, recent
studies have spotted several vulnerabilities in mainstream
TEEs [46, 58] which weakens their protection against
malicious third parties. Although out of scope, we would
like to mention these possible exploits to potential users.

7 Conclusion & Future Work

In this paper, we propose PRIVGUARD, a framework for
facilitating privacy regulation compliance. The core com-
ponent is PRIVANALYZER, a static analyzer supporting
compliance verification between a program and a policy.
We prototype PRIVGUARD on Parcel, an industrial-level
data governance platform. We believe that PRIVGUARD
has the potential to significantly reduce the cost of pri-
vacy regulation compliance.

There are also several future directions we would
like to pursue for future versions of PRIVGUARD. First,
we would like to further improve the usability of PRIV-
GUARD’s API in consideration of HCI requirements so
that non-experts can easily specify their own privacy pref-
erences. Second, PRIVGUARD now adopts an one-shot
consent strategy, which covers most current application
scenarios but has several defects as pointed out in [52].
This limitation can be addressed by allowing the data
curator to ask data subjects for dynamic consent after
data collection, as depicted in [52].
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A Formal Model of PRIVANALYZER

In this section, we formally present technique for proving
soundness of our static analysis. We use the filter attribute
as an example to demonstrate the technique for proving
soundness in the context of a simple model of a program-
ming language. As described in Section 3, Python is a
more dynamic language than our model, and these dy-
namic features may represent possible side channels for
malicious adversaries.

A.1 Abstract Domains
We provide the formal definition on of the abstract do-
mains used in PRIVGUARD in this section. Formally,
given a concrete domain D , we define the following com-
ponents:
• an abstract domain < D],v> containing abstract val-

ues (D]) which represent classes of abstract values,
and a partial ordering (v) on those values.

• an abstraction function α : D→D] mapping concrete
values to abstract values.
• a concretization function γ : D] → P (D) mapping

abstract values to sets of concrete values.
For each attribute type, we define D], v, α, and γ. We
define each abstract domain in terms of a tabular data
format approximating a Pandas dataframe (which we
denote d f ).

As described earlier, some kinds of loops may cause
the abstract interpreter to loop forever. To address this
challenge, we adopt the standard approach of using a
widening operator [49], denoted ∇, in place of the stan-
dard partial ordering operatorv. Unlike the partial order-
ing, the widening operator is guaranteed to stabilize when
applied repeatedly in a loop. Finite abstract domains do
not require a widening operator; for infinite domains (like
the interval domain used in FILTER attributes), we adopt
the standard widening operator used for the underlying
domain (e.g. widening for intervals [49]).
Filter Attributes. We track filtering done by analysis
programs using an interval domain [49], which is com-
monly used in the abstract interpretation literature. Ab-
stract dataframes in this domain (denoted D]) associate
an interval (denoted I) with each column ci, and analy-
sis results are guaranteed to lie within the interval. In
addition to known intervals (i.e. (n1,n2)), our set of in-
tervals includes > (i.e. the interval (−∞,∞)) and ⊥ (i.e.
the interval containing no numbers). Our interval domain
works for dataframe columns containing integers or real
numbers; our formalization below uses R∞ to denote the
set of real numbers, extended with infinity.

i ∈ IR = (R∞×R∞)∪{>,⊥}
d f ] ∈ D] = (c1 : IR)× ...× (cn : IR)

f ∈ field m ∈ int s ∈ schema x ∈ dataframes

ϕ ∈ filter ::= c < m | c > m
e ∈ expr ::= x | filter(ϕ,e) | project(s,e)

| redact(c,n,n,e) | join(e,e)
| union(e,e) | dpCount(ε,δ,e)

Figure 9: Program surface syntax

eval(ρ,x) = ρ(x)
eval(ρ,filter(ϕ,e)) = σϕeval(ρ,e)
eval(ρ,project(s,e)) = Πseval(ρ,e)
eval(ρ, redact(c,n1,n2,e)) = {c : stars(s,n1,n2) |

c : s ∈ eval(ρ,e)}
eval(ρ, join(e1,e2)) = eval(ρ,e1) ./ eval(ρ,e2)
eval(ρ,union(e1,e2)) = eval(ρ,e1)∪eval(ρ,e2)

Figure 10: Concrete interpreter for language in Figure 9.

For ease of presentation, and without loss of generality,
we define α and γ in terms of dataframes with a single
column c. We denote values in the column c by d f .c.

c :⊥ v D]

D] v c :>
c : (n1,n2) v c : (n3,n4) if n1 ≥ n3∧n2 ≤ n4
α(d f ) = c : (min(d f .c),max(d f .c))
γ(c :>) = D
γ(c :⊥) = {}
γ(c : (n1,n2)) = {d f | ∀v ∈ d f .c. n1 ≤ v≤ n2}

A.2 Soundness

A sound analysis by abstract interpretation requires defin-
ing the following:
• A programming language of expressions e∈ Expr. We

define a simple language for dataframes, inspired by
Pandas, in Figure 9.

• A concrete interpreter eval : Env×Expr→D speci-
fying the semantics of the programming language on
concrete values. We define the concrete interpreter for
our simple language in Figure 10.

• An abstract interpreter eval] : Env] × Expr → D]

specifying the semantics of the programming lan-
guage on abstract values. An example for FILTER at-
tributes appears in Figure 11.

The concrete interpreter eval computes the concrete re-
sult of a program e in the context of an environment
mapping variables to concrete values. The abstract inter-
preter eval] computes an output policy of a program e in
the context of an abstract environment mapping variables
to their policies. The program satisfies its input policies
if it has at least one empty clause (i.e. a satisfied clause)
in its output policy.



eval](ρ,x) = ρ(x)
eval](ρ,filter(ϕ,e)) = eval](ρ,e)− interval(ϕ)
eval](ρ,project(s,e)) = eval](ρ,e)
eval](ρ, redact(c,n1,n2,e)) = eval](ρ,e)
eval](ρ, join(e1,e2)) = eval](ρ,e1)teval](ρ,e2)
eval](ρ,union(e1,e2)) = eval](ρ,e1)teval](ρ,e2)

interval(c < m) = c : (−∞,m)
interval(c > m) = c : (m,∞)

c : (l1,u1)− c : (l2,u2) = c : (l3,u3)
where l3 =−∞ when l1 ≤ l2, and l1 otherwise

u3 = ∞ when u1 ≥ u2, and u1 otherwise

Figure 11: Abstract interpreter for FILTER attributes

The soundness property for the abstract interpreter
says that the concrete result of evaluating a program e
is contained in the class of values represented by the
result of evaluating the same program using the abstract
interpreter.

Theorem 1 (Soundness). For all environments ρ and
expressions e, the abstract interpreter eval] is a sound
approximation of the concrete interpreter eval:

eval(ρ,e) ∈ γ(eval](α(ρ),e))

where the abstract environment α(ρ) is obtained by
abstracting each value in the concrete environment ρ (i.e.
α(ρ)(x) = α(ρ(x))).

Soundness can be proven for each abstract domain sep-
arately. In each case, the proof of soundness proceeds by
induction on e, with case analysis on the kind of abstract
value returned by uses of eval] on subterms.
Soundness for Filter Attributes. We present the ab-
stract interpreter for the filter abstract domain in Fig-
ure 11. The interesting case of this interpreter is the one
for filter expressions, which converts the filter predicate ϕ

to an interval and returns an abstract value derived from
the meet of this interval and the recursive call. We prove
the soundness of the interpreter as following.
Proof of soundness. By induction on e. We consider
the (representative) case where e = filter(ϕ,e′). By
the inductive hypothesis, we have that eval(ρ,e′) ∈
γ(eval](α(ρ),e′)). Let interval(ϕ) = (n1,n2). We want
to show (by definition of eval and eval]:

eval(ρ,filter(ϕ,e′)) ∈ γ(eval](α(ρ),filter(ϕ,e′)))
⇐⇒ σϕeval(ρ,e′) ∈ γ(eval](α(ρ),e′)− interval(ϕ))
⇐⇒ σn1≤c≤n2eval(ρ,e

′) ∈ γ(c : (n1,n2)ueval](α(ρ),e′))
⇐⇒ σn1≤c≤n2eval(ρ,e

′) ∈ γ(c : (max(n1,n3),min(n2,n4)))
⇐⇒ σn1≤c≤n2eval(ρ,e

′) ∈
{d f | ∀v ∈ d f .c. max(n1,n3)≤ v≤min(n2,n4)}

which holds by the inductive hypothesis and semantics
of selection in relational algebra.

B Usability Survey

To complement the survey in [53] targeting privacy cham-
pions, we conducted an online survey targeting general

users to obtain a preliminary understanding of how far
expertise is needed to understand or encode privacy pref-
erences. The survey is granted IRB exemption by Office
for Protection of Human Subjects under category 2 of
the Federal and/or UC Berkeley requirements.

We recruit 30 participants in total among which 7 has
no background in programming (Group A), 2 has pro-
grammed in one language (Group B), 15 has programmed
in two languages or more (Group C), and 6 self-identify
as experts in programming language (Group D). The sur-
vey is comprised of 8 questions in total. The first three
are about understanding privacy policies and the latter
five are to choose the correct option from 4 possible
choices. Group A makes 38.1% (8/21) mistakes when un-
derstanding and 31.4% (11/35) mistakes when selecting.
Group B makes 16.7% (1/6) mistakes when understand-
ing and 20.0% (2/10) mistakes when selecting. Group C
makes 15.6% (7/45) mistakes when understanding and
17.3% (13/75) mistakes when selecting. Group D makes
11.1% (2/18) mistakes when understanding and 13.3%
(4/30) mistakes when selecting. Besides, each question
has a different focus. For example, Question 2 focuses
on understanding ROLE and PURPOSE attributes.

We observe several interesting facts in the survey re-
sults. First, there is a big gap in accuracy between Group
A and B. This indicates that it might not be trivial for
users without programming experience to specify their
privacy preferences in LEGALEASE directly. Although
out of scope of this paper, we deem it an important fu-
ture direction to simplify this process for Group A users
using more user-friendly API or machine-learning-based
translation tools. Besides, this also shows that any pro-
gramming experience is helpful in understanding and
encoding in LEGALEASE. Second, there is no obvious
accuracy gap between Group B and Group C, and Group
D has better accuracy than them. Third, it is hard for all
groups to answer questions related to PRIVACY attributes.
The hardness stems from the hardness in understanding
privacy techniques such as differential privacy.

Ethical Considerations. The survey was posted as a
public questionnaire on Twitter and Wechat with in-
formed consent. The participants opted in the survey
voluntarily. In order to fully respect the participants’ pri-
vacy, we do not collect any personal identifiable informa-
tion from them. Only the answers to the questionnaire
are collected.
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