
Design and Analysis of a GDPR-Compliant Federated Machine Learning System

Nam Do
Brown University

Sam Thomas
Brown University

Abstract
We design and implement a federated machine learning model
that demonstrates different degrees of GDPR compliance. In
so doing, we introduce two different axes of compliance -
namely frequency and degree of GDPR compliance - and
measure the impact of different permutations of the two. We
demonstrate that, even under the strictest models of GDPR
compliance, the impact of GDPR compliance only causes an
additional .25x increase in time and no significant increase in
memory required per thread to implement GDPR compliance
under simple learning benchmarks.

1 Introduction

Efficiency and privacy are often opposing forces for develop-
ers when building application code. That is, in order to ensure
that user’s online behavior can be kept sufficiently private, cer-
tain procedures need to be put into place that may add storage
or performance overheads. These overheads are expensive
to developers, as storage overheads necessitate more storage
hardware and performance overheads generally result in dis-
satisfied users. However, ever more frequent is the enactment
of privacy legislation, which require certain levels of privacy
compliance in applications.

The European Union’s General Data Protection Regulation
(GDPR) (add citation) has brought this conversation into the
forefront, as it is one of the first major pieces of privacy leg-
islation that has had major ramifications on large companies
behaviors and their products. The GDPR provides users a
number of rights against companies as it relates to their data,
and two such rights are:

1. The right to have any subset of their data updated.

2. The right to have any subset of their data deleted.

These rights have given applications users, via their Data
Protection Agency, a means to directly challenge a company’s
or product’s practices as it relates to their data. Furthermore,
based on prior litigation (add citation), user data has been

broadly defined to include “inferred data” about a user. That
is, if a user provides a set of data to an application and the
application processes that data in such a way that the applica-
tion infers more data about the user, a user still has the right
to modify or delete this data.

Such is the motivation for exploring the impact that GDPR
compliance has on machine learning models. Machine learn-
ing inherently infers information based on a set of provided
information. As such, the groundwork is laid for a potential
scenario in which GDPR compliance can hamper the perfor-
mance or storage required for a machine learning-dependent
application.

One application design model that is becoming more com-
monly deployed to address user privacy is to store sensitive
user data in the user’s local application (D3PT [9], and oth-
ers). From here, some form of local computation is performed
before a result is sent for central aggregation in the central
server. The benefit of such a model is that the central server
can perform tasks while being completely agnostic to raw
local data about any individuals and the issue of storing large
sums of user data is pushed to the user’s device as opposed to
a central database.

Applied to machine learning, this design model is referred
to as Federated Machine Learning. At a high level, as de-
scribed above, training is performed on locally on user data
on their devices, and the result of this training is then aggre-
gated centrally. From here, the central server has a working
machine learning model while being completely agnostic to
user data. However, as we have described above, this alone
does not necessarily imply GDPR compliance as stored in-
ferred data can still qualify as lacking compliance with the
GDPR.

There are some important limitations of our analysis. Due
to hardware and time constraints, we are only effectively able
to model up to 8 users. Clearly, this is not a realistic full appli-
cation simulation - i.e. a tool like Google Docs text prediction
is predicated on millions of users. However, our project aims
to demonstrate general, per-thread trends in stricter models
of compliance.

1

In this paper, we explore the impact of GDPR compli-
ance on federated machine learning. We discuss our work
in building a tool to simulate user interaction with a feder-
ated machine learning model under different modes of GDPR
compliance. In section 2, we discuss prior work related to
the GDPR and federated machine learning. In section 3, we
discuss the design of our tool to simulate user interaction with
a federated machine learning model and the different modes
of GDPR compliance. In section 4, we discuss more in-depth
implementation details and our distribution of work. In sec-
tion 5, we discuss results that came from experimentation
with our tool.

2 Background/Related Work

Previous work on Federated Machine Learning [8] has come
up with a system design with three major components: De-
vices, a central server, and a persistent storage [1]. In the de-
sign, the training happens locally on the devices, after which
weight updates are going to be sent to the central server,
which will perform an algorithm to combine the different
weights together, and store the resulting model in the persis-
tent storage. Additionally, FederatedAveraging has been
proposed as an algorithm to combine users’ weight contribu-
tion that is robust to unbalanced, non-IID data distributions in
an efficient manner [7]. This has laid out a great groundwork
for privacy-conscious Machine Learning, as a decentralized
system where the only role of the server is to combine the
weights and not store user data is a prerequisite to preventing
server-side attack and the stealing of user data. However, the
design proposed lacked the ability to effectively opt a user
out of the training rounds that they have participated in, as all
the information that are stored after each round is the global
weights that result from it. The problem can be exacerbated
as many users are not aware of the training happening on
their phone (at night, when the phone is plugged in and usu-
ally when people are asleep) [1]. In addition to not being
able to opt out of previous training rounds, the current design
lacks specification on how users know which training rounds
they participated in, and which data samples on their phone
were implicated. This is a core motivation of our work, as we
hope to design a system that allows users to opt their data
out and know their participation in data inference activities,
complying with the privacy laws like the GDPR.

Previous work has demonstrated a great range of tasks that
the Federated Learning framework can apply to: Federated
Matrix Factorization [3], neural network training and stochas-
tic gradient descent jobs [7], or federated transfer learning [6].
As a proof of concept, we demonstrate that the framework
we are proposing works with the specific tasks of learning
to classify MNIST characters with a multi-layer perceptron
algorithm, and to train a stochastic gradient descent model on
a dataset that predicts whether an individual has an income
over $50,000. However, as the units of the training informa-

tion (that engineers will feed into the system as they want to
start a new training round) are defined in terms of functions
(functions to select the training data on each participating
device, to aggregate the data, or to update the local models
based on the new global model), our system will generalize to
aggregation functions other than FederatedAveraging and
to tasks other than the two we are experimenting on.

Previous work has researched the methods to perform ma-
chine learning tasks over encrypted data ([2], [4], [5]). Al-
though our work approaches privacy more from a system
design level than through a encryption algorithm, our sys-
tem would only work when combined with an encryption
scheme on the server and persistent storage side. This is be-
cause as the persistent storage store crucial information about
user participation (the rounds that they participated in and
the associated weight contribution). Additionally, given the
decentralized nature of the system, attacks to the system can
be done through compromising the users’ devices. This can
be done through tech experts changing the code on users’
devices to detect and record the communications between
users and servers, or through network interceptors detecting
communication between different agents in the system. Ad-
ditionally, the system can be compromised if the persistent
storage is compromised. Here, we recommend the methods
proposed to enhance the robustness of decentralized contact
tracing systems, as they share a similar structure of commu-
nication [10]. Notably, having the local applications on user
devices run on a Trusted Platform Module can (1) verify the
identity of users who are trying to access information through
the application, (2) ensure that users cannot modify or access
the code base to get unauthorized access to communication
between users and the server.

3 Design

3.1 Compliance modes

Recall that GDPR compliance includes handling user requests
to update or delete their data - including implied data. As such,
we define strength of compliance across two dimensions:

1. The frequency with which modifications to user data are
handled.

2. The degree to which data can be considered “implied”

By frequency, we mean that the server may decide to batch a
large number of requests before handling them. Under “no”
compliance, the server never handles user notifications of mod-
ified data. Under “weak,” “strong,” and “strict” compliance
modes, the server handles user requests if the total number of
user requests reaches 10000, 100, and 1 respectively. That is,
under strict compliance, the server handles every user request
as soon as reads that such a request has happened.

2

By degree, we mean that certain global model weights are
more impacted by a particular user’s contribution than others.
For example, if a user provides local weights for a round r,
we say that the global model is directly implied from that
user’s local data. However, if the next round r′ does not call
on that user to train but is dependent on the previous state
of the global model, we say that the resulting global model
is indirectly implied from that user’s local data. We define
GDPR compliance, in an abstract sense, to be that implied
data should be handled by a user’s request. That is, if the
global model in r contains data that is implied from a user
u, and then the server receives notice that u has deleted its
data, that the global model should be updated as well. This
definition is necessary because, although u might not have
used the impacted data in training, the server is completely
agnostic to user data and must assume that all user data was
used during training.

Our design, hence, allows for four different modes of com-
pliance:

1. No compliance In this setting, the model performs ex-
actly like a generic Federated Machine Learning model.

2. Weak compliance In this setting, a User has the ability
to request the Aggregator to delete/update their data
that has participated in previous training rounds. The
delete/update on the server side will be shallow, mean-
ing only the participation information of the User i in the
Round r will be deleted/updated (including their weight
contribution, and the information about their participa-
tion in the round). If there is an update of the global
weights after retraining Round j, this update will not
cascade to the subsequent Rounds r+1,r+2, ...

3. Strong compliance Unlike the Weak compliance case,
when a User i requests an update on the Aggregator
side with their data that participated in a Round r, the
deletion/update will not only be for round j (which en-
tails retraining the Round, and updating the information
in the persistent storage Logger), but it will cascade
to the subsequent Rounds until the very end. With cas-
cading updates, this operation is very computationally
expensive. We address this by implementing a queue of
requests, such that after a queue reaches a certain capac-
ity, the Aggregator will request the updates to happen
altogether, so the retraining operations can process all
the requests from different Users at once.

4. Strict compliance This mode is stricter than the Strong
compliance mode in that the requests coming from the
Users would be handled right away. Deep deletions and
updates, in this case, would be largely computationally
expensive at the expense of immediate privacy.

3.2 Round
As mentioned earlier, in order to make our design extensible
to a wide variety of tasks and aggregation function. The unit
elements in a Round object are, therefore, functions. In or-
der to create a Round, an engineer would need to define the
following:

1. Data function: A function that takes in only data points
that a user has opted in for training, and output a list of
data points per the requirements from the engineer.

2. Training function: A function that is used by users on
local devices to train on the data selected, and output the
weight contribution that is going to be sent back to the
server

3. Aggregation function: A function that is used by the
Aggregator, after having received the weights from local
devices, to combine the weight contributions and update
the global model. This can be FederatedAveraging
algorithm, or can be anything else.

A Round also carries a unique Round ID, and its information
is going to be stored in the persistent storage (Logger) for
later access, in case retraining needs to happen. The storage
of Round and Round ID is necessary, as information about
previous rounds needs to be accessed to perform the training
in those rounds again, in the case a user requests all their
participation in that Round to be deleted/updated.

3.3 User
Unlike previous work that has stopped short at mentioning
that the user will only store their data on their device, we
specify a few components on the user side that would make
the design GDPR-compliant. Firstly, when the user adds a
new piece of data in the storage, they will have a chance to
specify whether the piece of data (e.g. an image, a row of
excel sheet, etc.) is opted in for inference tasks by the central
server or not. At any point, the user will have the ability to
opt out their data from future training rounds by changing this
opt_in variable associated with the data point to be False.
When the Aggregator sends a training request to the User, the
local participating data will have to go through two filtering
rounds before it partakes in the training: only the data that
is opted in for training can be candidates for the local data
selection function sent by the Aggregator. After each training
round, the User will locally associate the participating data
points with the round information, so the User can access this
information, potentially through a front-end application.

When a user deletes or updates their data, there will be an
option for them to choose whether this update is local (e.g.
you just delete a picture on your phone, without reflecting it on
the server), or whether it should be propagated to update your
participation in the previous training rounds that might have

3

concerned this data item. These deletion and update requests
are going to be stored on a queue until the user explicitly asks
the server to process all the requests in the queue.

3.4 Aggregator

In our design, the Aggregator remains an agent to com-
municate the training information with the Users, aggregate
the resulting weight contributions, and communicate with
the Logger to store metadata information that results from
the Round (final global weights, which users participated,
what was their contribution, etc.) As mentioned earlier, the
Aggregator needs to accommodate a queue of delete and
update requests from different Users, so after these queues
get to a certain capacity, the deletion/updates will happen.

3.5 Logger

The Logger, in our design, stores the following information:

1. User ID and Round ID mappings to the actual Users
and Rounds. The logger needs a way of identifying
Users (without finding out information about who they
really are in real life), Rounds, and Users’ participation
in different Rounds. This is also for easy retrieval of
appropriate Rounds and Users for post-hoc training.

2. Users’ weight contribution in different Rounds In a
scenario where thousands (n) of Users participate in
a Round, it would be extremely suboptimal to perform
retraining locally on n− 1 devices while only 1 User
requested to delete/update their contribution. Therefore,
there is a need to store the weight contribution of Users
in a Round, such that we only need to perform local
recomputation on Users who requested to delete/update
their participation, and let the Aggregator combine the
resulting new weight contributions with the old ones
from other Users in the Round. This storage of weight
contribution needs to be coupled with secure encryption
schemes in order to prevent User’s weight contributions
from being compromised, although in the worst case that
it is, it would not be as bad as a central server with all
the User’s raw data being compromised.

3. Global models Similar to the original Federated Learn-
ing system design [1], the persistent storage/Logger
needs to store the global model. However, as there is
an importance in our system to not just store the lat-
est global model (so that we can effectively pinpoint
the Round with which deletions/updates to the global
model need to start and protect the global models in pre-
vious Rounds), we are storing it as a mapping between
Round IDs to the global models that result after the ag-
gregation algorithm is performed.

3.6 Putting everything together

We built a tool to simulate different machine learning
training techniques in a federated environment. An end
users simply needs to run a python script with the com-
mand python3 tester.py <num_tests> <num_users>
<pct_gdpr_users> <pct_delete> <pct_update>
<compliance_mode>. This is done by having several
different “users” maintain local data by adding and removing
to and from it. A central “server” may, from time to time,
request that users train on their local data. Users receive these
requests and then send the results of that training back to the
central server. In our implementation, we do not consider the
corner case where a user might terminate their account or
their application might fail in the middle of training. That is,
we assume that user training will complete.

We did so by spawning several threads: one “server thread”
and n “user threads” (where n is determined at the command-
line). The server thread is responsible for requesting that
particular users train in each training round1. Then, after re-
ceiving a training request, a “user thread” will perform the
provided training function and send its results back to the
central server. The server is then responsible for “aggregating”
each of these results into a single global model.

At a lower level, the interaction between users and the
server is done through a series of producer-consumer queues
so as to ensure correct concurrency protocols. That is, when
the server makes a request to the user to train, it places a tuple
containing the current state of global weights and the training
function into the queue, which the user will read from time
to time. Similarly, after performing the training function pro-
vided by the server, the user places the results of the training
and the associated loss into a different producer-consumer
queue that the server reads from time to time. To be clear,
this part of the implementation entails 2n producer-consumer
queues. Each user is assigned two queues, one where it is
consumer (to receive training requests) and one where it is
producer (to send training results to the server). Similarly, the
server is the producer of n queues (to send training requests)
and the consumer of n queues (to receive results).

To implement GDPR compliance, users are given a third
queue where they are the producer and the server is the con-
sumer. In this queue, they provide a “note” that certain data
may no longer be valid for training. The server then deter-
mines whether or not this will be handled, depending on how
strictly it defines GDPR compliance.

In order to implement GDPR compliance, it must also be
the case that the server must track metadata about which users
it requested to train in which rounds, as well as previous
weights and which users contributed to which weights. As
a result, although the server is not tasked with storing local
data, the server is responsible for storage that we maintain

1The number of rounds can be arbitrarily determined by the application,
so in our implementation we perform n rounds of training.

4

in a “Logger” object. The server alone is responsible for
maintaining this logger. Note that we implement a logger,
even under “no” compliance, as it might be the case that this
metadata is important for other server tasks. That is, it is not
unreasonable that the server would maintain this logger even
under “no” compliance.

We have also implemented a front-end web application
with one of the two machine learning applications that we
tested our design on. The web application is designed to
demonstrate (1) general statistics of the training rounds, (2)
the capabilities that different Users will have with different
modes of compliance, and (3) their interaction with the Server.
In order to get the full experience of the communication be-
tween the Aggregator and Users, we recommend running
the testers, as described above. To run the web app, you can
just simply do python3 app.py and follow the instructions.

4 Implementation

4.1 General
Our project is made up of about 1300 lines of code. There are
three main modules that drive our system: “User,” “Aggrega-
tor,” and “Logger.” The User module defines user capabilities,
like maintaining a user’s local data, and is driven by the user
thread. That is, there is a User object per user thread and each
User object is only accessible by that user thread. The Aggre-
gator module defines the functionality of the central server,
namely calling on users to train, handling user requests, etc. . . .
Similarly, the Aggregator is driven by the server thread and
is only accessible by the server thread. The Logger module
maintains all global metadata about training rounds, and is
only accessible by the server thread.

The training model functions are defined external to these
modules, but are maintained in the server thread to send to
user threads. This design decision makes applying different
training functions trivial, as it merely requires a change in
function call.

4.2 Use cases
We tested our design with two different Machine Learning
tasks and algorithms.

1. Stochastic Gradient Descent training on Income
data

In the most basic use case, we tested to see if our
system design works with a training scheme where
the global models are in the form of weight ar-
rays. The training happened on the Census Income
dataset. The information about the dataset can be found
here: https://archive.ics.uci.edu/ml/datasets/
Census+Income. For the aggregation function, we fol-
lowed the FederatedAveraging algorithm proposed in

previous work [7]. This algorithm was demonstrated to
work on Stochastic Gradient Descent type tasks, even
when the data distribution was non-IID. The Stochastic
Gradient Descent algorithm will be performed on each
device.

2. Multilayer Perceptron training on MNIST data
To test whether the system design works with a learning
algorithm where the global models are neural networks
and not just a weight matrix, we performed training on
the MNIST dataset (more information here: http://
yann.lecun.com/exdb/mnist/) with the global models
being a Multilayer Perceptron with 4 different layers. We
used Cross Entropy Loss as part of our training. The back-
propagation updates to the neural network would happen
locally, and the local devices will send the resulting neu-
ral network information to the Aggregator, which will
perform the FederatedAveraging algorithm to come
up with an updated global model.

4.3 Work distribution
As far as the distribution of work was concerned, Nam was
largely responsible for reviewing the literature, implement-
ing the framework for the User, Aggregator, and Logger
classes, and implementing the two use cases to test our design
upon. Sam was largely responsible for the integration of each
of these components as well as setting up the system that runs
these components. Both Sam and Nam participated in debug-
ging the system, and both Sam and Nam were responsible
for designing the implementation of the system. The Github
commit log reflects these remarks. Our code and data can be
found here: https://github.com/samueltphd/NLP-GDPR.

5 Evaluation

We begin our discussion of evaluation by discussing the as-
sumptions made in our system. We do not add any latency
to adding or removing items to a producer-consumer queues,
thereby assuming that users and the server can communicate
with infinite bandwidth. Furthermore, as previously discussed,
we assume that the central server would maintain a Logger
for tracking metadata about training, even though the Logger
is not utilized in the “no” compliance mode. Finally, we do
not add any additional tasks to the server or users. That is,
their only responsibility is to train and maintain data.

Given our assumptions, we perform two primary bench-
marks, each with different variations. The first benchmark
assumes that all users are aware of the GDPR, and that 50%
of their behaviors are to remove their existing data and 50% of
their behaviors are to update the value of their existing data2.

2Note that the server does not necessarily need to handle updates to data
in order to remain GDPR compliant, but this may help accuracy metrics over
time. For the sake of our project, the server only handles deletions.

5

https://archive.ics.uci.edu/ml/datasets/Census+Income
https://archive.ics.uci.edu/ml/datasets/Census+Income
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/samueltphd/NLP-GDPR

compliance thds time (sec) size (MB)
no, 10-10 1 83.094 2019245.6
no, 50-50 1 77.589 1658294.4

weak, 10-10 1 83.388 2023348
weak, 50-50 1 78.064 1659318.4
strong, 10-10 1 82.594 2024472
strong, 50-50 1 78.683 1658576
strict, 10-10 1 83.301 2023185.6
strict, 50-50 1 78.192 1658153.6

no, 10-10 8 1038.176 15606279.2
no, 50-50 8 409.122 1648156.8

weak, 10-10 8 1063.853 15316912.8
weak, 50-50* 8 599.668 1647484
strong, 10-10 8 1046.714 15725040.8

strong, 50-50* 8 533.625 1648550.4
strict, 10-10 8 1168.074 15599537.6
strict, 50-50* 8 567.639 1649940.8

no, 10-10 32 55277.527 270822992.8

Table 1: Results of training benchmarks. Note: * refers to
an error in training that caused the server thread to crash, so
results for 50-50 benchmark cannot be compared to 10-10
benchmark.

The second benchmark also assumes that all users are aware
of the GDPR, and that 10% of their behaviors are to remove
their existing data, 10% of their behaviors are to update the
value of existing data, and 80% of their behaviors are to add
new data to their local data.

In each of these benchmarks, we ran experiments with 1
user, 8 users, and 32 users. Furthermore, we ran analyses
with a simple (non-neural network based) approach to a in-
come binary classification problem and a more complicated
approach to the MNIST classification (10 classes) problem.
We measured time and space used in each of these tests. We
ran five tests under each configuration. Unfortunately, due to
limitations in time and available computational resources, we
were only able to obtain results to the income tests and only
up to 8 threads3.

Fig. 1 shows the number of requests handled in differ-
ent thread counts. That is, under “no” compliance, no user-
provided update requests are handled by the server thread
with either 1 user or 8 users - as we expect. Under “weak”
compliance, no update requests are handled with 1 user and 9
requests (out of a possible 40) are handled with 8 users. This
is because, with one user, the server never receives enough
requests to trigger handling them. Similarly, under “strong”
compliance, no requests are handled with 1 user, but 37 re-
quests are handled with 8 users. Under “strict” compliance, 5
(out of a possible 5) requests that handled and, with 8 users
threads, 40 requests are handled. This confirms that our com-

3This is evident when noting the time scale of even the more simple tests
with 8 users takes about an hour per test to run.

Figure 1: Number of requests handled by thread count and by
compliance level.

pliance models are handling frequency as we expect.
Although incomplete, there are still several takeaways to be

made from table 1. Note that we use “no” GDPR compliance
as a control group. That is, our results demonstrate that we
expect about a 1.5x increase in time when comparing 1 thread
and 8 threads and about a 16x increase in time per thread
when comparing 8 threads and 32 threads. However, we note
that we ran our experiments on a four-core machine, so the
increase in time per thread could very well be a result of
overusing system capacity. It would be interesting to run
similar experiments on a system with more cores to see if
such time increase is still prevalent. Similarly, our control
group demonstrates that there is 196% increase per thread in
space required when comparing 1 thread to 8 threads and a
155% increase in space from 8 threads to 32 threads.

When looking at the time increases with “strict” compli-
ance, however, we see that there is a 1.75x increase in time
as compared to a 1.5x increase in time with “no” compliance.
When considering space, there is both a 196% increase under
“no” compliance and “strict” compliance. That is, there is no
additional space penalty for implementing even a very strict
definition of GDPR compliance.

6 Conclusion

In our project, we explored the impact of GDPR compliance
on federated machine learning models for different tasks. In
doing so, we introduce two different definitions of GDPR com-
pliance, namely frequency and degree, and explore different
permutations of their integration. From there, we determine
that the strictest definitions of GDPR compliance can intro-
duce minor time overheads (of about 1.75x increase in time
per user as compared to a baseline of 1.5x increase in time)
while no significant additional space overhead is required.

6

7 Acknowledgements

We would like to say thank you to Professor Malte
Schwarzkopf for an amazing semester with Brown CS2390,
and for all the invaluable feedback and support that he has
been giving us on this project and beyond throughout the
semester. Nam also would like to say thank you to Amy Pu
’21 who helped us with debugging our multilayer perceptron,
and who has been supporting Nam personally through this in-
teresting semester. Nam additionally would like to say thank
you to Bashar Zaidat ’21 and Rajyashri Reddy ’21 for help-
ing Nam double checking his Stochastic Gradient Descent
algorithm implementation. Last but not least, while build-
ing the system, we referenced ours against design by Shaox-
iong Ji (link here: https://github.com/shaoxiongji/
federated-learning), which we would like to thank him
for.

References

[1] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe
Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale:
System design. arXiv preprint arXiv:1902.01046, 2019.

[2] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi
Goldwasser. Machine learning classification over en-
crypted data. In NDSS, volume 4324, page 4325, 2015.

[3] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure
federated matrix factorization. IEEE Intelligent Systems,
2020.

[4] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml
confidential: Machine learning on encrypted data. In
International Conference on Information Security and
Cryptology, pages 1–21. Springer, 2012.

[5] Angela Jäschke and Frederik Armknecht. Unsupervised
machine learning on encrypted data. In International
Conference on Selected Areas in Cryptography, pages
453–478. Springer, 2018.

[6] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen,
and Qiang Yang. A secure federated transfer learning
framework. IEEE Intelligent Systems, 2020.

[7] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Artificial Intelligence and Statistics, pages 1273–
1282. PMLR, 2017.

[8] Brendan McMahan and Daniel Ramage. Federated
learning: Collaborative machine learning without cen-
tralized training data. Google Research Blog, 3, 2017.

[9] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux,
Marcel Salathé, James Larus, Edouard Bugnion, Wouter
Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele An-
tonioli, et al. Decentralized privacy-preserving proxim-
ity tracing. arXiv preprint arXiv:2005.12273, 2020.

[10] Serge Vaudenay. Analysis of dp3t between scylla and
charybdis.(2020), 2020.

7

https://github.com/shaoxiongji/federated-learning
https://github.com/shaoxiongji/federated-learning

	Introduction
	Background/Related Work
	Design
	Compliance modes
	Round
	User
	Aggregator
	Logger
	Putting everything together

	Implementation
	General
	Use cases
	Work distribution

	Evaluation
	Conclusion
	Acknowledgements

