
delf-rs: A DelF-style DDL and API

Mary McGrath
Brown University

1 Abstract

In a modern user-centric web application, many data points
of various types (e.g. photos, posts, comments, likes) will be
associated with a user. The European Union’s General Data
Protection Regulation (GDPR) [10] enshrines data subjects
with the right to deletion. In a web application with a complex
graph of types, dependencies, and interactions, guaranteeing
that all of a user’s data (and no extra data) is deleted upon
request can be a difficult task requiring bespoke deletion code
and deep knowledge of the code base. Facebook has intro-
duced DelF [7] as their approach to solving this problem. DelF
provides rich functionality and shows that its usage decreases
deletion errors, and increases developer productivity, however
it is deeply integrated and reliant on Facebook’s unique infras-
tructure. delf-rs is a proof-of-concept which implements the
core functionality of DelF in a system-agnostic and extensible
manner that can be used by almost any web application.

2 Introduction & Background

Since GDPR enforcement began in 2018, GDPR Enforcement
Tracker shows there have been 17 cases citing violations of
article 17, the right to deletion [2]. Web applications have a
moral and legal obligation to delete the data of a subject upon
request [10]. However, the data of a subject can be sprawling
- crossing the boundaries of product features and intertwined
with the data of other users. In the example of a social me-
dia application, when a user is deleted, their account, posts,
likes, and friendships should be deleted, but not the things
they liked, or their friends. These deletion rules are typically
incorporated throughout the code base by each developer as
they add features which interact with the data.

This approach presents a few problems. (1) There is no
guarantee that a deletion leaves no dangling data items (e.g.
friendships where one friend no longer exists). (2) Developers
must self-manage the deletion process without the help of
static analysis, writing bespoke code for each deletion. (3) It
requires developers to have extensive knowledge of the code

base and how the feature they are building interacts with other
features. Facebook introduced DelF [7] as their approach to
solving these problems.

DelF is a deletion framework built upon Facebook’s ex-
isting architecture for defining data in their various storage
systems. The data definition language (DDL) describes the
underlying storage of items as objects and edges, each with
metadata about how to store the item. DelF adds deletion
notations to this DDL. There are 6 deletion types for objects,
and 3 for edges. The edge deletion types (deep, shallow,
refcount) define whether when an edge is deleted, whether
the object it pointed to should also be deleted. The object dele-
tion types (by_any, by_x_only, directly, directly_only,
short_ttl, not_deleted) indicate what can delete that ob-
ject, and in the case of short_ttl (short time-to-live) the
mechanism for deletion.

In addition to this annotation, Facebook’s implementation
of DelF includes an asynchronous service which guarantees
deletion of all relevant items in the graph, and additionally
provides the ability to undo a deletion, static analysis, and
dynamic analysis. Facebook found in [7] that DelF improved
accuracy of deletion, improved developer productivity, and
didn’t noticeably impact throughput of requests.

delf-rs aims to show that the core functionality of DelF can
be implemented outside of Facebook’s infrastructure. delf-rs
implements a DDL inspired by Facebook’s, but with only
the information needed for deletion and not that needed for
defining and creating the items in storage. It additionally im-
plements the deletion algorithm for all nine deletion types
and static analysis-based validation of the schema. The asyn-
chronous service is implemented as a REST API, which al-
lows for system and language agnostic use of the service by
any program. The dynamic analysis and restoration of deleted
data is outside of the scope of this work.

3 Design

delf-rs is implemented in Rust [9] as a crate that is available as
both an executable (delf) and a library. The library has three

1



Figure 1: delf-rs architecture The core funcionality of delf-rs is schema validation, the deletion graph, connectors to storage,
and the api routes. All of this functionality is dependent on a user-provided schema (using the DDL) and configuration for how
to connect to the storages. The CLI provides programs to start the REST API server as well as validate the graph.

sub-modules: 1) graph, which is the core data structure and
where the deletion algorithm and validation is implemented;
2) storage, an implementable trait as well as any imple-
mentations (currently only MySQL [3]); and 3) api which
defines the endpoints for the REST API. The executable is
a command line interface (CLI) with two programs: run,
which starts the REST API, and validate, which checks the
schema is valid and complete. Figure 1 shows the architecture
of delf-rs.

3.1 Data Definition Language (DDL)
The DDL is a YAML [6] specification, taking a similar form
to the DDL Facebook uses for defining and creating items
in their storage systems. Because delf-rs only deletes items,
but does not create them, it requires less information about
the objects and edges in the storage. delf-rs needs the unique
identifiers and relationships between objects, as well as some
minimal type information, but does not need specific type
information, nor information about non-identifier attributes
of the object (e.g. a user’s name, or favorite color).

Listing 3.1 contains a sample schema written using the delf-
rs DDL. A complete description of the DDL can be found in
the delf-rs docmuentation (https://mcmcgrath13.github.
io/delf-rs/delf/index.html).

3.2 REST API

To allow delf-rs to be used in a system agnostic manner, the
deletion methods are exposed as a deletion microservice via
a REST API. This also allows a common deletion graph to
be used by several webservices that use the same underlying
storage and data. The library includes the definition of the
routes as well as the definition of the microservice. The CLI
run command starts the service.

Objects deleted via the API are considered directly deleted,
meeting the criteria of the directly and directly_only
deletion types.

The current implementation of delf-rs completes the dele-
tion synchronously within the HTTP DELETE request. How-
ever, future work could include making this asynchronous
with retries to better match Facebook’s implementation and
the robustness that model provides. This proof-of-concept
will return an error code to the requester if the deletion failed,
however that does not guarantee that no deletions were com-
pleted before the failure was encountered.

As a side process to the REST API, a thread periodically
checks short_ttl objects if they are ready for deletion based
on an expiration timestamp that is an attribute of the object.
In combination, the REST API and short_ttl thread jointly
provide a working implementation of all nine deletion types.

2

https://mcmcgrath13.github.io/delf-rs/delf/index.html
https://mcmcgrath13.github.io/delf-rs/delf/index.html


object_type:
name: photo
storage: mysql
deletion: directly
id: photo_id
edge_types:

- name: handle
to:
object_type: photo_blob
field: photo_id

deletion: deep
- name: created_by
to:
object_type: user
field: photo_id
mapping_table: user_photos

deletion: shallow
inverse: created_photo

---
object_type:
name: photo_blob
id: id
storage: blob
deletion: by_any
edge_types: []

---
object_type:
name: user
storage: mysql
deletion: directly_only
id: user_id
edge_types:

- name: created_photo
to:
object_type: photo
field: user_id
mapping_table: user_photos

deletion: shallow
inverse: created_by

Listing 1: A sample schema using the delf-rs DDL. Each
YAML document describes an object in the database and its
outbound edges.

3.3 Deletion Graph
The deletion graph implements the algorithm for the deletion
of objects and edges according to their edge type and the
state of the data. It holds the parsed and validated delf schema
in memory. Upon a call to delete an item in the graph, the
deletion is validated against the type of each item, then if the
deletion is valid, it is deleted and any outbound edges it has

are deleted and traversed to determine if any of the connected
objects should also be deleted. Deletion terminates when all
objects and edges downstream of the traversal starting point
have been deleted, or determined to not be eligible for deletion.
The traversal of the graph is depth first.

The deletion types used in delf-rs are as described in
DelF [7] with the following exceptions. custom deletion
types are not supported by delf-rs. These were largely in-
cluded in DelF to allow for backwards compatibility during
the transition period, then very rarely selected in usage with
a DelF-driven deletion system. The DelF implementation of
short_ttl scheduled the object for deletion on its creation,
however, since delf-rs is not as tightly integrated with the stor-
age, it instead requires objects using the short_ttl deletion
type store the time they should be deleted as an attribute or
field of the object. delf-rs periodically checks this deletion
time then if it is before the present time, deletes the object.

3.4 Storage Connectors

A web application may have multiple types of storage spe-
cialized to the type of data being stored (e.g. relational, graph,
blob). While the proof-of-concept includes only support for
MySQL, it is designed to be extended to many storage types.
A generic high-level API defines a delf-rs compatible storage.
Any storage type that implements those methods would be
compatible with delf-rs. This enables usage with web apps
with a a variety of backing storage, as well as allowing the
deletion graph to span multiple backing storage types.

3.5 Validation

The heuristics designed in [7] improved the reliability and
usage of DelF by software engineers. delf-rs includes the
static analysis described in DelF, but does not implement the
dynamic analysis as it requires tighter integration with the
underlying storage. The static analysis requires that all ob-
jects in the deletion graph are traversed when starting at an
object with the delete type of directly, directly_only,
short_ttl or not_deleted and following edges with dele-
tion type of deep or refcount. This ensures no objects can
be left dangling upon deletion of their connected objects.

In addition to the static analysis described in DelF, delf
also implements validation that the underlying storage is as
described in the schema. This step is not required in DelF
as the schema also defines and creates those objects in the
storage, meaning they can not be out of sync.

4 Implementation

delf-rs is implemented in 926 lines of Rust [9] code. The delf
graph is built on top of petgraph’s [4] directed graph. The
REST API uses the rocket [5] web framework. The proof-of-

3



concept storage is implemented using diesel [1], an ORM, to
connect to and query the MySQL database.

Type safety is a prominent feature of Rust, which ensures
that if a schema is successfully read into a deletion graph and
validation passes, that runtime errors are unlikely. However,
this also requires assigning a specific type to the inputs and
results of any queries to the storage. delf-rs only needs to
know how to delete an item in the storage, but not the exact
type. This is addressed by assigning fields a type of number
or string allowing the queries to the storage to be correctly
formatted and executed.

5 Evaluation

HotCRP [8], an open-source conference management plat-
form, was used to validate the proof-of-concept. The data
model centers around users and papers with other objects
existing in support of those objects. HotCRP is backed by a
MySQL database containing 25 tables. Most of these tables
are considered objects by delf-rs, but a few are functionally
edges, providing a many-to-many mapping between two ob-
ject tables. HotCRP’s database was containerized and loaded
with test data to validate delf-rs.

The database was able to be described as a delf schema
with 310 lines of YAML. The schema consists of 16 objects
and 33 edges. All deletion types were used in the schema,
though a few usages were partially contrived based on how
HotCRP could use delf rather than its current deletion logic.
This was done to ensure all deletion types were validated.

With a freshly loaded test database, the delf validate
and delf run programs were run. All items in the delf graph
existed in the MySQL database as described and all objects
were reachable via the static analysis described in sub-section
3.5. An erroneous version of the schema was also validated
and found to have all of the introduced errors. DELETE re-
quests of both objects and edges were made to the running
API and manually validated to have deleted all relevant ob-
jects. This included the validation that a refcount edge only
deletes the object it is point to if it is the last remaining ref-
erence, and also the validation that the short_ttl objects
were deleted as scheduled as well as by an incoming edge. All
deletion types were shown to work as described in DelF [7].

6 Future Work

Future work is needed to study delf-rs and mature it from a
proof-of-concept to a production-ready system. In addition
to implementing the fully asynchronous deletion with retries,
and the ability to recover deletions as in DelF, implementing
more storage types is important to validating that delf-rs can
be a viable solution for any web service. Additionally, adapt-
ing more test applications to use delf-rs would be valuable in

ensuring the DDL covers typical data models found across a
variety of use cases and storage types.

7 Conclusion

The abstraction and delegation of deletion logic to a dedicated
service has been shown to improve accuracy of deletion and
reduce bugs [7]. This decreases the likelihood of a violation of
article 17 of the GDPR [10]. delf-rs shows that the approach
of DelF can be implemented agnostic of Facebook’s infras-
tructure and in a manner that is agnostic to the technology
stack of the web application.

References

[1] Diesel. http://diesel.rs/. Accessed: 2020-12-06.

[2] Gdpr enforcement tracker. https://www.
enforcementtracker.com/. Accessed: 2020-12-08.

[3] Mysql. https://mysql.com/. Accessed: 2020-10-02.

[4] petgraph. https://github.com/petgraph/
petgraph. Accessed: 2020-12-06.

[5] Rocket. https://rocket.rs/. Accessed: 2020-10-
02.

[6] Yaml ain’t markup language. https://www.yaml.org.
Accessed: 2020-10-02.

[7] Katriel Cohn-Gordon, Georgios Damaskinos, Divino
Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs,
Daniel Obenshain, Paul Pearce, and Ioannis Papagiannis.
{DELF}: Safeguarding deletion correctness in online
social networks. In 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020.

[8] Eddie Kohler. Hotcrp. https://github.com/
kohler/hotcrp/. Accessed: 2020-12-06.

[9] Nicholas D Matsakis and Felix S Klock II. The rust
language. In ACM SIGAda Ada Letters, volume 34,
pages 103–104. ACM, 2014.

[10] Council of European Union. Regulation (eu) 2016/679
of the european parliament and of the council, 2016.
https://eur-lex.europa.eu/legal-content/EN/
TXT/HTML/?uri=CELEX:32016R0679.

4

http://diesel.rs/
https://www.enforcementtracker.com/
https://www.enforcementtracker.com/
https://mysql.com/
https://github.com/petgraph/petgraph
https://github.com/petgraph/petgraph
https://rocket.rs/
https://www.yaml.org
https://github.com/kohler/hotcrp/
https://github.com/kohler/hotcrp/
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679

	Abstract
	Introduction & Background
	Design
	Data Definition Language (DDL)
	REST API
	Deletion Graph
	Storage Connectors
	Validation

	Implementation
	Evaluation
	Future Work
	Conclusion

