
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

DORY: An Encrypted Search System
with Distributed Trust

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa,
and Ion Stoica, University of California, Berkeley

https://www.usenix.org/conference/osdi20/presentation/dauterman-dory

DORY: An Encrypted Search System with Distributed Trust

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica

University of California, Berkeley

Abstract. Efficient, leakage-free search on encrypted data
has remained an unsolved problem for the last two decades;
efficient schemes are vulnerable to leakage-abuse attacks,
and schemes that eliminate leakage are impractical to deploy.
To overcome this tradeoff, we reexamine the system model.
We surveyed five companies providing end-to-end encrypted
filesharing to better understand what they require from an
encrypted search system. Based on our findings, we design
and build DORY, an encrypted search system that addresses
real-world requirements and protects search access patterns;
namely,when a user searches for a keyword over the fileswithin
a folder, the server learns only that a search happens in that
folder, but does not learn which documents match the search,
the number of documents that match, or other information
about the keyword. DORY splits trust betweenmultiple servers
to protect against a malicious attacker who controls all but one
of the servers. We develop new cryptographic and systems
techniques to meet the efficiency and trust model requirements
outlined by the companies we surveyed. We implement DORY
and show that it performs orders of magnitude better than a
baseline built on ORAM. Parallelized across 8 servers, each
with 16 CPUs, DORY takes 116ms to search roughly 50K
documents and 862ms to search over 1M documents.

1 Introduction
Users have grown increasingly reliant on filesharing systems
such as Box,Dropbox, and iCloud. However, attacks on storage
servers [88, 95, 98, 109] have exfiltrated large amounts of
sensitive data belonging to many users, jeopardizing user
privacy as well as the reputation and business of the victim
organizations. End-to-end encrypted storage systems [73,
107,115,121,124] provide a strong defense against this type
of attack: the client stores all cryptographic keys and the
server receives only encrypted data, and so an attacker that
compromises the server can only exfiltrate encrypted data.

At the same time, end-to-end encrypted filesharing services
struggle to provide the same functionality as plaintext storage
providers like Dropbox because the server cannot decrypt the
data to process it. Server-side search is a critical tool that users
expect for convenience and companies require for compliance.

Despite a large body of work on searchable encryption [23,
25, 35, 37–40, 50, 52, 67, 68, 94, 97, 111, 114, 116], practical
and leakage-free search on encrypted data has remained an
unsolved problem for two decades. Existing work can largely
be divided in two categories: (1) practical but leaking search

access patterns, or (2) not leaking search access patterns but
expensive.
In the first category, an attacker can learn sensitive data

by observing search access patterns. We now explain what
search access patterns are intuitively by contrasting them to
the leakage already existing in deployed end-to-end encrypted
filesystems [73,107,115,121,124]. In these filesystems, when
a user accesses a file, the server learns that this specific user
accessed that specific file, but it does not see the content due to
end-to-end encryption. The concernwith leaking search access
patterns on top of this filesystem leakage is that search access
patterns can leak information at the word level, allowing an
attacker to potentially reconstruct search queries and document
plaintext [22, 65, 72, 84, 102, 106, 129].
Consider a simple example of how an attacker can exploit

search access patterns [129]. The server stores an inverted
search index for Alice’s emails mapping an encrypted keyword
to an encrypted list of files. The attacker sends a one-word
email to Alice containing “flu”. If Alice’s client updates entry
924 of index on the server, the attacker learns that index[924]
is for “flu”. By repeating this process for every word in the
dictionary, the attacker can discover the word corresponding
to every index entry. Later when Alice receives a confidential
email, the attacker can derive all the words in that email based
on which index entries are updated. More sophisticated attacks
can reconstruct both entire documents and search queries from
even more advanced search schemes [22,65, 72, 84, 102, 106,
129]. In this paper, we informally define search access pattern
leakage as the set of documents matching a search keyword,
the size of that set, and any information about the search query.
In contrast, if a scheme does not leak search access patterns,
then during a search on a folder, the search server learns only
that a search is now happening in that folder.
The second category of existing work typically relies on

Oblivious RAM (ORAM) [54,99, 119], a cryptographic tool
that allows a client to read and write data from a server without
revealing access patterns. Many academic works point to an
inverted index inside ORAM as a straightforward way to
eliminate leakage [61, 96, 116]. Unfortunately, even though
the asymptotic complexity of ORAM is polylogarithmic in the
index size, the cost of even the most practical ORAM schemes
remains prohibitively expensive for our setting. For example,
inserting a file requires an expensive ORAM operation for
every keyword in that file (and there can be hundreds).

Given that practical, leakage-free search remains a difficult

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1101

problem,we revisit the systemmodel: What do real end-to-end
encrypted filesharing systems actually require from a search
system? Would the problem become more tractable in their
system model?
Choosing a system model. We surveyed five companies
that provide end-to-end encrypted filesharing, email, and/or
chat services: Keybase [73], PreVeil [107], SpiderOak [115],
Sync [121], and Tresorit [124]. To the best of our knowledge,
this is the first study of requirements for encrypted search in
real filesharing systems. We discuss our findings in §2 and
summarize the ones most relevant to DORY here:
Efficiency requirements. These companies care about two
primary metrics: latency and monetary cost. They are not
concerned about the asymptotic complexity of the search
algorithm andwould accept an algorithmwith runtime linear in
the number of documents as long as their concrete performance
and cost requirements are met (see Table 2).
Trust model requirements. Some of these companies were
already splitting trust to back up secret keys or distribute
public keys, and we wanted to know if we could leverage
a similar distributed trust assumption to make the problem
of encrypted search more tractable. While these companies
were willing to split trust across multiple domains, some had
two requirements aimed at strengthening the distributed trust
assumptions. First, if at least one trust domain is honest, then
an attacker that controls all the remaining trust domains and
observes user queries should not learn search access patterns.
In particular, we need to protect against a malicious attacker
rather than an honest-but-curious one and should not assume
that the attacker follows the protocol. The second requirement,
stated intuitively, is that only search access patterns should be
protected by distributed trust, and an attacker that compromises
all trust domains should not immediately learn the contents
of the search index.

While prior work explores some forms of distributing trust
for encrypted search [15,19,45,62,64,108], we are not aware
of any work that meets both the efficiency and distributed
trust requirements outlined above without leaking any search
access patterns, as explained in §8.
Our system: DORY. We design and implement DORY (De-
centralized Oblivious Retrieval sYstem), an encrypted-search
system that splits trust to meet the real-world efficiency and
trust requirements summarized above (and detailed in §2).
DORY ensures that an attacker who cannot compromise every
trust domain does not learn search access patterns.
We implemented and evaluated DORY to show that it per-

forms better (for some metrics, orders of magnitude better)
than an ORAM baseline (§7). DORY also meets the compa-
nies’ efficiency requirements; parallelized across 8 servers,
searching over 1M documents takes 862ms, and, using work-
load estimates from the companies, we estimate that DORY
costs roughly $0.0509 per user per month.

DORY combines cryptographic and systems techniques to
overcome the security and efficiency challenges of previous so-

lutions. Several of the companies we surveyed have expressed
interest in deploying DORY, and one of them already has
plans to integrate DORY into their system in the near future.
1.1 Summary of techniques
Choosing an oblivious primitive. Given the inefficiencies
of ORAM, a key challenge was choosing a cryptographic
primitive for hiding search access patterns. We identified a
relatively recent cryptographic tool, distributed point functions
(DPFs) [51] (a specific type of function secret sharing [20,21]),
as particularly promising for our setting. DPFs allow us to
leverage ` servers (for practical constructions, ` = 2) to retrieve
part of the search index without any group of < ` servers
learning which part of the index we’re retrieving (the problem
of private information retrieval, or PIR [27,28]). A DPF-based
solution requires a linear scan over the index, but the overhead
per index entry is small because it relies on AES evaluations,
which are implemented efficiently in hardware.
Designing the search index. An important challenge is how
to structure the search index to support efficient search and
update operations. To minimize the overhead of updating the
search indexwhen a file is uploaded, the client should only need
to upload a small, constant-sized amount of data per file, and
ideally avoid performing an expensive cryptographic operation
for every keyword in that file. To minimize search overhead,
we need to limit the number of DPF queries. To achieve both
of these goals, we keep a table where each row corresponds to
a bitmap of words for a document. An update simply requires
the client to insert a row by uploading a new bitmap, and,
a search only requires a single DPF request to retrieve the
column corresponding to a keyword (§4.1). However, this
bitmap can become quite large to accommodate every word in
the dictionary. To reduce the size of this bitmap (and thus the
time for the linear scan), we use a Bloom filter, which provides
compression while preserving column alignment. Bandwidth
from the servers to the client is linear in the number of files
searched over, but we require less than 1 byte per file (§7)
and, more importantly, this fixed bandwidth enables DORY
to hide the number of search results, which can be exploited
in volume-based attacks [22, 72, 102].
Encrypting the search index. To prevent an attacker that
compromises all the servers from immediately reconstructing
the plaintext search index, we need to encrypt each bit in
the Bloom filter before inserting it into the search index.
Unfortunately, the expansion of encryption would increase the
size of the search index (and thus the time for the linear scan)
by the security parameter λ (typically λ = 128). To ensure that
the encrypted index is the same size as the plaintext index, we
instead mask the bits using a random one-time pad that we
ensure is unique for each version of the file (§4.1).
Defending against amalicious attacker.DPFs do not protect
against malicious attackers. To protect against a malicious
attacker that compromises all but one of the trust domains,
we leverage MACs to allow the client to check the integrity

1102 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of search results in a way that makes blackbox use of DPFs.
Applied naively, adding MACs would increase the search
bandwidth and storage at the server by a factor of λ. To
address this problem, we employ aggregate MACs [71] to turn
λ from a multiplicative factor to an additive one (§4.3).

Providing fault tolerance. Splitting trust across different trust
domains naturally requires additional servers. With secret-
sharing, one tool for distributing trust, servers store different
data that they may not share. Then, to provide fault tolerance,
each of these servers would need to be replicated. We observe
that in DORY, servers can use each other for fault-tolerance
even though they are in different trust domains due to two
properties (§5): (1) each server has an identical copy of the
state, and (2) the client can perform integrity checks.

Reducing the cost of replication. To execute a search query
correctly, all the servers must operate on the same version of
the state. This is challenging because clients can issue update
and search requests concurrently. One possibility is to use
standard Byzantine fault-tolerant (BFT) consensus techniques
to solve this problem, but this would require 3 f + 1 trust
domains to handle f failures. Instead, we observe (1) the ways
in which our system setting is less demanding than that of
BFT, and (2) that our cryptographic protocol enables clients
to check integrity even if all servers are compromised; using
these, DORY only needs f +1 trust domains (§5).

2 Finding DORY: identifying a system model
To understand real-world use cases, we surveyed five compa-
nies providing end-to-end encrypted file storage, email, and/or
chat solutions: Keybase [73], PreVeil [107], SpiderOak [115],
Sync [121], and Tresorit [124]. For each company, we asked a
set of questions (see full version [36]) over the course of discus-
sion(s) and email exchanges. This study was conducted as we
were in the process of designing our system. We summarize
our findings in Tables 1 and 2 and in the following sections.
We report statistics in aggregate to preserve the confidentiality
of individual companies, as they requested. These statistics
and requirements motivate DORY’s system model.

About the companies. Before we report the results of our
survey, we give a brief background about each company.
Keybase [73], founded in 2014 in the US and recently acquired
by the video-conferencing company Zoom [128], keeps a
publicly auditable key directory and offers open-source, end-
to-end encrypted chat and storage systems. PreVeil [107],
founded in 2015 in the US, focuses on both encrypted chat
and storage solutions and open-sources some of its tools.
SpiderOak [115], founded in 2007 in the US, offers encrypted
storage, backup, and messaging solutions leveraging a private
blockchain and open-sources many of its tools. Sync [121],
founded in 2011 in Canada, and Tresorit [124], founded in
2011 in Switzerland, both provide encrypted storage. With
the exception of Keybase, these companies generally target
enterprise customers and support compliance with regulations

Ke
yb
as
e

Pr
eV
eil

Sp
id
er
Oa

k
Sy
nc

Tr
es
or
it

Need server search? 3 3 3 3 3
Have server search? 7 7 7 7 7
File sharing? 3 3 3 3 3
Email? 7 3 7 7 7
Chat? 3 7 3 7 7
Mobile client? 3 3 3 7 3

Table 1: The
search use-cases
for each of the
five companies
we surveyed.

Table 2: Survey statistics. In
accordance with the compa-
nies’ confidentiality wishes,
we report most fields in
aggregate although we re-
port individual responses
for max permissible search
latency (only 4 of the com-
panies responded).

System cost & scale
Avg. #docs/user 100 - 45K
Max #docs/user 100K - 1.3M
Price/month/user $0-20

Search requirements
Max added $/month/user $0.70-5.54
Max search latencies (s) [0.5, 1, 1, 4]
Est. update/search ratio 50/50

such as GDPR or CMMC. Some of these companies report
over 750K users in over 180 countries.
The need for server-side search. Every company expressed
a need for server-side search on encrypted data either for
their desktop client in cases where users do not have all the
files downloaded, or for the mobile or web clients. However,
none currently support server-side search; they all told us
that they tried at some point to develop a solution (most had
researched the academic literature), but their efforts were
eventually thwarted by concerns about performance or search
access patterns. Several of the companies we surveyed had
built or used a client index as a temporary solution, but they
did not see this as a long-term solution because of its inability
to index many files locally (e.g. enterprise data) or its resource
consumption (especially on mobile). In §7.5, we discuss how
synchronization between clients makes this solution infeasible
in cases where documents are constantly updated.
They all stated interest in deploying a server-side solu-

tion that met their functionality, security, and performance
requirements, if such a solution were to exist.
2.1 System requirements
Search must be responsive. The companies reported maxi-
mum search latencies between 500ms and 4s (Table 2). The
company that reported a maximum search latency of 500ms re-
ported tens of thousands to hundreds of thousands documents
per user, while some of the companies that reported larger
maximum search latencies had users with approximately a
million documents.
Monetary cost for search must be small. These companies
prioritize keeping the cost of search below $0.70 per user per
month in order to make it feasible to deploy search to all users
without increasing prices (Table 2). While some companies
were willing to consider charging more for the ability to search,
other companies believed that users would be unwilling to pay

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1103

extra because they are used to free search on other platforms.
Multiple usersmust be able to update and search the same
documents. Each company allows multiple users to access
the same file. Therefore, a search solution should be designed
with multiple clients in mind and minimize the amount of
state clients need to synchronize between operations.
Revoking a user’s access must be cheap. All these com-
panies implement revocation lazily [9, 48, 53, 56, 66, 110],
meaning that when a user’s access to a folder is revoked,
the remaining users generate a new key and, rather than re-
encrypting every document in the folder under the new key,
simply use the new key for subsequent updates. In this way,
the revoked user can still access documents that haven’t been
updated since the time of revocation. These companies want
to adopt a similar approach for search. When a user is re-
voked, rather than re-computing the entire search index (as
in ORAM-based solutions), subsequent updates should not
allow the revoked user to search over the updated documents.
Relaxations. In addition to learning requirements, we also
learned several system relaxations these companies accepted.
The companies did not require search results to be fresh (they
could be stale for up to a few minutes), and they were also
willing to accept a small numberof false positives (several other
search schemes have also leveraged this allowance [15, 52]).
2.2 Distributed trust requirements
Themajority of prior encrypted searchwork considers a single-
server model where the attacker can take control of the entire
system. As some of these companies were already leveraging
distributed trust (e.g. Keybase to distribute public keys via
social media servers, PreVeil to backup secret keys secret-
shared among multiple clients), we wanted to know if they
were willing to accept a distributed trust model for encrypted
search as well, as this could be an opportunity for providing a
more efficient search. We found that all the companies were
open to a distributed trust model, although several companies
had more specific requirements for how to distribute trust:
Hide search access patterns even with only one honest
trust domain. These companies wanted the guarantee that if
at least one trust domain is honest, then an attacker cannot
learn search access patterns. They did not want to assume
that other trust domains behaved correctly, so they wanted a
malicious threat model rather than an honest-but-curious one.
Distributed trust only for search access patterns. These
companies wanted to limit the damage caused by an attacker
who compromises all the ` trust domains by ensuring that
putting the ` search indices together does not readily provide
the attacker with the plaintext search index. For example, if
a company is subpoenaed and every trust domain must hand
over its search index and search access patterns from then on,
the company can choose to suspend search services to protect
users’ privacy by reducing search access pattern leakage,
similar to the case where Lavabit chose to suspend operation
rather than reveal Snowden’s emails [4]. In such a case,

reconstructing the index from the ` servers’ index shares should
result in end-to-end encrypted data. This requirement rules
out solutions based on secret-sharing a plaintext search index
across multiple servers because an attacker compromising all
trust domains can recover the plaintext index.
2.3 Opportunities
From the survey results reported above, we summarize what
we considered opportunities to make the problem of encrypted
search easier:
• Performing a linear scan to search is feasible if the response
time and the cost on expected workloads are acceptable.

• Distributing trust across multiple trust domains is acceptable
if certain security requirements are met.

These opportunities serve as the basis for our system design.
2.4 Building a distributed trust system
We now discuss how to build a system where an attacker
who compromises part of the infrastructure cannot easily gain
access to the entire infrastructure. Such a model has already
been deployed in several real systems, including cryptocurren-
cies relying on consensus such as Ripple [90] or Stellar [86],
Certificate Transparency [81], and academic work [31].
Split across clouds. By treating different clouds as distinct
trust domains, a malicious cloud provider (or an attacker that
can exploit a vulnerability in one cloud infrastructure), cannot
gain access to both trust domains.
Split across institutions. By using trust domains in competing
organizations or nonprofits generally trusted by the public (e.g.,
the Electronic Frontier Foundation), users can have a stronger
assurance that the organizations are unlikely to collude.
Split across jurisdictions. By separating trust domains by
jurisdiction (i.e. different countries), a single legal authority
cannot gain access to the entire system.
If the trust domains are deployed in the cloud, we can

take advantage of the fact that cloud providers are monetarily
incentivized to provide availability. Fail stops can still occur
naturally, but cloud providers make it easy to detect failures
and launch new servers. Clients can report statistics on the
lack of availability of a trust domain, and the organization
deploying the system can take its business elsewhere.
2.5 Future directions
As we conducted our survey, some companies mentioned addi-
tional features that, while not necessary for initial deployment,
are desirable. Although we do not support these in DORY, we
note them here as potential directions for future work.
Concentrate resources in a single trust domain. The trust
domain already used for the filesystem should do most of the
work for search as well. Each additional trust domain should
do little work, so that adding a new trust domain should be
cheap. DORY concentrates resources to some extent, (§5), but,
as discussed in §4, still requires a server in each trust domain
to perform a linear scan.
Richer search functionality. Several companies mentioned
that they would appreciate richer search functionality beyond

1104 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

simple keyword search (e.g. ranked search based on term fre-
quency.) DORY only returns the set of documents containing
a keyword, leaving ranked search for future work.

3 System design overview
In DORY, we focus only on the search system for end-to-end
encrypted filesharing systems and not on the design of these
filesharing systems. These systems [73, 107, 115, 121, 124]
already exist and are in use. We design DORY to build on top
of and interface with these systems as described in §3.2. For
this purpose, we abstract out the underlying filesystem.

3.1 The underlying filesystem
End-to-end encrypted filesystems (including the five com-
panies we surveyed in §2) tend to follow a common design
pattern, which we now describe. To hide the contents (in-
cluding the name) of documents, these filesystems assign a
document ID to each document and associate the ID with an
encryption of the document contents. Documents accessible
by the same users are grouped into folders, each of which has
a corresponding ID. Users who have access to the same folder
share a (logical) secret key used to encrypt the documents
in that folder. In this way, while the server learns the IDs of
documents being accessed, the number of documents in each
folder, and which users have access to which folders, it does
not see the contents of the documents.
When a user is added to a folder, the other users share the

existing folder key with the new user, and when a user’s access
to a folder is revoked, the remaining clients choose a new
folder key. To prevent the remaining clients from having to
re-encrypt every document in the folder after a user is revoked,
these systems employ lazy revocation (as described in §2.1).
Users may choose to keep some documents synchronized

with the server (i.e., store the most recent version of the
document locally) and others not synchronized (i.e., do not
store locally and retrieve them from the server only as needed).
In either case, the user has already downloaded the most recent
version of the document before she sends an update. In the case
where two clients try to update the same file simultaneously,
these systems often create two versions of a file.

DORY integrates with the filesystem (FS) using the follow-
ing FS API (depicted in Figure 3):
• getCurrKey(folderID) → k: Get the current key associated
with the group of files in folderID.

• getDocKey(docID)→ k: Get the key used in the most recent
update for docID.

• getDocIDs(folderID) → docIDs: Get all the document IDs
used for the documents in folderID.

• getVersion(folderID,docID) → version: Get the current ver-
sion number associated with a file.

3.2 The DORY API
When a user searches orupdates a file, the filesystem client calls
the DORY client via DORY’s API so that DORY performs

FS client

DORY client

DORY API

FS API

Request

Response

Server
FS Server

DORY Server

Figure 3: System software architecture. The figure shows the structure
of the software rather than the physical system itself, where the server
is instantiated across multiple machines.

the search or incorporates new updates into the search index.
We now describe DORY’s client API, depicted in Figure 3.

When the user updates a document in the underlying filesys-
tem, the user’s client also sends an update to the DORY
client to maintain the search index, allowing DORY servers
to respond to subsequent search queries correctly.

The underlying filesystem already handles key management
by giving permitted users access to the folder key(s). DORY
leverages this key management mechanism so the permissions
of the filesystem naturally extend to DORY: when a user is
added to or removed from a folder in the underlying filesystem,
she also gains or loses the ability to search in DORY.
We also utilize the fact that to update a document in the

underlying filesystem, the user has already downloaded that
document (if it is not being added for the first time). We
employ the conflict-resolution mechanisms in the underlying
filesystem to resolve conflicts in search index updates.

DORY exposes the following API to filesystem clients:
• Update(folderID,docID,prevWords,currWords): Given the
folder ID, the document ID of a document in that folder,
the previous set of keywords in that document prevWords,
and the current set of keywords in that document currWords,
update the state at the DORY servers.

• Search(folderID,keyword) → docIDs: Given the folder ID
to search over and a keyword, find all the documents contain-
ing that keyword. DORY has a small (configurable) false
positive rate, but DORY has no false negatives.

Updates require the client to upload a small, constant-sized
amount of data per file, and searches require the server to
perform a linear scan over the search index for a given folder
(the cost of search for a user only depends on the number of
files that user has access to).

3.3 System architecture
Folders in DORY are divided into partitions, each of which
is managed by a different group of servers. A deployed sys-
tem may contain many such partitions, and execution across
partitions occurs in parallel. The following entities comprise
DORY’s system architecture for a single partition (Figure 4):
• Filesystem server: The underlying filesystem provides the
functionality described in §3.1.

• Replicas: The ` DORY replicas maintain identical copies of
the search index and execute search queries. Each replica is
deployed in a separate trust domain. In our implementation,
we use ` = 2.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1105

MasterReplicaReplica

Client Client

Figure 4: DORY’s physi-
cal system architecture for
a single partition (filesys-
tem server not pictured).
Replicas should be de-
ployed in different trust do-
mains, and each holds a
copy of the search index.

• Master: The DORY master ensures that the ` replicas have
the same view of the state and that the clients know the
version of this state and which servers to contact. The master
can be deployed in any existing trust domain.

• Clients: Multiple clients send requests to the filesystem
server and the DORY master and replicas. Each client only
needs to store three 128-bit keys (and can optionally cache
version numbers received from the master).

To search, the client must interact with ` replicas for each par-
tition. The master can be co-located with the filesystem server
to ensure that updates to the search system and underlying
filesystem occur atomically, although this is not necessary.

3.4 Threat model and security properties
We now describe DORY’s security properties at a high level,
and include DORY’s formalism (detailing the guarantees) and
proof in the full version [36]. In short, we achieve the security
goals in §2.2. We discuss security at the level of trust domains,
each of which may deploy one or more servers.
Below, we assume that the underlying filesystem is mali-

ciously secure. In particular, we assume that DORY’s client
can always retrieve the correct version number from the under-
lying filesystem. Providing such a guarantee (e.g., by detecting
rollback and fork attacks in filesystems) is a well-studied line
of work [11,63, 70, 75, 82]. If the underlying filesystem only
defends against an honest-but-curious attacker, though, DORY
also only protects against such an attacker.
Securitywith one honest trust domain.Amalicious attacker
that compromises `−1 of the ` trust domains does not learn any
search access patterns. More precisely, such an attacker learns
nothing except what is leaked by the underlying filesystem,
as well as the timing of individual search requests and the
folders they take place over. This security property implies
both forward privacy, the privacy of newly added files in
the presence of previous queries, and backward privacy, the
privacy of deleted files after deletion, as defined by Stefanov
et al. [116]. Notably, we do not leak the number of search
results; if leaked, this information could open the door to
volume-based attacks [102] (parameters that determine result
sizes are public).
Security with no honest trust domains. DORY’s goal is to
hide search access patterns when at least one trust domain is
honest. When all trust domains are compromised, we have

the modest goal of defaulting to the security of prior schemes
leaking search access patterns, instead of readily losing all
security by immediately exposing the search index. In this
case, the only additional leakage (on top of what the attacker
learns if at least one trust domain is honest) is a deterministic
identifier for the keyword queried. In the security definition for
our cryptographic protocol, we model the attacker as seeing
queries only after the point of compromise; in reality, systems
retain leakage (e.g. cache state) that increases the amount of
information the attacker can access [57].
We formally model the end-to-end security guarantees of

DORY for the case where at least one trust domain is honest
and the case where no trust domains are honest by defining
an ideal functionality F that specifies the behavior of an ideal
system, capturing the properties discussed above. F further
captures the fact that the client can verify the integrity of the
result. In the full version [36], we present a formal definition
using F and prove the following theorem, which captures
DORY’s security:
Theorem 1: Using the definitions in the full version [36],
DORY securely evaluates (with abort) the ideal functionalityF
when instantiated with a secure PRF, a secure aggregate MAC,
a secure distributed point function, and a secure filesystem
that implements the ideal filesystem functionality.

DORY does not provide availability if any one trust domain
refuses to provide service (see §2.4 for how cloud providers
are monetarily incentivized to provide availability).
Relationship with underlying filesystem. DORY interfaces
with deployed end-to-end encrypted filesystems (§3.1). These,
as mentioned, allow the server to learn the ID of the file
being accessed (but not its contents). While search itself is
protected in DORY, some side effects of the search results
are not: If, after seeing the search results, a user decides to
open (and retrieve from the filesystem) a file in the results, an
attacker could infer that the file matched the search. DORY
does not address these side effects, but simply aims to not add
any leakage to the overall system during search. These side
effects (and leakage due to the filesystem) can be prevented
by running DORY on top of an oblivious filesystem.
Extension to oblivious filesystems. Some file storage pro-
posals [10, 26, 58, 91, 92] hide which files are being accessed.
These are usually based on oblivious algorithms [119], which
have significant overhead and have not yet been deployed.
Nevertheless, in §4.5, we discuss how DORY can be used to
provide search for an example of such a filesystem design,
demonstrating that DORY’s techniques do not require the
server to know the file ID being updated.

4 Search design
We start by describing a basic encrypted search scheme that
leaks search access patterns and is only secure against an
honest-but-curious attacker in §4.1. We will show how to
modify our basic scheme to eliminate search access patterns

1106 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

x1,1 x1,2 x1,3 . . . x1,m

...
...

...
...

xi,1 xi,2 xi,3 . . . xi,m
...

...
...

...
xn,1 xn,2 xn,3 . . . xn,m

Update

doc i

Search Figure 5: Search
index layout for
n documents with
Bloom filters of
length m. Updates
write rows and
searches retrieve
columns.

in §4.2, move from an honest-but-curious to malicious threat
model in §4.3, and support dynamic membership in §4.4. We
show the pseudocode for the complete search protocol in the
full version [36]. For simplicity,we only discuss search servers,
which we assume are deployed in different trust domains, and
ignore the master and filesystem servers in this section.

4.1 A strawman search index
In our initial version, clients have access to a single server. For
every document, the server stores an encrypted Bloom filter
corresponding to the set of keywords in the document. To
update the search index for a particular document, the client
computes the Bloom filter for the contents of the document
and encrypts it using a one time pad unique to that update.
We generate the mask for a document using a pseudorandom
function (PRF) keyed with a per-folder key and the current
document version number as input. The key management
functionality built into the underlying filesystem ensures that
every client has a copy of this PRF key.
If there are n documents in the search index and Bloom

filters are m bits, then we can think of the server as storing
an n×m table where each element is a single bit (Figure 5).
Each row in the table is a Bloom filter for a document, and the
ith row corresponds to the document with ID i. For an update,
the client sends a new row that the server inserts into its table.
This allows the client to easily modify existing documents and
add new ones: the server either replaces an existing row with
the new row or appends the new row to the table.
To search for a keyword, the client must find all the docu-

ments where the Bloom filter indexes corresponding to that
keyword are set to “1”. The client can check this by retrieving
from the server the columns corresponding to the Bloom filter
indexes for that keyword. The client can decrypt bit bi in a
column by computing the mask for row i, extracting the mask
bit corresponding to that column ri , and then evaluating bi ⊕ ri .
If the ith entry in each of the decrypted columns is set to “1”,
then the client marks document i as containing the keyword.
In order to prevent the attacker from learning the queried
keyword from the requested indexes, we compute the Bloom
filter indexes using a PRF keyed with a per-folder key and
the keyword as input. This key is managed by the underlying
filesystem in the same way that the other PRF key is.

We note that in order for the contents of the client’s update
to remain hidden from the server, the client must be able to
retrieve the correct version number from the underlying filesys-

tem. Without this guarantee, the client could use the same
mask twice, leaking information about the update contents.
For this reason, we only provide security against a malicious
attacker if the underlying filesystem also provides the correct
version numbers (discussed in §3.4). This strawman proposal
is similar to the one described in [76].

4.2 Eliminating search access patterns
To eliminate search access patterns, we need to hide from
the server which columns the client is retrieving during a
search. To do this, we use a private information retrieval (PIR)
protocol [27, 28], which allows a client to retrieve an entry in
a database from a server (1) without the server learning which
entry is being retrieved, and (2) using total communication
sublinear in the database size.

Tool: Distributed Point Functions (DPFs). One efficient
way to implement PIR is using a distributed point function
(DPF) [51] (later generalized as function secret sharing [20,
21]), which we identify as particularly well-suited for our
setting. DPFs allow a client to split a point function f into
function shares such that any strict subset of the shares reveal
nothing about f , but when the evaluations at a given point x
are combined, the result is f (x).

A DPF is defined by the following algorithms:
• DPF.Gen(a,b) → (K1, . . .,K`): Generates keys K1, . . .,K`

that allow the ` servers to jointly evaluate the point function
that evaluates to b at input a.

• DPF.Eval(Ki, x) → y: Evaluates the function share corre-
sponding to key Ki at server i on input x to produce output
y.
To evaluate the point function f where f (a) = b on some

input x, the client generates keys for all ` servers by running
DPF.Gen(a,b) and sending Ki and x to server i for all `
servers. Server i then runs DPF.Eval(Ki, x) and returns the
result yi to the client. The client can then compute y1⊕ y2 · · · ⊕

y` to reconstruct f (x) = y. We make black-box use of the
construction from Boyle et al. where ` = 2 [21].

Leveraging DPFs to search. To hide search access patterns,
we switch from having the client interact with a single server
to having the client interact with ` servers in different trust
domains that hold identical copies of the search index. To
retrieve column j, the client generates shares of the point
function that evaluate to all 1’s at column j and all 0’s for
all other columns. The client then sends a function share to
each server. Each server evaluates its function share for each
column, ANDing the DPF evaluation with the contents of the
column, and sends the XOR of the results back to the client.
The client then assembles the responses to recover column j.

Using DPFs to retrieve columns requires a linear scan
over the search index for a folder. While this is expensive
asymptotically, we only aim to show efficiency for realistic
workloads, motivating our decision to compress the search
index using Bloom filters.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1107

4.3 Protecting against malicious attackers
So far, we have assumed that all servers are honest-but-curious.
We now show how to defend against a malicious attacker
(namely, an attacker that can deviate from the protocol) that
can compromise up to `−1 of the ` servers. To achieve this,
we need to ensure that for a search, the server evaluates the
DPF on columns corresponding to the most recent updates
sent by the client (not corrupted or old updates).
Strawman: MAC for every bit.We start by showing a straw-
man that employs MACs, but increases the bandwidth and
search latency by roughly a factor of the MAC tag size (typ-
ically 256). For each update, the client additionally sends a
MAC tag for every bit in the encrypted Bloom filter. The
client cannot send a single tag for the row because to search,
the client must retrieve individual columns rather than entire
rows. We can think of the server as now storing a second table
of MAC tags where each entry of this table is the tag for the
corresponding entry in the original table (as in Figure 5).

We need to ensure that (1) a tag is only valid for a particular
document update (to prevent replay attacks) and that (2) it
cannot correspond to a different Bloom filter index. To do
this, we compute the MAC over not only the single Bloom
filter bit, but also the document ID, Bloom filter index, and
document version number. As with the PRF key, we use the
key management functionality in the underlying filesystem to
ensure that every client has a copy of the MAC key.
The client now runs the DPF over the columns in both

the original table and the MAC tag table. After assembling
the responses from all ` servers, the client can check that the
tag for every bit is correct. However, this increases both the
bandwidth and the time to perform the linear scan over the
index (i.e., the search latency) by a factor of the tag size. We
identify aggregate MACs as a tool to transform this factor
from a multiplicative to an additive one.
Tool: Aggregate MACs.We leverage aggregate MACs [71]
to allow the servers to combine individual MAC tags into a
single aggregate MAC tag. Aggregate MACs, analogous to
aggregate signatures [17], allow multiple MAC tags computed
with possibly different keys on multiple, possibly different
messages to be aggregated into a shorter tag that can still be
verified using all the keys. Notably, aggregating MAC tags
does not require access to the keys.

The Katz-Lindell aggregate MAC construction [71] works
as follows. To generate a MAC tag for some message m using
a key k, we simply use a pseudorandom function MAC and
compute t ← MAC(k,m). To aggregate MAC tags t1, . . ., tn,
the aggregator computes T ← ⊕n

i=1ti . To verify an aggregate
MAC tag T using messages m1, . . .,mn and keys k1, . . ., kn,
the verifier checks T ?

= ⊕n
i=1MAC(ki,mi).

Aggregating MAC tags to improve performance. To im-
prove performance by a factor of the tag size, we allow the
servers to combine individual tags into a single aggregate tag.
To search, the server evaluates the DPF on the contents of the

column and a single aggregate tag for the entire column.
Aggregating MAC tags also allows us to reduces storage

space at the servers. Rather than storing an entire separate
MAC table, the servers instead keep an array of aggregate
tags, one for each column. On each update, the client XORs
the old tag with the new tag (which is why Update takes both
prevWords and currWords). By then XORing this value with
the aggregate tag, the server can remove the old tag and add the
new tag. To ensure that this aggregate MAC tag is maintained
correctly, the server must check that the client has the latest
version of the document; otherwise it rejects the update.

4.4 Supporting dynamic membership
Users might be added to or removed from a folder, requiring
the new group to generate a new key. This new key might be in
use at the same time that some parts of the search index were
generated using an old key in order to support lazy revocation.
We let the underlying filesystem handle key management, but
we need to ensure that our search protocol supports multiple
keys that may be active at the same time.

Decrypting search results is straightforward; to decrypt the
results for an individual document, the client uses the same
key from the last update to that document. Aggregating MAC
tags is also simple because we can aggregate tags computed
with different keys. We can remove old tags and add new tags
with different keys using XOR in the same way as before.

4.5 Generalizing to oblivious filesystems
We briefly discuss how DORY is compatible with a filesystem
that hides which document is being accessed within a folder,
showing that DORY does not inherently require knowledge of
which document is being accessed.

We can build a filesystem that hides document access
patterns using PathORAM [119], which acts as an oblivious
key-value store for each folder. To support multiple users, we
keep an encrypted copy of the ORAM client state at the server
(discussed in §7.1). Each ORAM block contains the encrypted
contents of a document.
One straightforward way to search over this filesystem

would be store an inverted index in ORAM. This would hide
which document is being updated, but updates would require
an ORAM access for every word in the document.
Instead, we apply DORY to this filesystem. Rather than

storing encrypted Bloom filters in a table as in §4.1, we store
them in a second PathORAM to hide which document is being
updated. We use the same techniques for supporting multiple
users as in the underlying filesystem.
To perform an update, the client generates an encrypted

Bloom filter as before and needs to insert it into the ORAM
index. This creates a new challenge, because ORAM accesses
require the client to re-encrypt other ORAM blocks, and
standard symmetric key encryption breaks DORY’s column
alignment. To address this,we keep track of a new value shared
among users for each document: the ORAM access number,
which is incremented after each ORAM access. Instead of

1108 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

generating PRF masks using the document’s version number,
we now generate them using the document’s ORAM access
number, allowing clients to safely re-encrypt Bloom filters.

To execute a search, the client still generates a DPF query for
the Bloom filter indexes in question and the server still needs
to perform a linear scan over the search index (we must scan
over every bit in every Bloom filter). Another challenge arises,
because while the order of the scan was obvious when the
search index was a table, the order is less obvious for the tree
structure of PathORAM. We solve this problem by traversing
the tree in a fixed order to generate a table layout. The client
can interpret the results by reconstructing the traversal order
using the position map stored as part of the ORAM client.

5 Replication across trust domains
DORY requires that the servers processing search requests
operate on the same version of the index in order for the client
to receive a valid response; otherwise, the cryptographic shares
from the DPF cannot be combined correctly. Because our
system processes a mix of update and search requests, the
servers need to agree on the index state. The client also needs
to know the document version numbers corresponding to the
index that the servers used to execute the search; otherwise,
the client will be unable to decrypt and verify the result.
Because we are in an adversarial environment, a natural

solution is to use a Byzantine fault-tolerant (BFT) consensus
algorithm [1, 16, 24, 33, 77, 79] to agree on the ordering of
update and search requests. Standard BFT provides the proper-
ties we need, but requires 3 f +1 servers, each in its own trust
domain, to handle f failures. A large number of trust domains
is expensive to maintain and difficult to deploy, increasing the
overall system cost. We make several observations about our
setting that allow us to use only f +1 trust domains.
Observations we leverage. We make three observations that
allow us to tailor the problem of consensus to DORY:
DORY deterministically detects server misbehavior. Our cryp-
tographic protocol already defends against malicious servers;
if a server executes the client’s query incorrectly or over an
incorrect version of the index, the client will detect this (trig-
gering a manual investigation). This is a significant departure
from the Byzantine fault model where failure information
is imperfect. By handling server misbehavior at the cryp-
tographic protocol layer, we can use a fail-stop rather than
Byzantine failure model at the consensus layer. This and the
next observations allow us to use just f +1 trust domains to
tolerate f failures.
Trust domains provide availability. To support search, DORY
needs all f + 1 replicas to be available. We need to ensure
that servers across multiple trust domains remain online to
allow clients to search. Here we leverage the observation that
for trust domains deployed in the cloud, the cloud provider is
monetarily incentivized to provide availability (§2.4). This
means that if a server in a trust domain fails, either it will
eventually come back online or another server will take its

Master

Replica

Replica

Ê Ë

Ë

Master

Replica

Replica

Ì

Í

Í

Figure 6: System architecture and protocol flow for updates (left)
and searches (right). Ê Client sends update to master. Ë Master
propagates updates to replicas. Ì Client requests version number(s)
from master. Í Client splits search request across replicas.

place; even if failures occur, f +1 servers will be available
again at some point in the future.
DPFs give us replication for free. The challenge now is to
reinitialize the state of these failed servers. The use of DPFs
in our cryptographic protocol requires all replicas to have
identical copies of the search index. Normally it is unsafe
to transfer state between trust domains, as the recipient has
no way to verify correctness. However, because the client
can check the integrity of the state used to execute a search
query, we can safely copy state across trust domains. Because
we have f +1 servers, at least one server will always remain
online to preserve the state of the index.
5.1 Algorithm
A DORY cluster contains the following entities (Figure 6):
Master: The master receives updates and manages replica
state. The master stores the most recent updates and version
numbers (both the overall system version number and indi-
vidual document version numbers), but not the entire search
index. The master can be deployed in any trust domain, as
clients can detect misbehavior when verifying search results.
Replicas: The replicas receive updates from the master and
perform searches from the user. The replicas store the most
recent versions of the index as well as the version numbers
(both the overall system version number and individual doc-
ument version numbers). We must deploy ` replicas in `
different trust domains to ensure that the client can split its
search request across different trust domains. However, the
total number of replicas n may be greater than ` in order to
improve fault-tolerance.
We additionally use a watchdog service (commonly available
in the cloud) that periodically checks that all servers are still
online and triggers recovery when it detects a crash.
Properties. Our replication algorithm should provide the
following properties:
• Correctness: If all of the replicas and the master fail, a
client with the correct set of document version numbers can
detect this.

• Fault-tolerance: If at most n−1 of the n replicas fail, then
the search index is preserved. If the master fails, then the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1109

most recent set of updates can be recovered with help from
the client.

We do not guarantee availability if individual trust domains
do not provide availability.
Algorithm. We now explain how we handle updates and
searches and recover from failure (see Figure 6).
Updating a document. To update a document, the client sends
the update along with the new document version number to
the master. The master needs to send the update to the replicas
and increment the version number. Because the master might
fail while sending the update to the replicas, the master runs
two-phase commit [80] with the replicas to ensure that all the
replicas receive the update and associated version number. We
do not need to worry about replica failures during two-phase
commit (and so do not need multiple replicas in each trust
domain); if a replica fails, the watchdog service will detect
this and coordinate recovery as described below.
Searching for a keyword. To search for a keyword, the client
first needs to learn the current version numbers from themaster
(both the overall system version number and the corresponding
individual document version numbers). If the client has a
relatively recent set of document version numbers, the master
can simply send updates for a few of the document version
numbers, making the overall bandwidth much smaller than
the number of documents. The client then generates a search
query for ` of the replicas. The replicas execute the search on
the version of the index corresponding to the system version
number sent by the client.
Coordinating recovery. We rely on the watchdog service to
detect failures. If at least ` of the replicas across ` different
trust domains remain online, clients can continue searching.
Otherwise, we can start new replicas and transfer the state
from a remaining replica to the new replica, even if the replicas
are in different trust domains. This will cause a slight delay
for clients waiting to search, but is safe due to the underlying
cryptographic protocol (as discussed above). We do not need to
worry if the master fails, because the master does not respond
to the client until it has propagated the update to the replicas.
If a replica fails during two-phase commit, the master can roll
back the two-phase commit and then start another replica in
the same trust domain and copy the state across trust domains.

5.2 Batching
Rather than running two-phase commit between themaster and
replicas for every update, we can apply batching to amortize
the cost. Instead of immediately sending an update to the
replicas, the master aggregates a batch of updates and, when
this batch reaches a certain size or a certain amount of time
has elapsed, it runs two-phase commit with the replicas to
transfer the current batch of data.

However, now that the master is responding to clients before
sending the updates to the replicas, we need to ensure that the
master does not lose state when it fails. In particular, the master
needs to be able to recover the updates that were waiting to be

committed to the replicas. The master does this by comparing
the individual document version numbers at the replicas with
those at the filesystem server. For each document where the
version numbers differ, the master can request an update from
the next client to come online with access to that document.

6 Implementation
We implemented DORY in ∼5,000 lines of C (for the dis-
tributed point function and other low-level cryptographic op-
erations) and Go (for the networking and consensus). We used
the OpenSSL library, and our DPF implementation closely
follows the one in Express [43]. We instantiate the PRF using
AES. We also implemented the DORY client on an Android
Google Pixel 4. In addition to the C code, which we ported
to the mobile platform, we wrote ∼1,200 lines of Java. We
used the tiny AES library [123] to minimize memory usage
in our mobile implementation. Our implementation supports
a single folder and does not include the watchdog service and
coordinated recovery described as part of §5 or the general-
ization to oblivious filesystems described in §4.5. The source
code is available at https://github.com/ucbrise/dory (see
Appendix A for details).
6.1 Parallelism
The linear scan over the search index can be easily parallelized
across both cores and servers because it carries no state from
document to document.
Thread-level parallelism. Since we evaluate the DPF on each
column of the search index, we parallelize the scan operation
by simply assigning each thread a number of columns and
then combining the results computed by each thread.
Server-level parallelism. We can partition the search index
by having different pairs of replicas maintain different parts
of the search index. The client then sends a search query to all
pairs of replicas and simply computes the union of the results.
Replica partitioning improves latency since each replica now
only needs to search over a part of the index instead of the full
index. Each pair of replicas can store part of the search index
for many folders, making it possible to keep search latency
low, but the overall throughput high.
6.2 Fast PRF evaluation
In order to decrypt the search result received from the server,
the client must compute a mask for each individual document.
To reduce the number of PRF evaluations to decrypt, we group
Bloom filter indexes for the same keyword in the same 128-bit
block. This grouping allows the client to decrypt the search
results for one document using a single PRF evaluation. This
does not significantly impact the false positive rate of the
Bloom filter because we can now model a m-bit Bloom filter
storing w words as m/128 independent Bloom filters each
storing 128w/m words.

7 Evaluation
We evaluated DORY to determine (1) how it performs in
comparison to existing techniques and (2) whether it meets

1110 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ucbrise/dory

Table 7: On the left, Bloom
filter sizes (in bytes) neces-
sary for > 1 expected false
positive assuming an aver-
age of 73.18 keywords per
document where each key-
word hashes to 7 Bloom filter
indexes (Table 7a). On the
right, breakdown of search
latency without parallelism
and end-to-end search la-
tency with parallelism where
p is the degree of server par-
allelism (Table 7b).

Docs BF size

≤ 210 140 B
≤ 211 160 B
≤ 212 180 B
≤ 213 200 B
≤ 214 225 B
≤ 215 250 B
≤ 216 280 B
≤ 217 315 B
≤ 218 350 B
≤ 219 390 B
≤ 220 435 B

(a)

Docs Time breakdown, p=1 (ms) End-to-end latency (ms)
Consensus Client Network Server p=1 p=2 p=4

210 0.73 0.54 58.67 2.68 62.62 61.81 61.51
211 0.73 0.87 58.41 4.11 64.12 62.39 61.89
212 0.73 1.52 57.99 7.09 67.33 64.46 62.92
213 0.73 2.80 58.74 12.03 74.30 68.08 64.78
214 0.75 5.30 77.88 26.24 110.17 75.76 68.59
215 0.76 10.18 80.59 50.97 142.50 112.71 76.76
216 0.81 19.83 100.67 108.78 230.09 147.39 115.50
217 0.86 38.99 119.38 240.45 399.48 243.43 153.56
218 1.19 76.92 142.28 527.67 748.06 428.40 256.15
219 1.78 154.37 151.98 1172.46 1480.59 800.98 454.52
220 2.81 306.34 148.96 2602.83 3060.94 1636.80 862.42

(b)

the requirements outlined by the companies we surveyed. We
consider the following metrics: latency (§7.2), throughput
(§7.3), storage (§7.4), bandwidth (§7.5), and cost (§7.6). We
compare DORY’s performance to two different variations
of DORY as well as plaintext search and a baseline built on
ORAM (§7.1) that provides similar guarantees to those of
DORY. We show that DORY meets the requirements outlined
by the companies we surveyed and outperforms (in some cases,
by orders of magnitude) our ORAM baseline (§7.1).

Experimental setup. We evaluate DORY on AWS using
r5n.4xlarge instances with 128GB of memory and 16 CPUs
for the replicas and the master. We use a c5.large client with
4GBofmemory and2CPUs tomodel a user’s desktopmachine.
We use an Android Pixel 4 to measure the time to search on
a mobile client. We place the two trust domains in different
regions (east-1 and east-2) to ensure that machines are in
different clusters to model different organizations, although in
practice these clusters would likely be geographically close to
maximize performance. All communication occurs over TLS.
We run experiments for a single folder; a real system would
maintain many such folders in parallel.

System parameters from Enron email dataset.We use the
Enron email dataset, which is commonly used to evaluate
searchable encryption schemes [22, 65, 84, 94, 96, 97, 129]
to set Bloom filter sizes for DORY. We leverage the same
standard keyword extraction techniques used in Oblix [94]:
we stemmed the words and removed stopwords and words that
were > 20 or < 4 characters long or contained non-alphabetic
characters. In the over 500K emails, each email has an average
of 73.18 keywords with a standard deviation of 114.89.

Regarding the configuration of the Bloom filters, each
keyword hashes to 7 locations in the Bloom filter, as we found
that it provided a reasonable tradeoff between the time to
perform the linear scan at the server and bandwidth. We choose
the Bloom filter size based on the number of documents in a
folder so that, for every search in that folder, the search results
have less than one false positive document in expectation. The
sizes of the Bloom filters are specified in Table 7a.

7.1 Baselines
We evaluate DORY in comparison to four baselines:
• ORAM baseline: Eliminates search access patterns using
ORAM (expected to incur a significant overhead). With this
baseline, we show how DORY compares to a solution that
provides comparable security guarantees.

• Plaintext search: Searches over a plaintext inverted index
and does not provide any security guarantees (expected to
have much lower overhead than DORY).

• Semihonest DORY: Modifies the DORY protocol to only
provide security against semihonest adversaries (expected
to have lower overhead than DORY).

• LeakyDORY: Modifies the DORYprotocol to allow search
access pattern leakage by using only one trust domain and
querying the replica directly for the indexes corresponding
to a keyword rather than using a DPF (expected to have
lower overhead than DORY).

Semihonest DORY illustrates the overhead of theMAC checks
necessary to defend against malicious adversaries, and leaky
DORY illustrates the overhead of the DPF queries. In all of
the baselines except the ORAM baseline, we use the same
consensus system as in DORY, although for the baselines
where there is only one trust domain (leaky DORY and
plaintext search), the master only needs to send update batches
to a single trust domain (we model this by placing all servers in
the same AWS region). Only the ORAM baseline has security
guarantees comparable to those of DORY.
ORAM baseline. Many academic works [61, 65, 96, 116]
point to an inverted index in ORAM [54,99] as away to achieve
searchable encryption without search access pattern leakage,
making it a natural baseline for searching within a folder.
Traditional ORAM is designed for a single client and requires
the client to maintain ORAM client state hidden from the
server [119]. A separate line ofwork explores extending single-
user constructions to multi-user settings [10, 26, 58, 91–93].
Mayberry et al.’s system [93] is particularly fit for our setting
as it protects mutually trusting clients (clients with access to a
given folder) from a malicious server. For a semi-honest server
or for a malicious server for which we have a mechanism to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1111

verify the data returned (discussed in §3.4), their protocol
uses a single-user ORAM and requires clients to store the
encrypted ORAM client at the server. To perform an operation,
the client acquires a lock at the server, downloads and decrypts
the ORAM client state, performs the operation, encrypts and
sends back the state, releasing the lock.
Client failures.We observed that the above proposal did not
consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak search access patterns
(e.g. if it searched for the same word as the previous client).
To handle client failures, we require each client to record a
client “prepare” operation at the server, and if it fails before
completing, the next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation.We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [101].
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate different numbers
of documents, we take different-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ∼ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.
7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the ORAM baseline requires clients to remain online
for hours. Note that semihonest DORY has a faster update
time than DORY because the client does not have to generate
a MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search

DORY (p = 1)
DORY (p = 2)
DORY (p = 4)

Semihonest DORY (p = 1)
Leaky DORY (p = 1)
ORAM baseline
Plaintext search

210 215 220

Documents

10−1

101

103

Se
ar
ch

la
te
nc
y
(s
)

0 0.5M 1M
Documents

0

1

2

3

Se
ar
ch

la
te
nc
y
(s
)

210 215 220

Documents

10−2

100

102

104

U
pd

at
e
la
te
nc
y
(s
)

Figure 8: Search latency and up-
date latency. The two figures on
the left use a logarithmic scale on
both axes, and the figure on the
top right uses a linear scale on
both axes (p denotes server par-
allelism). The update latency of
leakyDORYexactlymatches that
of DORY, and the search latency
of semihonest DORY is slightly
less than that of DORY.

Desktop client Mobile client

210 215 220

Documents

0.001
0.01
0.1
1.0

10.0
Se

ar
ch

la
te
nc
y
(s
)

210 215 220

Documents

0.001
0.01
0.1
1.0

U
pd

at
e
la
te
nc
y
(s
)

Figure 9: Latency for mobile client and desktop client. Both plots
use a logarithmic scale on both axes.

latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
that leaky DORY does not need to perform a linear scan.

Despite overheads incurred due to the linear scan, DORY is
orders ofmagnitude faster than the ORAMbaseline. TheMAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).
7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s

1112 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DORY Semihonest DORY
Leaky DORY

ORAM baseline
Plaintext search

210 215 220

Documents

102

100

10−2

10−4O
pe
ra
tio

ns
/s
ec

10% U, 90% S

210 215 220

Documents

102

100

10−2

10−4

50% U, 50% S

210 215 220

Documents

102

100

10−2

10−4

90% U, 10% S

Figure 10: Throughput under a variety of workloads (U indicates
updates,S indicates searches). The performance of semihonestDORY
closely matches that of DORY. All plots use a logarithmic scale on
both axes.

DORY (p = 1) DORY (p = 2) DORY (p = 4)

0.5M 1M
Documents

1x

2x

3x

Re
la
tiv

e
th
ro
ug

hp
ut 10% U, 90% S

0.5M 1M
Documents

1x

2x

3x

50% U, 50% S

0.5M 1M
Documents

1x

2x

3x

90% U, 10% S

Figure 11: Effect of parallelism (p denotes the degree of parallelism)
on throughput fordifferentworkloads (U indicates updates,S indicates
searches).

throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).

7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
require 3.84MB. Our ORAM baseline only requires the client
to store a single 128-bit AES key to encrypt and decrypt the
ORAM client, and plaintext search requires no client storage.

DORY Semihonest DORY
Leaky DORY

ORAM baseline
Plaintext search

210 215 220

Documents

100

102

104

106

U
pd

at
e
BW

(K
B
)

210 215 220

Documents

100

102

104

106

Se
ar
ch

BW
(K

B
)

210 215 220

Documents

100

101

102

103

In
de
x
si
ze

(M
B
) Figure 12: Storage space and

bandwidth for DORY in compar-
ison to other baselines. The up-
date bandwidth of leaky DORY
exactly matches that of DORY,
and the search bandwidth of semi-
honest DORY is slightly less than
that of DORY.

7.5 Bandwidth
Search and update bandwidth is also much smaller in DORY
than in the ORAM baseline (Figure 12). The ORAM baseline
incurs a significant overhead by sending the encrypted client
state, but ORAM accesses are responsible for the majority of
the communication. In contrast, the searchbandwidth inDORY
is linear in the number of documents, and the update bandwidth
depends on the size of the Bloom filter. MACs are responsible
for a significant part of the update bandwidth in DORY, which
is why semihonest DORY has much lower update bandwidth.
The difference in search bandwidth between leaky DORY and
DORY is due to the size of the DPF keys; however, unlike
plaintext search, the search bandwidth for both is still linear in
the number of documents. We do not include the bandwidth
to retrieve version numbers for individual document numbers
in DORY, as these version numbers can for the most part be
cached at the client as described above.

Comparison to client index. To evaluate the practicality of a
client-side index instead of DORY, we built an inverted index
over the Enron email dataset using a B+ tree. We found that
the index is 159.9MB and while it is feasible to store this
amount of data, even on a mobile device, synchronization
requires significant bandwidth. One way to keep this data
structure updated would be to require each client to download
the contents of every update. However, this solution requires
the same amount of bandwidth as syncing all the files locally,
which we were trying to avoid in the first place. Instead, we
could keep an encrypted copy of the client index at the server.
Which part of the index is updated leaks information about
the document contents, and so whenever a client performs an
update, it must encrypt the entire index and send it to the server.
Before a client updates or searches, it must download the most
recent copy of the search index. This results in roughly a 365×
increase in search bandwidth and a 3,334× increase in update
bandwidth in comparison to DORY.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1113

7.6 Cost
The companies we surveyed estimated a workload with 50%
updates and 50% searches, and the highest average number of
documents per user reported was 45K. The throughput of two
replicas and a master operating on a folder of 45K documents
under this workload is 19.5 operations/second. One of the
companies reported that active users make roughly 50 updates
per day, and so based on 100 operations per day and the cost
to run a single r5n.4xlarge instance ($1.192/hour), each user
costs roughly $0.0509 per month, well under the maximum
permissible cost per user per month of $0.70-$5.54 reported
by the companies. Depending on the way in which trust is
distributed (see §2.4), trust domains may incur additional
setup and maintenance costs not captured by our calculation.

8 Related Work
Symmetric Searchable Encryption (SSE). A long line of
work has examined the problem of Symmetric Searchable
Encryption (SSE) [23, 25, 35, 37–40, 50, 52, 67, 68, 97, 111,
114,116], summarized in the following surveys [18, 59, 103].
Many of these schemes assume a single user and do not sup-
port efficient revocation, but more importantly, they permit
some search access pattern leakage, opening the door to at-
tacks [22,65,72,84,102,106,129]. SEAL [39] explicitly allows
developers to tradeoff between leakage and performance.
Multi-server SSE and ORAM. Some SSE schemes use
multiple servers to improve efficiency but still permit leakage,
with some providing richer functionality than simple keyword
search [15, 45, 64, 78, 100, 108]. Bösch et al. [19] and Hoang
et al. [62] use multiple servers to hide search access patterns
and improve efficiency. Hoang et al. [62] use a similar table
layout where updates and searches correspond to different
dimensions in the table. However, both schemes do not support
multiple users, assume honest-but-curious servers, and require
expensive updates to hide the document being updated. Our
scheme also has similarities to distributedORAMschemes that
leveragemultiple servers to hide access patterns with improved
efficiency [3, 42, 55, 89, 117]. Implementing search with one
of these schemes would still require clients to perform an
ORAM access for every document keyword during an update.
Multi-user SSE and ORAM. Many existing multi-user
searchable encryption schemes that support fast revocation
use a different key for each user and leverage proxy encryp-
tion [8,13] or pairings [13,74,104,122]. This class of schemes
use deterministic query encryption algorithms that leak search
access patterns. The most efficient ORAM constructions as-
sume a single user, with multi-user ORAMs incurring a much
larger overhead by leveraging expensive tools such as multi-
party computation (MPC) [10, 26, 58, 91, 92].
SSE and ORAM with trusted hardware. One way to im-
prove performance and, in the case of search,potentially reduce
leakage is by leveraging trusted hardware. ZeroTrace [113],
Obliviate [5],ObliDB [44],GhostRider [83],TinyORAM [46],

and Shroud [87] combine oblivious techniques with trusted
hardware. HardIDX [49], Oblix [94], POSUP [60], and Amjad
et al. [6] use trusted hardware specifically for the problem of
searching on encrypted data. Unlike DORY, such solutions
only require a single server, but they necessitate both addi-
tional trust assumptions (due to known side-channel attacks)
and additional deployment costs.
Prior use of DPFs in systems. Splinter [125] uses function
secret sharing (both DPFs and range queries) to allow users
to efficiently make private queries on a public, immutable
database. DURASIFT [45] uses DPFs with MPC across
multiple servers to support boolean expressions of keyword
searches for multiple users without leaking search access
patterns. However, its techniques incur significant overhead
in comparison to ours, and the authors consider thousands
rather than millions of documents. Floram [42] uses DPFs to
implement a distributed-trust ORAM that has linear costs but
fast concrete performance. Metadata-hiding communication
also benefits from DPFs (e.g. Riposte [32] and Express [43]).
BFT consensus and fault-tolerance. BFT consensus [1, 16,
24,33,77] is a classical problem. Priorworkhas explored reduc-
ing the number of participants in BFT consensus by separating
agreement from execution [127], only activating some nodes
when failures are detected [41,69,126], relaxing synchrony as-
sumptions [2,85,105], adopting a hybrid faultmodel [105], and
using an attested, append-only log [29]. A separate line of the-
oretical work considers Byzantine fault-tolerance specifically
for the case of private information retrieval [12,14,47,120]
using information-theoretic tools.
Oblivious systems. ObliviStore [118], Obladi [34],
Opaque [130], Cipherbase [7], and Taostore [112] are prac-
tical systems for obliviously storing and querying data (not
necessarily for the problem of searchable encryption).

9 Conclusion
DORY is an encrypted search system that distributes trust
to meet real-world efficiency and security requirements. By
reexamining the system model, we are able to build a system
that is performant without leaking search access patterns.
Acknowledgments.We would like to thank Zoë Bohn, Henry
Corrigan-Gibbs, Ioannis Demertzis, Saba Eskandarian,Vivian
Fang, David Mazières, Rishabh Poddar, and Wenting Zheng
for providing feedback on early drafts. We also thank the
leadership of Keybase, PreVeil, SpiderOak, Sync, and Tresorit
for generously taking the time to meet with us and discuss their
use cases. We thank the OSDI anonymous reviewers for their
detailed feedback, and our shepherd Andreas Haeberlen for his
working reviewing our camera-ready. This workwas supported
in part by the NSF CISE Expeditions Award CCF-1730628,
and gifts from the Sloan Foundation, Bakar Program, Alibaba,
Amazon Web Services, Ant Financial, Capital One, Ericsson,
Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Sco-
tiabank, Splunk, and VMware. This work was also supported
by a NSF GRFP fellowship.

1114 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson,M. K. Reiter,

and J. J. Wylie. Fault-scalable byzantine fault-tolerant services.
SOSP, 39(5):59–74, 2005.

[2] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren.
Efficient synchronous byzantine consensus. arXiv preprint
arXiv:1704.02397, 2017.

[3] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren.
Asymptotically tight bounds for composing ORAM with PIR.
In PKC, pages 91–120. Springer, 2017.

[4] S. Ackerman. Lavabit email service abruptly
shut down citing government interference, 2013.
https://www.theguardian.com/technology/2013/aug/
08/lavabit-email-shut-down-edward-snowden.

[5] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE:
A Data Oblivious Filesystem for Intel SGX. In NDSS, 2018.

[6] G. Amjad, S. Kamara, and T. Moataz. Forward and backward
private searchable encryption with SGX. In Proceedings of
the 12th European Workshop on Systems Security, pages 1–6,
2019.

[7] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security with
cipherbase. In CIDR, 2013.

[8] M. R. Asghar, G. Russello, B. Crispo, and M. Ion. Supporting
complex queries and access policies for multi-user encrypted
databases. InWorkshop on Cloud computing security work-
shop, pages 77–88. ACM, 2013.

[9] M. Backes, C. Cachin, and A. Oprea. Secure key-updating
for lazy revocation. In ESORICS, pages 327–346. Springer,
2006.

[10] M. Backes,A. Herzberg,A. Kate, and I. Pryvalov. Anonymous
ram. In ESORICS, pages 344–362. Springer, 2016.

[11] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. {SPEICHER}: Securing lsm-based key-value
stores using shielded execution. In FAST, pages 173–190,
2019.

[12] K. Banawan and S. Ulukus. The capacity of private informa-
tion retrieval from byzantine and colluding databases. IEEE
Transactions on Information Theory, 65(2):1206–1219, 2018.

[13] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on
encrypted data in multi-user settings. In Information Security
Practice and Experience, pages 71–85. Springer, 2008.

[14] A. Beimel and Y. Stahl. Robust information-theoretic private
information retrieval. In International Conference on Security
in Communication Networks, pages 326–341. Springer, 2002.

[15] S. M. Bellovin and W. R. Cheswick. Privacy-enhanced
searches using encrypted bloom filters. IACR Cryptology
ePrint Archive, 2007.

[16] A. Bessani, J. Sousa, and E. E. Alchieri. State machine
replication for the masses with BFT-SMaRt. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 355–362. IEEE, 2014.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In
EUROCRYPT, pages 416–432. Springer, 2003.

[18] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of
provably secure searchable encryption. ACM Computing
Surveys (CSUR), 47(2):1–51, 2014.

[19] C. Bösch, A. Peter, B. Leenders, H. W. Lim, Q. Tang, H.Wang,
P. Hartel, and W. Jonker. Distributed searchable symmetric
encryption. In PST, pages 330–337. IEEE, 2014.

[20] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In
EUROCRYPT, pages 337–367. Springer, 2015.

[21] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing:
Improvements and extensions. In CCS, pages 1292–1303.
ACM, 2016.

[22] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse
attacks against searchable encryption. In CCS, pages 668–679.
ACM, 2015.

[23] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner. Dynamic searchable encryption in
very-large databases: data structures and implementation. In
NDSS, volume 14, pages 23–26. Citeseer, 2014.

[24] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[25] Y.-C. Chang and M. Mitzenmacher. Privacy preserving
keyword searches on remote encrypted data. In ASIACRYPT,
pages 442–455. Springer, 2005.

[26] W. Chen and R. A. Popa. Metal: A metadata-hiding file
sharing system. In NDSS, 2020.

[27] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In FOCS, pages 41–50. IEEE, 1995.

[28] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. Journal of the ACM, 45(6):965–982,
1998.

[29] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. At-
tested append-only memory: Making adversaries stick to their
word. ACM SIGOPS Operating Systems Review, 41(6):189–
204, 2007.

[30] W. Cohen. Enron email dataset, 2015. http://www.cs.cmu.
edu/~enron/.

[31] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In NSDI, pages
259–282, 2017.

[32] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An
anonymous messaging system handling millions of users. In
Security & Privacy, pages 321–338. IEEE, 2015.

[33] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for byzantine fault
tolerance. In OSDI, pages 177–190, 2006.

[34] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and
L. Alvisi. Obladi: Oblivious serializable transactions in the
cloud. In OSDI, pages 727–743, 2018.

[35] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient
constructions. Journal of Computer Security, 19(5):895–934,
2011.

[36] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica.
DORY: An encrypted search system with distributed trust.
IACR Cryptology ePrint Archive, 2020:1280, 2020.

[37] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papa-
manthou. Dynamic searchable encryption with small client
storage. In NDSS, 2020.

[38] I. Demertzis, D. Papadopoulos, and C. Papamanthou. Search-
able encryption with optimal locality: Achieving sublogarith-
mic read efficiency. In CRYPTO, 2018.

[39] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shin-
tre. SEAL: Attack mitigation for encrypted databases via
adjustable leakage. In USENIX Security, 2020.

[40] I. Demertzis and C. Papamanthou. Fast searchable encryption
with tunable locality. In SIGMOD, 2017.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1115

https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/

[41] T. Distler, C. Cachin, and R. Kapitza. Resource-efficient
byzantine fault tolerance. IEEE transactions on computers,
65(9):2807–2819, 2015.

[42] J. Doerner andA. Shelat. Scaling oram for secure computation.
In CCS, pages 523–535. ACM, 2017.

[43] S. Eskandarian, H. Corrigan-Gibbs,M. Zaharia, and D. Boneh.
Express: Lowering the cost of metadata-hiding commu-
nication with cryptographic privacy. arXiv preprint
arXiv:1911.09215, 2019.

[44] S. Eskandarian and M. Zaharia. ObliDB: oblivious query
processing for secure databases. VLDB, 13(2):169–183, 2019.

[45] B. H. Falk, S. Lu, and R. Ostrovsky. Durasift: A robust,
decentralized, encrypted database supporting private searches
with complex policy controls. In WPES, pages 26–36, 2019.

[46] C. W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov,
D. Serpanos, and S. Devadas. A low-latency, low-area hard-
ware oblivious RAM controller. In FCCM, pages 215–222.
IEEE, 2015.

[47] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk.
Private information retrieval from codeddatabaseswith collud-
ing servers. SIAM Journal on Applied Algebra and Geometry,
1(1):647–664, 2017.

[48] K. E. Fu. Group sharing and random access in cryptographic
storage file systems. PhD thesis, Massachusetts Institute of
Technology, 1999.

[49] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum,
and A.-R. Sadeghi. HardIDX: Practical and secure index with
SGX. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 386–408. Springer, 2017.

[50] S. Garg, P. Mohassel, and C. Papamanthou. Tworam: efficient
oblivious ram in two rounds with applications to searchable
encryption. In CRYPTO, pages 563–592. Springer, 2016.

[51] N. Gilboa and Y. Ishai. Distributed point functions and their
applications. In EUROCRYPT, pages 640–658. Springer,
2014.

[52] E.-J. Goh et al. Secure indexes. IACR Cryptology ePrint
Archive, 2003:216, 2003.

[53] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius:
Securing remote untrusted storage. In NDSS, volume 3, pages
131–145, 2003.

[54] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal of the ACM (JACM),
43(3):431–473, 1996.

[55] S. D. Gordon, J. Katz, and X. Wang. Simple and efficient
two-server ORAM. In ASIACRYPT, pages 141–157. Springer,
2018.

[56] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer.
Cryptree: A folder tree structure for cryptographic file systems.
In SRDS, pages 189–198. IEEE, 2006.

[57] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your en-
crypted database is not secure. In HotOS, pages 162–168,
2017.

[58] A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs. Private
anonymous data access. In EUROCRYPT, pages 244–273.
Springer, 2019.

[59] A. Hamlin, N. Schear, E. Shen, M. Varia, S. Yakoubov, and
A. Yerukhimovich. Cryptography for big data security. Taylor
& Francis LLC, CRC Press, 2016.

[60] T. Hoang, M. O. Ozmen, Y. Jang, and A. A. Yavuz. Hardware-
supported ORAM in effect: Practical oblivious search and
update on very large dataset. PETS, (1):172–191, 2019.

[61] T. Hoang,A.A. Yavuz,F. B. Durak, and J. Guajardo. Oblivious
dynamic searchable encryption on distributed cloud systems.
In IFIP Annual Conference on Data and Applications Security
and Privacy, pages 113–130. Springer, 2018.

[62] T. Hoang, A. A. Yavuz, and J. Guajardo. Practical and se-
cure dynamic searchable encryption via oblivious access on
distributed data structure. In CCS, pages 302–313. ACM,
2016.

[63] Y. Hu, S. Kumar, and R. A. Popa. Ghostor: Toward a secure
data-sharing system from decentralized trust. In NSDI, pages
851–877, 2020.

[64] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private
large-scale databases with distributed searchable symmetric
encryption. In Cryptographers’ Track at the RSA Conference,
pages 90–107. Springer, 2016.

[65] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation. In NDSS, volume 20, page 12. Citeseer, 2012.

[66] M. Kallahalla, E. Riedel, R. Swaminathan,Q.Wang, andK. Fu.
Plutus: Scalable secure file sharing on untrusted storage. In
FAST, volume 3, pages 29–42, 2003.

[67] S. Kamara and C. Papamanthou. Parallel and dynamic search-
able symmetric encryption. In Financial Cryptography and
Data Security, pages 258–274. Springer, 2013.

[68] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic search-
able symmetric encryption. In CCS, pages 965–976. ACM,
2012.

[69] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel. Cheap-
BFT: resource-efficient byzantine fault tolerance. In EuroSys,
pages 295–308, 2012.

[70] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. Verena:
End-to-end integrity protection for web applications. In
security & Privacy, pages 895–913. IEEE, 2016.

[71] J. Katz and A. Y. Lindell. Aggregate message authentication
codes. InCryptographers’ Track at the RSA Conference, pages
155–169, 2008.

[72] G. Kellaris, G. Kollios, K. Nissim, and A. O’neill. Generic
attacks on secure outsourced databases. In CCS, pages 1329–
1340, 2016.

[73] Keybase. https://keybase.io/, Accessed 26 May 2020.
[74] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang.

Efficient encrypted keyword search for multi-user data sharing.
In ESORICS, pages 173–195. Springer, 2016.

[75] B. H. Kim and D. Lie. Caelus: Verifying the consistency of
cloud services with battery-powered devices. In Security &
Privacy, pages 880–896. IEEE, 2015.

[76] S. Korokithakis. Writing a full-text search engine using bloom
filters, December 2013. https://www.stavros.io/posts/
bloom-filter-search-engine/.

[77] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative byzantine fault tolerance. SOSP,
41(6):45–58, 2007.

[78] M.Kuzu,M. S. Islam,andM.Kantarcioglu. Efficient similarity
search over encrypted data. In 2012 IEEE 28th International
Conference on Data Engineering, pages 1156–1167. IEEE,
2012.

[79] L. Lamport, R. Shostak, andM. Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

1116 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://keybase.io/
https://www.stavros.io/posts/bloom-filter-search-engine/
https://www.stavros.io/posts/bloom-filter-search-engine/

[80] B. Lampson and D. B. Lomet. A new presumed commit
optimization for two phase commit. In VLDB, volume 93,
pages 630–640, 1993.

[81] A. Langley, E. Kasper, and B. Laurie. Certificate transparency.
Internet Engineering Task Force, 2013. https://tools.ietf.
org/html/rfc6962.

[82] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, volume 4,
pages 9–9, 2004.

[83] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi.
GhostRider: A hardware-software system for memory trace
oblivious computation. ASPLOS, 50(4):87–101, 2015.

[84] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leak-
age in searchable encryption: Attacks and new construction.
Information Sciences, 265:176–188, 2014.

[85] S. Liu, P. Viotti, C. Cachin,V. Quéma, andM. Vukolić. {XFT}:
Practical fault tolerance beyond crashes. In OSDI, pages 485–
500, 2016.

[86] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry,
E. Gafni, J. Jove, R. Malinowsky, and J. McCaleb. Fast
and secure global payments with stellar. In SOSP, pages
80–96, 2019.

[87] J. R. Lorch,B. Parno,J.Mickens,M.Raykova,and J. Schiffman.
Shroud: Ensuring private access to large-scale data in the data
center. In FAST, pages 199–213, 2013.

[88] T. Lovell. Swedish healthcare advice line stored 2.7 million
patient phone calls on unprotected web server, February
20 2019. https://www.healthcareitnews.com/news/
swedish-healthcare-advice-line-stored-27-million-
patient-phone-calls-unprotected-web-server.

[89] S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure
two-party computation. In TCC, pages 377–396. Springer,
2013.

[90] E. MacBrough. Cobalt: BFT governance in open networks.
arXiv preprint arXiv:1802.07240, 2018.

[91] M.Maffei, G. Malavolta,M. Reinert, and D. Schröder. Privacy
and access control for outsourced personal records. In Security
& Privacy, pages 341–358. IEEE, 2015.

[92] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder. Mali-
ciously secure multi-client oram. In ACNS, pages 645–664.
Springer, 2017.

[93] T.Mayberry,E.-O. Blass,andG.Noubir. Multi-UserOblivious
RAM Secure Against Malicious Servers. IACR Cryptology
ePrint Archive, 2015:121, 2015.

[94] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An efficient oblivious search index. In Security &
Privacy, pages 279–296. IEEE, 2018.

[95] E. Nakashima. Russian government hackers penetrated DNC,
stole opposition research on Trump, June 14 2016. https:
//www.washingtonpost.com/world/national-security/
russian-government-hackers-penetrated-dnc-stole-
opposition-research-on-trump/2016/06/14/cf006cb4-
316e-11e6-8ff7-7b6c1998b7a0_story.html.

[96] M. Naveed. The Fallacy of Composition of Oblivious RAM
and Searchable Encryption. IACR Cryptology ePrint Archive,
2015:668, 2015.

[97] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic
searchable encryption via blind storage. In Security & Privacy,
pages 639–654. IEEE, 2014.

[98] C. Osborne. Fortune 500 company leaked 264gb
of client, payment data, June 7 2019. https:
//www.zdnet.com/article/veteran-fortune-500-
company-leaked-264gb-in-client-payment-data/.

[99] R. Ostrovsky. Efficient computation on oblivious RAMs. In
STOC, pages 514–523. ACM, 1990.

[100] V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin.
Private search in the real world. In ACSAC, pages 83–92,
2011.

[101] https://github.com/aricrocuta/oram2pc, Accessed 14
April 2020.

[102] R. Poddar, S. Wang, J. Lu, and R. A. Popa. Practical volume-
based attacks on encrypted databases. 2020.

[103] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S.
Mohamad. Searchable symmetric encryption: designs and
challenges. ACM Computing Surveys (CSUR), 50(3):1–37,
2017.

[104] R. A. Popa andN. Zeldovich. Multi-key searchable encryption.
IACR Cryptology ePrint Archive, 2013:508, 2013.

[105] D. Porto, J. Leitão, C. Li, A. Clement, A. Kate, F. Junqueira,
and R. Rodrigues. Visigoth fault tolerance. In EuroSys, pages
1–14, 2015.

[106] D. Pouliot and C. V. Wright. The shadow nemesis: Infer-
ence attacks on efficiently deployable, efficiently searchable
encryption. In CCS, pages 1341–1352, 2016.

[107] Preveil. https://www.preveil.com/, Accessed 26 May
2020.

[108] M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Secure
anonymous database search. InWorkshop on Cloud computing
security, pages 115–126, 2009.

[109] C. Reichert. Payroll data for 29,000 facebook
employees stolen, December 13 2019. https:
//www.cnet.com/news/payroll-data-of-29000-
facebook-employees-reportedly-stolen/.

[110] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. In FAST, volume 2,
pages 15–30, 2002.

[111] P. Rizomiliotis and S. Gritzalis. ORAM based forward pri-
vacy preserving dynamic searchable symmetric encryption
schemes. In Proceedings of the 2015 ACM Workshop on
Cloud Computing Security Workshop, pages 65–76. ACM,
2015.

[112] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro.
Taostore: Overcoming asynchronicity in oblivious data storage.
In Security & Privacy, pages 198–217. IEEE, 2016.

[113] S. Sasy,S. Gorbunov,andC.W. Fletcher. ZeroTrace: Oblivious
Memory Primitives from Intel SGX. IACR ePrint, 2017:549,
2017.

[114] D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In Security & Privacy, pages
44–55. IEEE, 2000.

[115] Spideroak. https://spideroak.com/, Accessed 26 May
2020.

[116] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic
searchable encryptionwith small leakage. InNDSS,volume 71,
pages 72–75, 2014.

[117] E. Stefanov and E. Shi. Multi-cloud oblivious storage. In
CCS, pages 247–258. ACM, 2013.

[118] E. Stefanov and E. Shi. Oblivistore: High performance obliv-
ious cloud storage. In Security & Privacy, pages 253–267.
IEEE, 2013.

[119] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In CCS, pages 299–310. ACM, 2013.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1117

https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://www.healthcareitnews.com/news/swedish-healthcare-advice-line-stored-27-million-patient-phone-calls-unprotected-web-server
https://www.healthcareitnews.com/news/swedish-healthcare-advice-line-stored-27-million-patient-phone-calls-unprotected-web-server
https://www.healthcareitnews.com/news/swedish-healthcare-advice-line-stored-27-million-patient-phone-calls-unprotected-web-server
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.zdnet.com/article/veteran-fortune-500-company-leaked-264gb-in-client-payment-data/
https://www.zdnet.com/article/veteran-fortune-500-company-leaked-264gb-in-client-payment-data/
https://www.zdnet.com/article/veteran-fortune-500-company-leaked-264gb-in-client-payment-data/
https://github.com/aricrocuta/oram2pc
https://www.preveil.com/
https://www.cnet.com/news/payroll-data-of-29000-facebook-employees-reportedly-stolen/
https://www.cnet.com/news/payroll-data-of-29000-facebook-employees-reportedly-stolen/
https://www.cnet.com/news/payroll-data-of-29000-facebook-employees-reportedly-stolen/
https://spideroak.com/

[120] H. Sun and S. A. Jafar. The capacity of robust private infor-
mation retrieval with colluding databases. IEEE Transactions
on Information Theory, 64(4):2361–2370, 2017.

[121] Sync. https://www.sync.com/, Accessed 26 May 2020.
[122] Q. Tang. Nothing is for free: security in searching shared and

encrypted data. Transactions on Information Forensics and
Security, 9(11):1943–1952, 2014.

[123] Tiny AES in C. https://github.com/kokke/tiny-AES-c,
Accessed 24 May 2020.

[124] Tresorit. https://tresorit.com/, Accessed 26 May 2020.
[125] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and

M. Zaharia. Splinter: Practical private queries on public data.
In NSDI, pages 299–313, 2017.

[126] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cec-
chet. ZZ and the art of practicalBFT execution. InProceedings
of the sixth conference on Computer systems, pages 123–138,
2011.

[127] J.Yin,J.-P.Martin,A.Venkataramani,L.Alvisi,andM.Dahlin.
Separating agreement from execution for byzantine fault tol-
erant services. In SOSP, pages 253–267, 2003.

[128] E. Yuan. Zoom acquires keybase and announces goal of
developing the most broadly used enterprise end-to-end
encryption offering, May 7 2020. https://blog.zoom.us/
wordpress/2020/05/07/zoom-acquires-keybase-and-
announces-goal-of-developing-the-most-broadly-
used-enterprise-end-to-end-encryption-offering/.

[129] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable
encryption. In USENIX Security, pages 707–720, 2016.

[130] W. Zheng,A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez,
and I. Stoica. Opaque: An oblivious and encrypted distributed
analytics platform. In NSDI, pages 283–298, 2017.

A Artifact Appendix
A.1 Abstract
Our DORY prototype is an encrypted search system that splits
trust between multiple servers in order to efficiently hide
search access patterns from a malicious attacker that controls
all but one of the servers. We support parallelism across
multiple servers in order to reduce search latency and increase
throughput. DORY is written in a combination of C (for the
distributed point function and other low-level cryptographic
primitives) and Go (for the networking and consensus) for
approximately 5,000 lines of code. Our experiment scripts use
AWS EC2 instances. Our artifact is available here:

https://github.com/ucbrise/dory

A.2 Artifact check-list
• Data set: Enron email dataset used to choose system
parameters and set sample documents.

• Metrics: Latency, throughput
• Experiments: Search latency breakdown, search latency
with parallelism, search throughput with parallelism

• Required disk space: 18MB
• Expected experiment run time: Approximately 4 hours
• Public link: https://github.com/ucbrise/dory

• Code licenses: Apache v2

A.3 Description
A.3.1 How to access
Our Amazon AWS AMI is public (the AMI IDs for different
regions are set in our scripts). See Appendix A.4 for instruc-
tions on running scripts for configuring security groups and
the key pair as well as starting a cluster.
A.3.2 Software dependencies
We use the hashicorpmsgpack library (https://github.com/
hashicorp/go-msgpack) for parsing messages and libstem-
mer (http://snowball.tartarus.org/download.html) for
stemming keywords. We build on the DPF implementation
in Express [43] (https://github.com/SabaEskandarian/
Express). We also use the OpenSSL library for low-level
cryptographic primitives.
A.3.3 Data sets
The Bloom filter size in our experiments is based on statistics
from the Enron email dataset [30] (see Table 7a). The sample
documents to interactively search over in sample_docs/ are
also from the Enron email dataset.

A.4 Installation
The instructions for setting up the Amazon AWS
security groups and key pair are available here:
https://github.com/ucbrise/dory#setting-up-aws-

security-groups-and-keypairs. The instructions for
starting a cluster of EC2 instances using our public AMIs are
available here: https://github.com/ucbrise/dory#setup.
We use r5n.4xlarge instances in different regions that
are geographically close (east-1 and east-2). We also
provide instructions for building from source here: https:
//github.com/ucbrise/dory#building-from-source.

A.5 Experiment workflow
To start running experiments, the reviewer should first create a
cluster (Appendix A.4). Each figure (or group of figures) repro-
duced has a corresponding script to run the experiment. Each
figure reproduced has another script to plot the data collected.
Details are available here: https://github.com/ucbrise/
dory#running-experiments. After running experiments, the
reviewer should teardown the cluster following instructions
here: https://github.com/ucbrise/dory#setup.

Because the ORAM baseline experiments in our paper take
approximately a week to run, we only reproduce two data
points (1,024 and 2,048 documents), making the experiment
take a little over an hour.

A.6 Evaluation and expected result
The above instructions reproduce Table 7b, Figure 8, Sec-
tion 7.2, Figure 10, and Figure 11. There may be some vari-
ation from the figures in the paper based on how long the
experiments are allowed to run.

Our scripts plot the figures using the ORAM baseline data
we collected ourselves, as the experiments we provide for
reviewers only reproduce two data points. Reviewers can

1118 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.sync.com/
https://github.com/kokke/tiny-AES-c
https://tresorit.com/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://github.com/ucbrise/dory
https://github.com/ucbrise/dory
https://github.com/hashicorp/go-msgpack
https://github.com/hashicorp/go-msgpack
http://snowball.tartarus.org/download.html
https://github.com/SabaEskandarian/Express
https://github.com/SabaEskandarian/Express
https://github.com/ucbrise/dory#setting-up-aws-security-groups-and-keypairs
https://github.com/ucbrise/dory#setting-up-aws-security-groups-and-keypairs
https://github.com/ucbrise/dory#setup
https://github.com/ucbrise/dory#building-from-source
https://github.com/ucbrise/dory#building-from-source
https://github.com/ucbrise/dory#running-experiments
https://github.com/ucbrise/dory#running-experiments
https://github.com/ucbrise/dory#setup

compare the two data points we reproduce to the data we
collected to verify that the data matches up.
More detailed instructions on running experiments and

interpreting results are available here: https://github.com/
ucbrise/dory#running-experiments.
A.7 Experiment customization
Reviewers can configure experiments to run for more trials,
run for different numbers of documents, or use different Bloom
filter sizes.
A.8 Notes
We implement the DORY search protocol as described in the
body of the paper, and our implementation does not include a

complementary end-to-end encrypted filesystem that could
use or interface with DORY. We support keyword search with
a small, configurable number of false positives (we do not
support regular expressions or other advanced search features).

A.9 AE Methodology

Submission, reviewing and badging methodology:

https://www.usenix.org/conference/osdi20/call-for-

artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1119

https://github.com/ucbrise/dory#running-experiments
https://github.com/ucbrise/dory#running-experiments
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

	Introduction
	Summary of techniques

	Finding DORY: identifying a system model
	System requirements
	Distributed trust requirements
	Opportunities
	Building a distributed trust system
	Future directions

	System design overview
	The underlying filesystem
	The DORY API
	System architecture
	Threat model and security properties

	Search design
	A strawman search index
	Eliminating search access patterns
	Protecting against malicious attackers
	Supporting dynamic membership
	Generalizing to oblivious filesystems

	Replication across trust domains
	Algorithm
	Batching

	Implementation
	Parallelism
	Fast PRF evaluation

	Evaluation
	Baselines
	Latency
	Throughput
	Storage
	Bandwidth
	Cost

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Notes
	AE Methodology

