
Project Report:
GDPR-Compliance in Web Applications by Construction

Kinan Dak Albab

Abstract
The General Data Protection Regulation (GDPR) guarantees
several rights to data subjects using a web application, includ-
ing rights to access, deletion, data portability, and restriction
of processing. Web applications can only guarantee GDPR-
compliance by providing their users with functionality that
allows them to exercise these rights. Implementing such func-
tionality is tedious and error-prone. Additionally, this func-
tionality may come at a performance cost.

This report proposes a novel backend system for web appli-
cations, that guarantees GDPR-compliance by construction.
The backend system is organized at the level of a user shard,
which is a physical unit of data that stores exactly a single
user’s data. We demonstrate how this re-organization provides
efficient functionality for accessing and deleting a user’s data,
and discuss how the performance penalty it induces on com-
mon application queries can be minimized.

1 Introduction

Ensuring that a web application (or any piece of software) is
GDPR compliant is a tedious task: GDPR compliance touches
all aspects of the application. GDPR poses specific require-
ments on the storage of data, as well as how it is processed.
Furthermore, it requires that applications provide users with
specific functionality, such as a mean to retrieve all of that
users data.

The interplay between GDPR compliance and modern web
applications design principles, as expressed in frameworks
such as Django, provides opportunities for interesting ways
to achieve GDPR compliance by construction. While web
applications design focus on modularity and separation of
concerns (e.g. model-view-controller architecture), ad-hoc
GDPR compliance may result in sprinkling the logic for such
compliance throughout these modules, making it hard to main-
tain and design such applications, and to validate whether that
logic is indeed sufficient for compliance.

Furthermore, it is clear that GDPR-compliance affects
performance in traditionally-designed systems and applica-

tions. A traditional web application can implement GDPR-
compliance functionality (such as right to access or deletion)
as it would any other functionality. However, such imple-
mentation will incur significant overheads, since acquiring or
deleting all the data of a user in a traditional setup involves
many expensive joins and filters. Furthermore, the core func-
tionality of the web application may also be affected, as it
has to be modified in various ways to ensure processing a
user’s data is done with proper consent and permissions. On
the other hand, minimally modifying existing database and
backend systems to provide compliance is demonstrated to
introduce a significant overhead to host applications [2].

We believe efficient compliance-by-construction can only
be achieved with a fundamental re-design of databases and
backend systems. We describe a novel design that provides
such compliance out of the box, and implement a prototype
backend system achieving this design. Our system provides
a familiar SQL-interface to web applications for schema cre-
ation, data insertion, and data processing.

Host applications interact with the backend system via tra-
ditional SQL statements, written against the original schema
that the host application specified. This original schema is
used as a contract between our system and the host appli-
cation. Internally, the system stores and organizes data in a
radically different way: instead of storing all the data in a
single database with the original schema, the system main-
tains a collection of physical shards (i.e. mini databases), that
store portions of the overall data per user. A shard contains
an automatically deduced subset of tables from the original
schema, which are populated only with rows that correspond
to the user of the shard.

This sharded design allows our system to provide efficient
mechanisms for data access and deletion, both implemented
as constant time operators independent from the number of the
users, the size of the database, or complexity of the schema.
Retrieving the data of a particular user corresponds to simply
dumping that user’s shard, and deletion requires only deleting
that shard. Both functionalities can be carried out without the
need for any joins or filtering.

1



2 User-Sharded Database Design

Our backend system stores and manages data internally
sharded by user. Instead, of a single monolithic database,
our system manages several mini-databases, with each such
single database dedicated to a single user, and storing the
entirety of that user’s data.

This sharding is performed automatically. The host appli-
cation specifies a logical unsharded SQL schema, which is
analyzed by our system, and transformed into a user-sharded
schema. All subsequent insertions, deletions, and queries
made by the host application are automatically transformed
into equivalent statements compatible with the underlying
user-sharded organization.

Our system maintains an in-memory cache of user to shard
mapping, which allows our system to identify the all existing
user shards and the users they correspond to. This cached
mapping is automatically restored whenever the system is
restarted, and is updated whenever it is affected by an exe-
cuted update or delete statement. This cache is used to effi-
ciently identify which shard a transformed statement should
be executed against.

Overall, the design consists of the following components:

Schema Rewriter: The schema rewriter analyzes the logi-
cal unsharded schema of a table, one at a time, and determines
what its user-sharded schema looks like. The main task of the
rewriter is to determine whether row in a table represents a
user of the application, data associated with some user(s), or
data unrelated to any user.

The notion of a user is a semantic property of the host
application. A table of users in one application may look
significantly different than one from another application. Fur-
thermore, within a single application, there may exist several
types of users, each stored in a different table. For example,
an application for course assignment submissions includes
both “students” and “instructors”, each commonly stored in a
separate table.

Our system can only discover this semantic notion effec-
tively with inputs from the host application. We extend SQL
with a “PII” annotation, and rely on application developers to
annotate relevant columns in user-describing tables with that
annotation. Our system considers tables with such annotations
to be user tables.

Our schema rewriter judges whether a table contains user
related data by analyzing foreign keys out of that table. If a
table contains a direct foreign key to a user defining table, or
a foreign key to a different user-related table, it is considered
to be user-related. The second case implicitly defines a rela-
tionship between rows in this table and users, via transitive
foreign keys.

Data is commonly shared or related to different users, such
as direct messages between users of a social media appli-
cation, or transactions in a banking application. Tables con-

taining such data include multiple foreign keys, each relating
the data with one of these users. Our schema rewriter needs
to make a judgment regarding which user shard such data
ultimately resides in.

Although shards are an implementation detail internal to
our system, they actually codify deeper semantic relationships
between data and users. In particular, a shard is meant to
include exactly all the data belonging to its user, such that
retrieving this shard is equivalent to retrieving all that user’s
data, and deleting that shard is equivalent to removing that
user from the application completely.

In common cases, our schema rewriter can automatically
deduce these semantic relationship, and make sharding judg-
ment based on them. However, these relationships are am-
bigious for data shared between various users. The exact
semantic relationships in such a case are only known to the
host application developer. Thus, we require that developers
annotate the schema of such shared data with an “Owner”
annotation. Our rewriter throws a runtime error whenever an
ambigious relationship is encountered that was not resolved
by the developer using this annotation.

Our rewriter considers tables annotated with a single Owner
annotation to contain data owned exclusively by the annotated
user, even if it is related to multiple users via foreign keys. Al-
ternatively, having multiple owner annotations codifies having
data whose ownership is shared among all annotated users.

When a table gets sharded via our rewriter, no physical
database operations are exeucted. Instead, the sharded schema
and judgments are saved within our system’s state. When data
for a new user is inserted, our system uses this stored schema
to create a new shard with the relevant sharded tables for that
user.

Insert Statements Rewriter: SQL insert statement specify
a sequence of rows to insert into a given table. Our insert
statements rewriter can identify whether that table is sharded
or not, by looking it up in the system’s state.

For an unsharded table, the insertion is unmodified, and
is executed within the default shard that includes user-
unaffliated data. However, if the table represents a user, the
insertion also triggers a shard creation for that user, which is
initially empty.

On the other hand, inserting data into a sharded table re-
quires rewriting the statement. First, the owners of the data
are identified according to the state produced by the schema
rewriter. Second, the values specified in the insert statement
are inspected to find the concrete value corresponding to each
owner. Finally, for every user owner, the data is inserted into
that user’s shard.

Queries Rewriter: Host applications provide queries writ-
ten against the unsharded original schema. Therefore, a single
query may yield data from various users, and thus may span
several shards. For example, querying a table without any

2



filters returns all the data in that logical table, which includes
the data stored at every user-shard for that table.

The same may hold for queries filtered on some set of
columns. For example, querying for all homework submis-
sions that occured after a certain timestamp may span up to all
student shards, since any given student may have submitted a
homework after that timestamp. On the other hand, filtering
by user id restricts the relevant shards by definition: querying
for all submission made by a given user need only involve
that user’s single shard, since a shard by definition stores all
the data of its user.

Our queries rewriter determines whether the tables being
queried are sharded or not, and then determines which specific
shards to query, by analyzing the select statement’s WHERE
clause and the state of our system. This overall design works
for complex select statements, including ones that join over
multiple tables, even if they belong to different shards. How-
ever, it is clear that this is not efficient in general, since a select
query may result in a similar query executed at every shard.
We discuss how this can be mitigated later in this report.

Delete Statements Rewriter: Deletes are handled some-
what similarly to queries. An SQL delete statement may spec-
ify a condition specifying which data to delete via a where
clause. These conditions may allow our system to choose a
subset of shards to execute against. This analysis can be done
by looking at the delete statement’s WHERE clause as well
as the state of our system.

One important difference between deletes and queries is in
cascading: depending on schema, deleting a certain row may
entail deleting other rows that refer to it. Cascading deletes
within a single shard is easy, and we rely on the underlying
database system to provide it for schemas that are configured
correctly.

Additionally, our design supports efficient cascade-deletion
of all of a user’s data. Our system identifies delete statements
that delete a user, since the system is aware of which tables
represent different kinds of users. When such a statement
is executed, our system determines the ID of the user being
deleted, and uses it to delete the shard of that user, by remov-
ing it from the file system, since a shard is an independent
mini-database. Notice that this operation requires no joins
or filters, and instead is a constant time operation that only
de-links an inode from the file system.

Data owned by several users is only deleted when all its
owners are deleted. Such data is duplicated along several
shards, one for each owning user. When either one of the
owners is deleted, the corresponding shard is deleted along
with a single duplicate of the data. However, other duplicates
remain, and only get removed when all owners are deleted.

Notice that the duplicate data may contain “dangling” val-
ues referencing deleted users (or there data). Cross-shard
cascading is currently unsupported, we discuss plans for sup-
porting it towards the end of the report.

3 Implementation

Our implementation follows the design outlined in the above
section, and is available here. The implementation contains
instructions for building and running the system, as well as
example SQL workloads.

Our implementation makes two simplifications to the pre-
viously described design:

1. We do not support tables with implicit / transitive re-
lationships to users. While our schema rewriter is per-
fectly capable of handling such tables, inserting to such
tables requires the system to identify the owning user(s)
by traversing the transitive relationships until the rele-
vant user table is reached, which requires the system to
maintain additional caches, make several queries to the
underlying shards, or require host applications to scope
inserts by users.

All of these solutions have their own benefits and disad-
vantages, and a combination of them is likely worthwhile
implementing. Neither of them pose any significant de-
sign challenges, and are just a matter of implementation.

2. We support a subset of SQL. Specifically, we only sup-
port a subset of possible conditionals and expressions in
WHERE statements. We make these restrictions in order
to simplify our code and the time required to implement
it. We detail out the exact restrictions in our source code,
which throws runtime errors whenever any of these re-
strictions is unmet. You can view these restrictions here.

4 Evaluation

4.1 Expressivity
We wrote three different simplified schemas for a social media,
doctor-patient medical communication, and assignment sub-
mission application. As well as associated simplified insert,
query, and delete statements. We have used these applications
to test the expressivity of our “PII” and “Owner” abstractions.
Specifically, whether we can automatically deduce owner-
ship without annotations in simple scenarios, and whether the
“Owner” abstraction is sufficient to encode ownership in more
sophisticated scenarios where data is shared between various
users. The schemas and SQL operations can be found here.

Our use cases demonstrate that these abstractions have
significant expressive power: they can encode scenarios where
data is owned by various users, such as a direct message sent
over a social media application between two friends, as well
as data that is owned exclusively by one user, even though it
is related to several ones.

Consider a social media application such as Facebook.
Users have the ability to exchange private messages among
themselves. A message sent or received by any particular
user is in part owned by that user: the user gets to see that

3

https://github.com/brownsys/pelton/tree/shards/shards
https://github.com/brownsys/pelton/blob/shards/shards/sqlengine/visitors/valid.cc
https://github.com/brownsys/pelton/tree/shards/shards/examples


message at will, regardless of any policies imposed by other
users. When a user requests a copy of all their data from the
service, it is reasonable to expect such a message to be part of
this data. Furthermore, if either users delete their account, the
other user expects that they maintain access to the message
history with the deleted user.

In such a scenario, the data is clearly “equally” owned by
both users. Using our abstractions, this can be achieved by
annotating both the send and receiver as Owners of the data.
This results in the expected deletion semantics, as well as
expected behavior when either user requests access to their
data, and causes our system to duplicate message data in both
the sender and receiver shards.

On the other hand, there exists scenario where data is
owned by a single user, even if it is related or even created by
a different user. For example, imagine a medical chat appli-
cations where doctors and patients communicate to describe
symptoms and receive diagnosis. Clearly, a patient expects
that the service provides them with a complete transcript of all
their incoming and outgoing communication with any doctor,
whenever that patient requests a copy of their data. Further-
more, the patient is in control of the policies associated with
all such communications, including messages containing di-
agnosis sent by a doctor to that patient. The doctor should
not be able to deny the patient access to such a message for
example, or unilaterally delete their diagnosis.

Furthermore, a doctor that unsubscribes from this appli-
cation and request that all their data is removed should not
expect current or previous diagnosis they sent to patients to be
deleted as well, since patients clearly have a right to maintain
such diagnosis as part of their stored medical history. While
patients have the right to expect all data around them, particu-
larly their sensitive medical history, is delete upon request.

In this case, the ownership is clearly for the patient, al-
though the particular message also refers to the doctor that
sent or received it. This is expressible using our system by ap-
plying the Owner annotation to the patient, but not the doctor.
This maintains the foreign keys to both patient and doctor ta-
bles, but correctly encodes the deletion and access semantics
to be in favor of the patient only.

Finally, for data that relates only to a single user, such as a
homework submission table, which relates to a student and
assignment, but not instructor or other students, our implemen-
tation is able to automatically deduce ownership and apply
correct deletion and access semantics.

4.2 Performance

In its current state, it is difficult to perform detailed perfor-
mance experiments on our system. Primarily because our
design is only finalized for the right to access and delete func-
tionality. In particular, common host application queries are
not meant to be executed using the current rewriting design.
Instead, the complete design relies on continously updated

materalized views that essentially provide cache-like lookup
for these common queries. The current query rewriting is
only meant to be used for testing the correctness of sharding
internally, and for tinker and debugging by host application
developers, but not in production.

For right of access and right of deletion, it is clear to see
that our design achieves them with efficient and constant
time operations. Especially when compared to traditional
databases, which require joins and filters to be performed for
either functionalities, relative to the complexity of the schema,
over the entire data in the relevant tables in the databases.

5 Future Plan

In addition to augmenting the implementation to handle previ-
ously restricted SQL expressions and transitive relationships,
we plan on extending the system in three major directions:

Materialized Views We plan on hooking up our system to
a data flow system, which transforms common predefined
SQL queries given by the host application to a tree of data
flow operators that compute materialized views that represent
the output of these queries.

Whenever data is inserted via our system, the new data is
additionally fed into the data flow system at the appropriate
input operators. The data flow system carries out executing
these operators, feeding their outputs to the corresponding
next level of operators, until the materialized views have been
updated.

When the host application executes a concrete instantiation
of one of these pre-defined queries, our system looks up the
output in the relevant materialized views, according to the
concrete input values used in these queries. Thus avoiding the
performance cost of executing and aggregating queries over
many shards.

Developer-Augmented Deletion Semantics Our owner-
ship primitive, whether explicitly annotated or implicitly de-
duced, provides our system with some guidance as to how
cascading a user deletion must be performed, e.g. whether to
delete data if all or either of the users it relates to are deleted.
However, our simple formula is unlikely to support all sce-
narios, such as esoteric ones where data is owned by various
users, but is deleted when some subset of them are deleted.

Furthermore, our user deletion leaves behind dangling val-
ues referencing the deleted user in other shards, since our
system does not know how such values ought to be handled.
This is a special case of a larger issue: cross-shard cascading.

We plan to extend SQL with additional delete-oriented
annotations that allow developers to specify desired cross-
shard cascading functionality. This extension is both critical
for integrity as well as privacy, and previous work, such as

4



DELF [1], demonstrated that it can have good performance
when architected correctly.

User Policy In addition to storing all of a user’s data within
the corresponding shard, we want to store user-provided poli-
cies governing that data in the shard as well. These policies
dictate how user data (at different granularity) can be pro-
cessed, especially which data flows the user’s data is allowed
to be fed into.

Furthermore, we are curious about investigating how such
policies can be exported to host applications on query, and
how they can be used to restrict processing encoding within
host application (and not just data flows within our system),
using techniques such as information flow control.

References

[1] Katriel Cohn-Gordon, Georgios Damaskinos, Divino
Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs,
Daniel Obenshain, Paul Pearce, and Ioannis Papagiannis.
{DELF}: Safeguarding deletion correctness in online so-
cial networks. In 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020.

[2] Supreeth Shastri, Vinay Banakar, Melissa Wasserman,
Arun Kumar, and Vijay Chidambaram. Understanding
and benchmarking the impact of gdpr on database sys-
tems. Proc. VLDB Endow., 13(7):1064–1077, March
2020.

5


	Introduction
	User-Sharded Database Design
	Implementation
	Evaluation
	Expressivity
	Performance

	Future Plan

