CSCI 2390 SafeServer

Archer Wheeler
Brown University

Abstract

I implemented a Haskell toolkit, SafeServer, for statically
enforcing privacy policies of a web server. SafeServer uses
Haskell’s strong type system to enforce data flow and catch
accidental data breaches. User’s need to only to define a small
Policy instance that constructs data views for potential users.
As long as the policy code is trusted, and application pro-
gramer is not actively malicious, then SafeServer enforces
that data derived from private information can only be shown
to appropriate users.

SafeServer is implemented on top of Servant Server [1],
a web framework for Haskell, which statically enforces the
type of the API constructed. SafeServer uses this to statically
describe each API endpoint and the privacy policy used in
evaluation. In theory, a non malicious site could publish its
privacy policy code to hold itself accountable to any changes.

1 Introduction

There are a number of practical ways to enforce privacy poli-
cies in web servers. However, many methods require privi-
leged modifications to the runtime and enforce privacy dy-
namically at runtime.

SafeServer, however, is purely a standard Haskell library
and enforces privacy policies at compile time through
Haskell’s type system. The advantage is that the application
will raise problems during development rather than raising
runtime exceptions. In addition, SafeServer has negligible
overhead as there is no modified runtime which needs to ex-
amine and verify untrusted data. However, SafeServer does
enforce constraints on implementations which will likely sig-
nificantly impact performance.

Importantly, SafeServer is not designed to abstract away
concerns of user privacy from the application programer. In-
stead of magically handling privacy behind the scenes, Safe-
Server breaks programs which do not figure out away to cor-
rectly implement the specified privacy policies. Because of
this, SafeServer is not really a tool designed to factor out pri-
vacy concerns from application design. Instead, it is a tool that

provides a mechanism for verifying (and statically enforcing)
that privacy is upheld. Additionally, while resistant to abuse,
SafeServer does require that the application programmer in-
clude necessary boilerplate.

SafeServer does provide helper functions and tries to match
common idiomatic patterns in Haskell. Because of this, I hope
that using SafeServer is not difficult to use per se, but it does
add an additional (and unavoidable) burden on the application
designer. There is certainly room for additional abstraction
and quality of life, but that has not been my primary focus.

2 Background

Information Flow Control (IFC) is a semantics system which
enforces that data in an actor type model will only flow to
approved actors via a privacy policy attached to the data. One
such implementation is the operating system DStar [4]. One
of the benefits DStar gains from using IFC is a strong threat
model that protects against malicious processes assuming an
uncorrupted kernel. However, full IFC guarantees are quite
cumbersome and perhaps unnecessary in settings without the
need for an extreme threat model.

One practical use case is to provide privacy policy enforce-
ment for a web server when the application programers are
non malicious, but wish to prevent bugs or sloppy code from
accidentally leaking private user info. Suppose you are run-
ning a small company operating a website. You want to hire
an intern, but also don’t want them to be able to write sloppy
code that could leak customer information.

SafeServer was inspired by two systems, Resin and Jacque-
line [2, 3], both of which were designed to solve this kind
of problem. In both systems users define a small subset of
"policy code" which defines the privacy policy for the frame-
work. This code is expected to be trusted and bug free (e.g.
inaccessible to the intern)

Other programmers like the intern can then write normal
"application code" which may contain bugs but is non ma-
licious. This paradigm isolates code that explicitly handles
privacy from the code that performs application logic.



Resin solves this problem by modifying a python runtime
to label runtime data with a source an accompanying privacy
policy. Resin then propagates the label to any derived values
and checks the corresponding labels of data before sending
the server response. Jacqueline works similarly, but attempts
to create an environment in which the application programer
does not need to be aware of how the privacy policies are
implemented. Jacqueline modifies the python runtime so that
results of database operations (using a special purpose ORM)
are lazily evaluated to different results based on the user token.

SafeServer is written in Haskell and takes advantage of its
strong type system to check privacy at compile time rather
than at runtime. Haskell has an idiomatic typeclass called
"Monad" which as a byproduct of a more general semantics
effectively "taints" all information contained within. Haskell
uses this construct to encode its “IO” type and enforce that
any function whose result is not of the IO type will have no
side effects. A pure function cannot access data contained in
an IO result without itself becoming tainted by the IO type.
SafeServer leverages this power to enforce that private info
remains tainted by user defined privacy policies.

3 Design

I implemented both a small library, SafeServer, intended to be
a general toolkit and a small example program which makes
use of it. As of now, SafeServer itself is only implemented
as a Haskell Module rather than a full package. Semantically
there should be little difference.

Additionally, I went through quite a few different iterations
on ideas before landing on my final implementation. Most
of the challenge for this project was figuring out the correct
way to build SafeServer rather than on implementing it once I
realized how to do it. I detail some of the failed attempts and
various problems in Section 4.

3.1 Tracking Taints with Types
SafeServer introduces two types

newtype PI p a = Box (Text -> Maybe a)
data Safe p a = SafeBox a | Unsafe

to taint and track private data. The p types encode the policy
definition for that private info. For now, it is safe to ignore p
and assume a single policy definition.

The first type encodes private info which the programmer
may work on. The second, is a type that effectively freezes a
result derived from a corresponding PI type and marks it as
available to be sent to a user.

The type PI p is an instance of a Monad and so implements
idiomatic combinators that let the application programmer
operate directly on the "internal" a type. However, it is im-
possible to derive a result from a that is not itself contained
inside of the PI wrapper type.

Internally, the PI type acts as a lazy evaluation that given
a user token of type "Text" will optionally return the corre-
sponding value a. An optional Maybe a is used since the pol-
icy definer may wish to disallow access of the data to specific
users. Likewise, the corresponding Unsafe results encodes a
final result that should appear as empty. These internals are
inaccessible and abstracted from the user.

The corresponding Safe type provides no tools for manip-
ulation since it is intended to be directly serialized and return
to the user via Servant.

3.2 Haskell WAI Applications and Types

Ultimately the biggest challenge was enforcing that the final
server application was correctly typed. Like C, every Haskell
program must include a Main function:

main :: I0 ()
main = ...

The type I0 () means that when run, the program will have
some side effect and return the "unit" value, or effectively
nothing. From Haskell’s perspective 10 () is the only type
that makes sense for a compiled program invoked by the
operating system. For instance, if the type were not I0 than it
could not perform necessary side effects such as print to stdout
or even return an error code on completion. Additionally, once
the Haskell program finishes and the runtime is stopped the
value "inside" of the IO (...) is meaningless to the OS.
However, with SafeServer we want the program to only
define a correctly build privacy preserving server. When I
started I assumed there was a simple solution as long as the
program conformed to some boiler plate in the form of:

server :: SafeServer
safeServe :: SafeServer -> I0 ()
main :: IO ()

main = safeServe server

I expected it would be easy to build such a wrapper function
which enforced the types lined up. However, the input server
needs to be the final definition of the web server and is not a
simple as an ordinary pure Haskell function.

As far as I am aware, every Haskell web server framework
is built on top of the WAI (Web Application Interface) li-
brary which provides low level abstractions for building a
web server. However, since all information return by a web
server must be encoded into a bytestring, WAI throws away
the type that encodes the "meaning" of the response. For gen-
eral applications this is totally fine, however, SafeServer needs
the SafeServer type to encode only servers that return safe
data. You don’t want your intern being able to access the byte
string encodings of the final result.

The two "obvious" ways to solve this problem is to either
redefine the low level WAI application type or to define a new



routing framework that constructs a WAI application of type
SafeServer. Both, however, would require significant work
that is tangental to the privacy goal and limit the programmer
to functionality recreated by SafeServer.

Luckily, however, there is an existing and robust framework,
Servant Server [1], that solves some of these problems. In
Servant, the users define a type for an API that specifies the
structure and return type of each endpoint. Then the user
implements a server that matches this type.

SafeServer, gives the user the tools to define endpoint

whose results derive from a specific privacy Policy type.

Let’s start with a simple example of a servant type.

type API =
"user" :> QueryParam "tok" String
:> Get ' [JSON] User

This defines an api endpoint of the form "/user?tok={tok}"
where "tok" is a query parameter. It also defines that the
response from the server will be a User datatype serialized
into JSON.

In SafeServer one could instead define a "safe" endpoint:

type API =
"user" :> QueryParam "tok" String
:> GetJSON MyPolicy User

The difference is that this endpoint will return a User datatype
in JSON and observes the policy defined by the MyPolicy
instance.

The type Get JSON is an alias defined as

GetJSON MyPolicy User =
Get ' [PJSON] (Safe MyPolicy User)

This means that the response is Safe MyPolicy User which
must be derived under PI MyPolicy. Itis encoded into PJSON
which is equivalent to JSON. The dummy type PJSON is used
because the type is "hidden" in the SafeServer module so the
caller will not misuse it to decode private data into JSON.

3.3 Policy Definitions

In order to use SafeServer the user must define a Policy
instance that governs how PI data is generated. The policy
code must be trusted and bug free e.g. not written by the intern.
Users, for instance, may wish to define a specific policy file
and require special privileges in their source control to modify
the file.

To define a policy, a user constructs a dummy datatype of
the form

data MyPolicy

The policy datatype itself holds no value and the compiler will
ensure that it doesn’t actually appear at runtime. However,
the type is used to differentiate user policies. Users define
policies as:

instance Policy MyPolicy where
policy ::

The value Proxy p is required by the compiler, and is simply
a dummy value. This is a not uncommon Haskell idiom. Given
this definition, SafeServer provides a corresponding load
function.

load :: Proxy p -> FilePath -> IO (PI p Text)

Notice, that the policy used in loading the file is captured in
the type PI p Text. This policy remains fixed even if the
Text value is operated on. Likewise, the policy is defined by
the endpoint representation for the Servant server. Therefore
the application programmer must design their program so that
they return the correct policy data to the correct endpoint.

Importantly, Haskell enforces that there can only ever be
one instance definition per datatype. Therefore, as long as the
policy code defines an instance for its policy, another module
could not overwrite a new incorrect definition for the same
policy. A user could define a new policy and policy instance,
but then they would also have to change the corresponding
endpoint type.

4 Implementation

I spend a considerable amount of time during the implemen-
tation of SafeServer trying different attempts to correctly con-
struct SafeServer. Therefore, while my final implementation
is not extensive in length, I went through a number of failed
implementations before arriving at my result. For instance, I
begin by using the Spock server framework. However, with-
out the API type power of Servant, I found it difficult (if
not impossible) to enforce that the user defined type actually
returned only safely handled data.

In Spock the route defining combinators require that each
endpoint evaluate to a unit. Therefore, I could not wrap the
endpoint constructors in a way that required the results were
actually safe results.

One approach I tried was to augment the state of the Spock
server to encode safe responses with a "side effect" result.
However, none of the tools provided by the framework cor-
rectly lined up in a way that wasn’t easy for an application
programmer to overwrite. Servant cleanly solved some of
these problems, but it too required some ingenuity and re-
search to correctly build.

5 Evaluation

The accompanying SafeServer repository contains a simple
web server proof of concept. The server is capable of return-
ing data through a standard REST api and will correctly show
different data per endpoint depending on the user token sup-
plied.

Proxy p —> Text -> (Text -> Maybe Text)



It would be difficult to evaluate the performance of Safe-
Server since the overhead does not come from internal Safe-
Server code, but rather from how the user must build the server
to correctly compile. Because of this, there is no clear baseline
to form a comparison.

For instance, in my SafeServer proof of concept in order to
count the number of files in a directory it must load each file
individually. A server built without SafeServer could directly
query the directory size from the OS which would be much
quicker. However, without external information, that imple-
mentation would need some way to determine which files a
user should be aware of.

6 Conclusion

I present SafeServer, a Haskell toolkit that statically enforces
privacy policies. SafeServer is still largely a proof of concept,
and would likely need additional ergonomics before it would
be useful. Additionally, right now there are likely ways of
tricking SafeServer into returning unsafe data. I expect that
SafeServer could be improved to be more secure, and I hope
that it shows that this approach is at least feasible.

References

[1] Alp Mestanogullari, Sénke Hahn, Julian K Arni, and An-
dres Loh. Type-level web apis with servant: an exercise

in domain-specific generic programming. In Proceed-
ings of the 11th ACM SIGPLAN Workshop on Generic
Programming, pages 1-12. ACM, 2015.

[2] Jean Yang, Travis Hance, Thomas H Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong.
Precise, dynamic information flow for database-backed
applications. ACM SIGPLAN Notices, 51(6):631-647,
2016.

[3] Alexander Yip, Xi Wang, Nickolai Zeldovich, and
M Frans Kaashoek. Improving application security with
data flow assertions. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
291-304. ACM, 2009.

[4] Nickolai Zeldovich, Silas Boyd-Wickizer, and David
Mazieres. Securing distributed systems with informa-
tion flow control. In NSDI, volume 8, pages 293-308,

2008.



	Introduction
	Background
	Design
	Tracking Taints with Types
	Haskell WAI Applications and Types
	Policy Definitions

	Implementation
	Evaluation
	Conclusion

